1
|
Dorsey AF, Roach J, Burten RB, Azcarate-Peril MA, Thompson AL. Intestinal microbiota composition and efficacy of iron supplementation in Peruvian children. Am J Hum Biol 2024; 36:e24058. [PMID: 38420749 DOI: 10.1002/ajhb.24058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
OBJECTIVE Despite repeated public health interventions, anemia prevalence among children remains a concern. We use an evolutionary medicine perspective to examine the intestinal microbiome as a pathway underlying the efficacy of iron-sulfate treatment. This study explores whether gut microbiota composition differs between anemic children who respond and do not respond to treatment at baseline and posttreatment and if specific microbiota taxa remain associated with response to iron supplementation after controlling for relevant inflammatory and pathogenic variables. METHODS Data come from 49 pre-school-aged anemic children living in San Juan de Lurigancho, Lima, Peru. We tested for differences in alpha and beta diversity using QIIME 2 and performed differential abundance testing in DESeq2 in R. We ran multivariate regression models to assess associations between abundance of specific taxa and response while controlling for relevant variables in Stata 17. RESULTS While we found no evidence for gut microbiota diversity associated with child response to iron treatment, we observed several differential abundance patterns between responders and non-responders at both timepoints. Additionally, we present support for a nonzero relationship between lower relative abundance of Barnesiellaceae and response to iron supplementation in samples collected before and after treatment. CONCLUSION While larger studies and more specific approaches are needed to understand the relationship between microbes and anemia in an epidemiological context, this study suggests that investigating nutritional status and pathogen exposure is key to better understanding the gut microbiome and impact of iron fortification.
Collapse
Affiliation(s)
- Achsah F Dorsey
- Department of Anthropology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jeff Roach
- Center for Gastrointestinal Biology and Disease (CGIBD), Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, UNC Microbiome Core, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Rachel B Burten
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, USA
| | - M Andrea Azcarate-Peril
- Center for Gastrointestinal Biology and Disease (CGIBD), Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, UNC Microbiome Core, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Amanda L Thompson
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Anthropology, University of North Carolina, Chapel Hill, North Carolina, USA
- Carolina Population Center, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Zhang F, Liu J, Jiang L, Zheng Y, Yu L, Du L. Production of the siderophore lysochelin in rich media through maltose-promoted high-density growth of Lysobacter sp. 3655. Front Microbiol 2024; 15:1433983. [PMID: 38989020 PMCID: PMC11233812 DOI: 10.3389/fmicb.2024.1433983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Siderophores are produced by bacteria in iron-restricted conditions. However, we found maltose could induce the biosynthesis of the siderophore lysochelin in Lysobacter sp. 3655 in rich media that are not compatible with siderophore production. Maltose markedly promoted cell growth, with over 300% increase in cell density (OD600) when LB medium was added with maltose (LBM). While lysochelin was not detectable when OD600 in LBM was below 5.0, the siderophore was clearly produced when OD600 reached 7.5 and dramatically increased when OD600 was 15.0. Coincidently, the transcription of lysochelin biosynthesis genes was remarkably enhanced following the increase of OD600. Conversely, the iron concentration in the cell culture dropped to 1.2 μM when OD600 reached 15.0, which was 6-fold lower than that in the starting medium. Moreover, mutants of the maltose-utilizing genes (orf2677 and orf2678) or quorum-sensing related gene orf644 significantly lowered the lysochelin yield. Transcriptomics analysis showed that the iron-utilizing/up-taking genes were up-regulated under high cell density. Accordingly, the transcription of lysochelin biosynthetic genes and the yield of lysochelin were stimulated when the iron-utilizing/up-taking genes were deleted. Finally, lysochelin biosynthesis was positively regulated by a TetR regulator (ORF3043). The lysochelin yield in orf3043 mutant decreased to 50% of that in the wild type and then restored in the complementary strain. Together, this study revealed a previously unrecognized mechanism for lysochelin biosynthetic regulation, by which the siderophore could still be massively produced in Lysobacter even grown in a rich culture medium. This finding could find new applications in large-scale production of siderophores in bacteria.
Collapse
Affiliation(s)
- Fang Zhang
- School of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Jia Liu
- School of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Lin Jiang
- School of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Yongbiao Zheng
- School of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Lingjun Yu
- School of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
3
|
Kharga K, Jha S, Vishwakarma T, Kumar L. Current developments and prospects of the antibiotic delivery systems. Crit Rev Microbiol 2024:1-40. [PMID: 38425122 DOI: 10.1080/1040841x.2024.2321480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Antibiotics have remained the cornerstone for the treatment of bacterial infections ever since their discovery in the twentieth century. The uproar over antibiotic resistance among bacteria arising from genome plasticity and biofilm development has rendered current antibiotic therapies ineffective, urging the development of innovative therapeutic approaches. The development of antibiotic resistance among bacteria has further heightened the clinical failure of antibiotic therapy, which is often linked to its low bioavailability, side effects, and poor penetration and accumulation at the site of infection. In this review, we highlight the potential use of siderophores, antibodies, cell-penetrating peptides, antimicrobial peptides, bacteriophages, and nanoparticles to smuggle antibiotics across impermeable biological membranes to achieve therapeutically relevant concentrations of antibiotics and combat antimicrobial resistance (AMR). We will discuss the general mechanisms via which each delivery system functions and how it can be tailored to deliver antibiotics against the paradigm of mechanisms underlying antibiotic resistance.
Collapse
Affiliation(s)
- Kusum Kharga
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Shubhang Jha
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Tanvi Vishwakarma
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| |
Collapse
|
4
|
Gast RK, Dittoe DK, Ricke SC. Salmonella in eggs and egg-laying chickens: pathways to effective control. Crit Rev Microbiol 2024; 50:39-63. [PMID: 36583653 DOI: 10.1080/1040841x.2022.2156772] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022]
Abstract
Eggs contaminated with Salmonella have been internationally significant sources of human illness for several decades. Most egg-associated illness has been attributed to Salmonella serovar Enteritidis, but a few other serovars (notably S. Heidelberg and S. Typhimurium) are also sometimes implicated. The edible interior contents of eggs typically become contaminated with S. Enteritidis because the pathogen's unique virulence attributes enable it to colonize reproductive tissues in systemically infected laying hens. Other serovars are more commonly associated with surface contamination of eggshells. Both research and field experience have demonstrated that the most effective overall Salmonella control strategy in commercial laying flocks is the application of multiple interventions throughout the egg production cycle. At the preharvest (egg production) level, intervention options of demonstrated efficacy include vaccination and gastrointestinal colonization control via treatments such as prebiotics, probiotics, and bacteriophages, Effective environmental management of housing systems used for commercial laying flocks is also essential for minimizing opportunities for the introduction, transmission, and persistence of Salmonella in laying flocks. At the postharvest (egg processing and handling) level, careful regulation of egg storage temperatures is critical for limiting Salmonella multiplication inside the interior contents.
Collapse
Affiliation(s)
- Richard K Gast
- U.S. National Poultry Research Center, USDA Agricultural Research Service, Athens, GA, USA
| | - Dana K Dittoe
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, WI, USA
| | - Steven C Ricke
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
5
|
Rohrbacher C, Zscherp R, Weck SC, Klahn P, Ducho C. Synthesis of an Antimicrobial Enterobactin-Muraymycin Conjugate for Improved Activity Against Gram-Negative Bacteria. Chemistry 2023; 29:e202202408. [PMID: 36222466 PMCID: PMC10107792 DOI: 10.1002/chem.202202408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 12/12/2022]
Abstract
Overcoming increasing antibiotic resistance requires the development of novel antibacterial agents that address new targets in bacterial cells. Naturally occurring nucleoside antibiotics (such as muraymycins) inhibit the bacterial membrane protein MraY, a clinically unexploited essential enzyme in peptidoglycan (cell wall) biosynthesis. Even though a range of synthetic muraymycin analogues has already been reported, they generally suffer from limited cellular uptake and a lack of activity against Gram-negative bacteria. We herein report an approach to overcome these hurdles: a synthetic muraymycin analogue has been conjugated to a siderophore, i. e. the enterobactin derivative EntKL , to increase the cellular uptake into Gram-negative bacteria. The resultant conjugate showed significantly improved antibacterial activity against an efflux-deficient E. coli strain, thus providing a proof-of-concept of this novel approach and a starting point for the future optimisation of such conjugates towards potent agents against Gram-negative pathogens.
Collapse
Affiliation(s)
- Christian Rohrbacher
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany
| | - Robert Zscherp
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Stefanie C Weck
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany
| | - Philipp Klahn
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany.,Department of Chemistry and Molecular Biology, Division of Organic and Medicinal Chemistry, University of Gothenburg, Kemigården 4, 412 96, Göteborg, Sweden
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany
| |
Collapse
|
6
|
Cao L, Li N, Dong Y, Yang XY, Liu J, He QY, Ge R, Sun X. SPD_0090 Negatively Contributes to Virulence of Streptococcus pneumoniae. Front Microbiol 2022; 13:896896. [PMID: 35770170 PMCID: PMC9234739 DOI: 10.3389/fmicb.2022.896896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/13/2022] [Indexed: 11/30/2022] Open
Abstract
In most bacteria, iron plays an important role in the survival of bacteria and the process of infection to the host. Streptococcus pneumoniae (S. pneumoniae) evolved three iron transporters (i.e., PiaABC, PiuABC, and PitABC) responsible for the transportation of three kinds of iron (i.e., ferrichrome, hemin, and ferric ion). Our previous study showed that both mRNA and protein levels of SPD_0090 were significantly upregulated in the ΔpiuA/ΔpiaA/ΔpitA triple mutant, but its detailed biological function is unknown. In this study, we constructed spd_0090 knockout and complement strain and found that the deletion of spd_0090 hinders bacterial growth. SPD_0090 is located on the cell membrane and affects the hemin utilization ability of S. pneumoniae. The cell infection model showed that the knockout strain had stronger invasion and adhesion ability. Notably, knockout of the spd_0090 gene resulted in an enhanced infection ability of S. pneumoniae in mice by increasing the expression of virulence factors. Furthermore, iTRAQ quantitative proteomics studies showed that the knockout of spd_0090 inhibited carbon metabolism and thus suppressed bacterial growth. Our study showed that SPD_0090 negatively regulates the virulence of S. pneumoniae.
Collapse
Affiliation(s)
- Linlin Cao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Nan Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yingshan Dong
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiao-Yan Yang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jiajia Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
- *Correspondence: Qing-Yu He,
| | - Ruiguang Ge
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Ruiguang Ge,
| | - Xuesong Sun
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
- Xuesong Sun,
| |
Collapse
|
7
|
Soares EV. Perspective on the biotechnological production of bacterial siderophores and their use. Appl Microbiol Biotechnol 2022. [PMID: 35672469 DOI: 10.1007/s00253-022-11995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Iron (Fe) is an essential element in several fundamental cellular processes. Although present in high amounts in the Earth's crust, Fe can be a scarce element due to its low bioavailability. To mitigate Fe limitation, microorganism (bacteria and fungi) and grass plant biosynthesis and secret secondary metabolites, called siderophores, with capacity to chelate Fe(III) with high affinity and selectivity. This review focuses on the current state of knowledge concerning the production of siderophores by bacteria. The main siderophore types and corresponding siderophore-producing bacteria are summarized. A concise outline of siderophore biosynthesis, secretion and regulation is given. Important aspects to be taken into account in the selection of a siderophore-producing bacterium, such as biological safety, complexing properties of the siderophores and amount of siderophores produced are summarized and discussed. An overview containing recent scientific advances on culture medium formulation and cultural conditions that influence the production of siderophores by bacteria is critically presented. The recovery, purification and processing of siderophores are outlined. Potential applications of siderophores in different sectors including agriculture, environment, biosensors and the medical field are sketched. Finally, future trends regarding the production and use of siderophores are discussed. KEY POINTS : • An overview of siderophore production by bacteria is critically presented • Scientific advances on factors that influence siderophores production are discussed • Potential applications of siderophores, in different fields, are outlined.
Collapse
Affiliation(s)
- Eduardo V Soares
- Bioengineering Laboratory, ISEP-School of Engineering, Polytechnic Institute of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.
- CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga-Guimaraes, Portugal.
| |
Collapse
|
8
|
Soares EV. Perspective on the biotechnological production of bacterial siderophores and their use. Appl Microbiol Biotechnol 2022; 106:3985-4004. [PMID: 35672469 DOI: 10.1007/s00253-022-11995-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022]
Abstract
Iron (Fe) is an essential element in several fundamental cellular processes. Although present in high amounts in the Earth's crust, Fe can be a scarce element due to its low bioavailability. To mitigate Fe limitation, microorganism (bacteria and fungi) and grass plant biosynthesis and secret secondary metabolites, called siderophores, with capacity to chelate Fe(III) with high affinity and selectivity. This review focuses on the current state of knowledge concerning the production of siderophores by bacteria. The main siderophore types and corresponding siderophore-producing bacteria are summarized. A concise outline of siderophore biosynthesis, secretion and regulation is given. Important aspects to be taken into account in the selection of a siderophore-producing bacterium, such as biological safety, complexing properties of the siderophores and amount of siderophores produced are summarized and discussed. An overview containing recent scientific advances on culture medium formulation and cultural conditions that influence the production of siderophores by bacteria is critically presented. The recovery, purification and processing of siderophores are outlined. Potential applications of siderophores in different sectors including agriculture, environment, biosensors and the medical field are sketched. Finally, future trends regarding the production and use of siderophores are discussed. KEY POINTS : • An overview of siderophore production by bacteria is critically presented • Scientific advances on factors that influence siderophores production are discussed • Potential applications of siderophores, in different fields, are outlined.
Collapse
Affiliation(s)
- Eduardo V Soares
- Bioengineering Laboratory, ISEP-School of Engineering, Polytechnic Institute of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal. .,CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal. .,LABBELS - Associate Laboratory, Braga-Guimaraes, Portugal.
| |
Collapse
|
9
|
Klahn P, Zscherp R, Jimidar CC. Advances in the Synthesis of Enterobactin, Artificial Analogues, and Enterobactin-Derived Antimicrobial Drug Conjugates and Imaging Tools for Infection Diagnosis. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1783-0751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AbstractIron is an essential growth factor for bacteria, but although highly abundant in nature, its bioavailability during infection in the human host or the environment is limited. Therefore, bacteria produce and secrete siderophores to ensure their supply of iron. The triscatecholate siderophore enterobactin and its glycosylated derivatives, the salmochelins, play a crucial role for iron acquisition in several bacteria. As these compounds can serve as carrier molecules for the design of antimicrobial siderophore drug conjugates as well as siderophore-derived tool compounds for the detection of infections with bacteria, their synthesis and the design of artificial analogues is of interest. In this review, we give an overview on the synthesis of enterobactin, biomimetic as well as totally artificial analogues, and related drug-conjugates covering up to 12/2021.1 Introduction2 Antibiotic Crisis and Sideromycins as Natural Templates for New Antimicrobial Drugs3 Biosynthesis of Enterobactin, Salmochelins, and Microcins4 Total Synthesis of Enterobactin and Salmochelins5 Chemoenzymatic Semi-synthesis of Salmochelins and Microcin E492m Derivatives6 Synthesis of Biomimetic Enterobactin Derivatives with Natural Tris-lactone Backbone7 Synthesis of Artificial Enterobactin Derivatives without Tris-lactone Backbone8 Conclusions
Collapse
Affiliation(s)
- Philipp Klahn
- Institute of Organic Chemistry, Technische Universität Braunschweig
- Department for Chemistry and Molecular Biology, University of Gothenburg
| | - Robert Zscherp
- Institute of Organic Chemistry, Technische Universität Braunschweig
| | | |
Collapse
|
10
|
Bhakat D, Mondal I, Mukhopadhyay AK, Chatterjee NS. Iron influences the expression of colonization factor CS6 of enterotoxigenic Escherichia coli. MICROBIOLOGY-SGM 2021; 167. [PMID: 34550064 DOI: 10.1099/mic.0.001089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major pathogen of acute watery diarrhoea. The pathogenicity of ETEC is linked to adherence to the small intestine by colonization factors (CFs) and secretion of heat-labile enterotoxin (LT) and/or heat-stable enterotoxin (ST). CS6 is one of the most common CFs in our region and worldwide. Iron availability functions as an environmental cue for enteropathogenic bacteria, signalling arrival within the human host. Therefore, iron could modify the expression of CS6 in the intestine. The objective of this study was to determine the effect of iron availability on CS6 expression in ETEC. This would help in understanding the importance of iron during ETEC pathogenesis. ETEC strain harbouring CS6 was cultured under increasing concentrations of iron salt to assess the effect on CS6 RNA expression by quantitative RT-PCR, protein expression by ELISA, promoter activity by β-galactosidase activity, and epithelial adhesion on HT-29 cells. RNA expression of CS6 was maximum in presence of 0.2 mM iron (II) salt. The expression increased by 50-fold, which also reduced under iron-chelation conditions and an increased iron concentration of 0.4 mM or more. The surface expression of CS6 also increased by 60-fold in presence of 0.2 mM iron. The upregulation of CS6 promoter activity by 25-fold under this experimental condition was in accordance with the induction of CS6 RNA and protein. This increased CS6 expression was independent of ETEC strains. Bacterial adhesion to HT-29 epithelial cells was also enhanced by five-fold in the presence of 0.2 mM iron salt. These findings suggest that CS6 expression is dependent on iron concentration. However, with further increases in iron concentration beyond 0.2 mM CS6 expression is decreased, suggesting that there might be a strong regulatory mechanism for CS6 expression under different iron concentrations.
Collapse
Affiliation(s)
- Debjyoti Bhakat
- Division of Biochemistry, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Indranil Mondal
- Division of Biochemistry, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish Kumar Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | |
Collapse
|
11
|
Zhang M, Zhang Y, Han X, Wang J, Yang Y, Ren B, Xia M, Li G, Fang R, He H, Jia Y. Whole genome sequencing of Enterobacter mori, an emerging pathogen of kiwifruit and the potential genetic adaptation to pathogenic lifestyle. AMB Express 2021; 11:129. [PMID: 34533621 PMCID: PMC8448808 DOI: 10.1186/s13568-021-01290-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 11/10/2022] Open
Abstract
Members of the Enterobacter genus are gram-negative bacteria, which are used as plant growth-promoting bacteria, and increasingly recovered from economic plants as emerging pathogens. A new Enterobacter mori strain, designated CX01, was isolated as an emerging bacterial pathogen of a recent outbreak of kiwifruit canker-like disease in China. The main symptoms associated with this syndrome are bleeding cankers on the trunk and branch, and brown leaf spots. The genome sequence of E. mori CX01 was determined as a single chromosome of 4,966,908 bp with 4640 predicted open reading frames (ORFs). To better understand the features of the genus and its potential pathogenic mechanisms, five available Enterobacter genomes were compared and a pan-genome of 4870 COGs with 3158 core COGs were revealed. An important feature of the E. mori CX01 genome is that it lacks a type III secretion system often found in pathogenic bacteria, instead it is equipped with type I, II, and VI secretory systems. Besides, the genes encoding putative virulence effectors, two-component systems, nutrient acquisition systems, proteins involved in phytohormone synthesis, which may contribute to the virulence and adaption to the host plant niches are included. The genome sequence of E. mori CX01 has high similarity with that of E. mori LMG 25,706, though the rearrangements occur throughout two genomes. Further pathogenicity assay showed that both strains can either invade kiwifruit or mulberry, indicating they may have similar host range. Comparison with a closely related isolate enabled us to understand its pathogenesis and ecology.
Collapse
|
12
|
Zscherp R, Coetzee J, Vornweg J, Grunenberg J, Herrmann J, Müller R, Klahn P. Biomimetic enterobactin analogue mediates iron-uptake and cargo transport into E. coli and P. aeruginosa. Chem Sci 2021; 12:10179-10190. [PMID: 34377407 PMCID: PMC8336463 DOI: 10.1039/d1sc02084f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022] Open
Abstract
The design, synthesis and biological evaluation of the artificial enterobactin analogue EntKL and several fluorophore-conjugates thereof are described. EntKL provides an attachment point for cargos such as fluorophores or antimicrobial payloads. Corresponding conjugates are recognized by outer membrane siderophore receptors of Gram-negative pathogens and retain the natural hydrolyzability of the tris-lactone backbone. Initial density-functional theory (DFT) calculations of the free energies of solvation (ΔG(sol)) and relaxed Fe-O force constants of the corresponding [Fe-EntKL]3- complexes indicated a similar iron binding constant compared to natural enterobactin (Ent). The synthesis of EntKL was achieved via an iterative assembly based on a 3-hydroxylysine building block over 14 steps with an overall yield of 3%. A series of growth recovery assays under iron-limiting conditions with Escherichia coli and Pseudomonas aeruginosa mutant strains that are defective in natural siderophore synthesis revealed a potent concentration-dependent growth promoting effect of EntKL similar to natural Ent. Additionally, four cargo-conjugates differing in molecular size were able to restore growth of E. coli indicating an uptake into the cytosol. P. aeruginosa displayed a stronger uptake promiscuity as six different cargo-conjugates were found to restore growth under iron-limiting conditions. Imaging studies utilizing BODIPYFL-conjugates, demonstrated the ability of EntKL to overcome the Gram-negative outer membrane permeability barrier and thus deliver molecular cargos via the bacterial iron transport machinery of E. coli and P. aeruginosa.
Collapse
Affiliation(s)
- Robert Zscherp
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| | - Janetta Coetzee
- Department for Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy at Universität des Saarlandes Campus Building E 8.1 D-66123 Saarbrücken Germany
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany
| | - Johannes Vornweg
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| | - Jörg Grunenberg
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| | - Jennifer Herrmann
- Department for Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy at Universität des Saarlandes Campus Building E 8.1 D-66123 Saarbrücken Germany
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany
| | - Rolf Müller
- Department for Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy at Universität des Saarlandes Campus Building E 8.1 D-66123 Saarbrücken Germany
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany
| | - Philipp Klahn
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| |
Collapse
|
13
|
Klebba PE, Newton SMC, Six DA, Kumar A, Yang T, Nairn BL, Munger C, Chakravorty S. Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics. Chem Rev 2021; 121:5193-5239. [PMID: 33724814 PMCID: PMC8687107 DOI: 10.1021/acs.chemrev.0c01005] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron is an indispensable metabolic cofactor in both pro- and eukaryotes, which engenders a natural competition for the metal between bacterial pathogens and their human or animal hosts. Bacteria secrete siderophores that extract Fe3+ from tissues, fluids, cells, and proteins; the ligand gated porins of the Gram-negative bacterial outer membrane actively acquire the resulting ferric siderophores, as well as other iron-containing molecules like heme. Conversely, eukaryotic hosts combat bacterial iron scavenging by sequestering Fe3+ in binding proteins and ferritin. The variety of iron uptake systems in Gram-negative bacterial pathogens illustrates a range of chemical and biochemical mechanisms that facilitate microbial pathogenesis. This document attempts to summarize and understand these processes, to guide discovery of immunological or chemical interventions that may thwart infectious disease.
Collapse
Affiliation(s)
- Phillip E Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Salete M C Newton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - David A Six
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Ashish Kumar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Taihao Yang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, 3900 Bethel Drive, St. Paul, Minnesota 55112, United States
| | - Colton Munger
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Somnath Chakravorty
- Jacobs School of Medicine and Biomedical Sciences, SUNY Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
14
|
The effect of EDTA in combination with some antibiotics against clinical isolates of gram negative bacteria in Mansoura, Egypt. Microb Pathog 2021; 154:104840. [PMID: 33691177 DOI: 10.1016/j.micpath.2021.104840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/10/2021] [Accepted: 02/16/2021] [Indexed: 11/24/2022]
Abstract
Extensive use of antibiotics in clinical practice has been associated with increasing frequency of resistant microorganisms. So new strategy is needed to treat the resistant pathogens. Hence this study was conducted to determine the effect of Ethylenediaminetetraacetic acid (EDTA) in increasing the inhibition effect of some antibiotics on multi-drug resistant (MDR) gram-negative bacteria. For this purpose, 40 E. coli isolates, 40 K. pneumoniae isolates and 50 P. aeruginosa isolates were collected from different University's hospitals in Mansoura, Egypt. Antibacterial susceptibility pattern against 9 different antimicrobials were studied by disc diffusion method. Also the effect of two sub-inhibitory concentrations of EDTA (1 and 2 mM) on the inhibition zones of antibiotic discs against the highly multidrug resistant (MDR) isolates was determined. Checkerboard method was used for testing the activity of gentamicin/EDTA and cefotaxime/EDTA combinations on the highly MDR isolates. Additionally, the effect of EDTA on the expression of efflux pump genes was tested by real time-PCR. Most of the clinical isolates were found to be resistant to the tested antibiotics except imipenem and high prevalence of MDR isolates was recorded. 34 isolates were selected as those showed the highest multi-drug resistance and were tested to specify their MIC for EDTA as EDTA showed strong antibacterial activity with MIC ranging 4-8 mM. The addition of sub-MIC of EDTA (1or 2 mM) to the agar plate resulted in changing the 11 tested E. coli isolates from resistant to sensitive to ceftazidime, gentamicin, rifampin, ampicillin, erythromycin and vancomycin, the tested K. pneumoniae isolates were turned also from resistant to sensitive to gentamicin and ceftazidime, additionally the tested P. aeruginosa isolates became sensitive to gentamicin, ceftazidime and ciprofloxacin. Indifference to additive activity was observed for tested combinations and MIC value of cefotaxime or gentamicin in combination with EDTA was less than antibiotic alone in the most tested isolates. Moreover, significant reduction (P < 0.01) in the expression of all tested efflux pump genes in treated E. coli, K. pneumoniae and P. aeruginosa isolates with EDTA compared to untreated isolates was observed. In conclusion, these results suggest that the combination of antibiotic especially gentamicin with EDTA may be fruitful for management of resistant gram negative infections.
Collapse
|
15
|
Zea L, McLean RJ, Rook TA, Angle G, Carter DL, Delegard A, Denvir A, Gerlach R, Gorti S, McIlwaine D, Nur M, Peyton BM, Stewart PS, Sturman P, Velez Justiniano YA. Potential biofilm control strategies for extended spaceflight missions. Biofilm 2020; 2:100026. [PMID: 33447811 PMCID: PMC7798464 DOI: 10.1016/j.bioflm.2020.100026] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/08/2020] [Accepted: 05/24/2020] [Indexed: 01/10/2023] Open
Abstract
Biofilms, surface-adherent microbial communities, are associated with microbial fouling and corrosion in terrestrial water-distribution systems. Biofilms are also present in human spaceflight, particularly in the Water Recovery System (WRS) on the International Space Station (ISS). The WRS is comprised of the Urine Processor Assembly (UPA) and the Water Processor Assembly (WPA) which together recycles wastewater from human urine and recovered humidity from the ISS atmosphere. These wastewaters and various process streams are continually inoculated with microorganisms primarily arising from the space crew microbiome. Biofilm-related fouling has been encountered and addressed in spacecraft in low Earth orbit, including ISS and the Russian Mir Space Station. However, planned future missions beyond low Earth orbit to the Moon and Mars present additional challenges, as resupplying spare parts or support materials would be impractical and the mission timeline would be in the order of years in the case of a mission to Mars. In addition, future missions are expected to include a period of dormancy in which the WRS would be unused for an extended duration. The concepts developed in this review arose from a workshop including NASA personnel and representatives with biofilm expertise from a wide range of industrial and academic backgrounds. Here, we address current strategies that are employed on Earth for biofilm control, including antifouling coatings and biocides and mechanisms for mitigating biofilm growth and damage. These ideas are presented in the context of their applicability to spaceflight and identify proposed new topics of biofilm control that need to be addressed in order to facilitate future extended, crewed, spaceflight missions.
Collapse
Affiliation(s)
- Luis Zea
- BioServe Space Technologies, University of Colorado, Boulder, CO, USA
| | | | | | | | | | | | | | - Robin Gerlach
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Sridhar Gorti
- NASA Marshall Spaceflight Center, Huntsville, AL, USA
| | | | - Mononita Nur
- NASA Marshall Spaceflight Center, Huntsville, AL, USA
| | - Brent M. Peyton
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Philip S. Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Paul Sturman
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | | |
Collapse
|
16
|
Saha P, Yeoh BS, Xiao X, Golonka RM, Abokor AA, Wenceslau CF, Shah YM, Joe B, Vijay-Kumar M. Enterobactin induces the chemokine, interleukin-8, from intestinal epithelia by chelating intracellular iron. Gut Microbes 2020; 12:1-18. [PMID: 33171063 PMCID: PMC7671005 DOI: 10.1080/19490976.2020.1841548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Iron is an indispensable nutrient for both mammals and microbes. Bacteria synthesize siderophores to sequester host iron, whereas lipocalin 2 (Lcn2) is the host defense protein that prevent this iron thievery. Enterobactin (Ent) is a catecholate-type siderophore that has one of the strongest known affinities for iron. Intestinal epithelial cells (IECs) are adjacent to large microbial population and are in contact with microbial products, including Ent. We undertook this study to investigate whether a single stimulus of Ent could affect IEC functions. Using three human IEC cell-lines with differential basal levels of Lcn2 (i.e. HT29 < DLD-1 < Caco-2/BBe), we demonstrated that iron-free Ent could induce a dose-dependent secretion of the pro-inflammatory chemokine, interleukin 8 (IL-8), in HT29 and DLD-1 IECs, but not in Caco-2/BBe. Ent-induced IL-8 secretion was dependent on chelation of the labile iron pool and on the levels of intracellular Lcn2. Accordingly, IL-8 secretion by Ent-treated HT29 cells could be substantially inhibited by either saturating Ent with iron or by adding exogenous Lcn2 to the cells. IL-8 production by Ent could be further potentiated when co-stimulated with other microbial products (i.e. flagellin, lipopolysaccharide). Water-soluble microbial siderophores did not induce IL-8 production, which signifies that IECs are specifically responding to the lipid-soluble Ent. Intriguingly, formyl peptide receptor (FPR) antagonists (i.e. Boc2, cyclosporine H) abrogated Ent-induced IL-8, implicating that such IEC response could be, in part, dependent on FPR. Taken together, these results demonstrate that IECs sense Ent as a danger signal, where its recognition results in IL-8 secretion.
Collapse
Affiliation(s)
- Piu Saha
- UT Microbiome Consortium, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Beng San Yeoh
- UT Microbiome Consortium, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Xia Xiao
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rachel M. Golonka
- UT Microbiome Consortium, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Ahmed A. Abokor
- UT Microbiome Consortium, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Camilla F. Wenceslau
- UT Microbiome Consortium, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Yatrik M. Shah
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA,Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Bina Joe
- UT Microbiome Consortium, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Matam Vijay-Kumar
- UT Microbiome Consortium, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA,CONTACT Matam Vijay-Kumar Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH43614, USA
| |
Collapse
|
17
|
Putative virulence factors of Plesiomonas shigelloides. Antonie van Leeuwenhoek 2019; 112:1815-1826. [PMID: 31372945 DOI: 10.1007/s10482-019-01303-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/17/2019] [Indexed: 12/29/2022]
Abstract
Plesiomonas shigelloides is a Gram-negative rod-shaped bacterium which has been isolated from humans, animals and the environment. It has been associated with diarrhoeal disease in humans and various epizootic diseases in animals. In this study P. shigelloides strains were isolated from the faecal material of a captive Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis; YFP) living in semi-natural conditions in China. Plesiomonas shigelloides strain EE2 was subjected to whole genome sequencing. The draft genome was then compared to the genome sequences of ten other P. shigelloides isolates using the Pathosystems Resource Integration Center pipeline. In addition to several virulence factors which have been previously reported, we are proposing new candidate virulence factors such as a repeats-in-toxin protein, lysophospholipase, a twin-arginine translocation system and the type VI secretion effector Phospholipase A1.
Collapse
|
18
|
Luo Q, Kong L, Dong J, Zhang T, Wang H, Zhang R, Lu Q, Chen H, Shao H, Jin M. Protection of chickens against fowl cholera by supernatant proteins of Pasteurella multocida cultured in an iron-restricted medium. Avian Pathol 2019; 48:221-229. [PMID: 30640510 DOI: 10.1080/03079457.2019.1568390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pasteurella multocida (P. multocida), a causative agent of fowl cholera, is an important pathogen in the poultry industry. In the present study, we found that the inactivated vaccine of P. multocida grown in an iron-restricted medium provided better protection than that grown in normal medium. Thus, we adopted a comparative proteomics approach, by using two-dimensional gel electrophoresis (2-DE), coupled with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/TOF MS), to profile the supernatant proteins associated with P. multocida under both conditions. Eleven upregulated proteins were identified, including aspartate ammonia-lyase (AspA), diacylglycerol kinase (DgK), 30S ribosomal protein S6 (RpsF), and eight outer membrane proteins (OMPs). To further characterize the three novel supernatant proteins identified under iron-restricted conditions, the AspA, DgK and RpsF proteins were expressed and purified, and used as immunogens to vaccinate chickens. The results showed that AspA, DgK and RpsF proteins induced 80.0%, 66.7%, and 80.0% immunity, respectively. These data indicate that the three novel proteins identified in the supernatant of the culture media might play important roles in the survival of bacteria under iron-restricted conditions, and thus protect chickens against P. multocida. These findings also suggest that the proteins identified can be used as subunit vaccines.
Collapse
Affiliation(s)
- Qingping Luo
- a State Key Laboratory of Agricultural Microbiology , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture) , Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences , Wuhan , People's Republic of China
| | - Lingyan Kong
- b Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture) , Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences , Wuhan , People's Republic of China
| | - Jun Dong
- b Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture) , Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences , Wuhan , People's Republic of China
| | - Tengfei Zhang
- b Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture) , Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences , Wuhan , People's Republic of China.,c Hubei Engineering Technology Center of Veterinary Diagnostic products , Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences , Wuhan , People's Republic of China
| | - Honglin Wang
- b Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture) , Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences , Wuhan , People's Republic of China.,c Hubei Engineering Technology Center of Veterinary Diagnostic products , Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences , Wuhan , People's Republic of China
| | - Rongrong Zhang
- b Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture) , Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences , Wuhan , People's Republic of China.,c Hubei Engineering Technology Center of Veterinary Diagnostic products , Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences , Wuhan , People's Republic of China
| | - Qin Lu
- b Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture) , Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences , Wuhan , People's Republic of China.,c Hubei Engineering Technology Center of Veterinary Diagnostic products , Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences , Wuhan , People's Republic of China
| | - Huanchun Chen
- a State Key Laboratory of Agricultural Microbiology , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Huabin Shao
- b Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture) , Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences , Wuhan , People's Republic of China.,c Hubei Engineering Technology Center of Veterinary Diagnostic products , Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences , Wuhan , People's Republic of China
| | - Meilin Jin
- a State Key Laboratory of Agricultural Microbiology , Huazhong Agricultural University , Wuhan , People's Republic of China
| |
Collapse
|
19
|
Rodríguez-Rodríguez S, Santos J. Detection and characterization of the ferric uptake regulator (fur) gene inPlesiomonas shigelloides. Lett Appl Microbiol 2018; 66:347-351. [DOI: 10.1111/lam.12858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 11/27/2022]
Affiliation(s)
- S. Rodríguez-Rodríguez
- Department of Food Hygiene and Food Technology; Veterinary Faculty; University of León; Spain
| | - J.A. Santos
- Department of Food Hygiene and Food Technology; Veterinary Faculty; University of León; Spain
| |
Collapse
|
20
|
Hirschmann M, Grundmann F, Bode HB. Identification and occurrence of the hydroxamate siderophores aerobactin, putrebactin, avaroferrin and ochrobactin C as virulence factors from entomopathogenic bacteria. Environ Microbiol 2017; 19:4080-4090. [DOI: 10.1111/1462-2920.13845] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/10/2017] [Accepted: 06/21/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Merle Hirschmann
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie; Goethe-Universität Frankfurt; Frankfurt am Main Germany
| | - Florian Grundmann
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie; Goethe-Universität Frankfurt; Frankfurt am Main Germany
| | - Helge B. Bode
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie; Goethe-Universität Frankfurt; Frankfurt am Main Germany
- Buchmann Institute for Molecular Life Sciences (BMLS); Goethe-Universität Frankfurt; Frankfurt am Main Germany
| |
Collapse
|
21
|
Ghosh M, Miller PA, Möllmann U, Claypool WD, Schroeder VA, Wolter WR, Suckow M, Yu H, Li S, Huang W, Zajicek J, Miller MJ. Targeted Antibiotic Delivery: Selective Siderophore Conjugation with Daptomycin Confers Potent Activity against Multidrug Resistant Acinetobacter baumannii Both in Vitro and in Vivo. J Med Chem 2017; 60:4577-4583. [DOI: 10.1021/acs.jmedchem.7b00102] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Manuka Ghosh
- Hsiri Therapeutics, Innovation Park, 1400 East Angela
Boulevard, South Bend, Indiana 46617, United States
| | - Patricia A. Miller
- Hsiri Therapeutics, Innovation Park, 1400 East Angela
Boulevard, South Bend, Indiana 46617, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Ute Möllmann
- Hsiri Therapeutics, Innovation Park, 1400 East Angela
Boulevard, South Bend, Indiana 46617, United States
| | - William D. Claypool
- Hsiri Therapeutics, LLC, Rosetree Corporate Center, 1400 N. Providence Road,
Building 1, Suite 115S, Media, Pennsylvania 19063, United States
| | - Valerie A. Schroeder
- Frieman Life Sciences Center, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - William R. Wolter
- Frieman Life Sciences Center, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Mark Suckow
- Frieman Life Sciences Center, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Honglin Yu
- PracticaChem, 5 Lanyuan Road, Room D-603, Huayuan
Industrial Park, Tianjin, 300384, China
| | - Shuang Li
- PracticaChem, 5 Lanyuan Road, Room D-603, Huayuan
Industrial Park, Tianjin, 300384, China
| | - Weiqiang Huang
- PracticaChem, 5 Lanyuan Road, Room D-603, Huayuan
Industrial Park, Tianjin, 300384, China
| | - Jaroslav Zajicek
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Marvin J. Miller
- Hsiri Therapeutics, Innovation Park, 1400 East Angela
Boulevard, South Bend, Indiana 46617, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| |
Collapse
|
22
|
Ho YH, Ho SY, Hsu CC, Shie JJ, Wang TSA. Utilizing an iron(iii)-chelation masking strategy to prepare mono- and bis-functionalized aerobactin analogues for targeting pathogenic bacteria. Chem Commun (Camb) 2017; 53:9265-9268. [DOI: 10.1039/c7cc05197b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a facile functionalization of native siderophoresviaan Fe(iii)-chelation masking strategy to prepare fluorophore conjugates for targeting pathogenic bacteria.
Collapse
Affiliation(s)
- Yu-Hin Ho
- Department of Chemistry
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Sheng-Yang Ho
- Department of Chemistry
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Jiun-Jie Shie
- Institute of Chemistry
- Academia Sinica
- Taipei 11529
- Taiwan
| | | |
Collapse
|
23
|
Abstract
After many years in the family Vibrionaceae, the genus Plesiomonas, represented by a single species, P. shigelloides, currently resides in the family Enterobacteriaceae, although its most appropriate phylogenetic position may yet to be determined. Common environmental reservoirs for plesiomonads include freshwater ecosystems and estuaries and inhabitants of these aquatic environs. Long suspected as being an etiologic agent of bacterial gastroenteritis, convincing evidence supporting this conclusion has accumulated over the past 2 decades in the form of a series of foodborne outbreaks solely or partially attributable to P. shigelloides. The prevalence of P. shigelloides enteritis varies considerably, with higher rates reported from Southeast Asia and Africa and lower numbers from North America and Europe. Reasons for these differences may include hygiene conditions, dietary habits, regional occupations, or other unknown factors. Other human illnesses caused by P. shigelloides include septicemia and central nervous system disease, eye infections, and a variety of miscellaneous ailments. For years, recognizable virulence factors potentially associated with P. shigelloides pathogenicity were lacking; however, several good candidates now have been reported, including a cytotoxic hemolysin, iron acquisition systems, and lipopolysaccharide. While P. shigelloides is easy to identify biochemically, it is often overlooked in stool samples due to its smaller colony size or relatively low prevalence in gastrointestinal samples. However, one FDA-approved PCR-based culture-independent diagnostic test system to detect multiple enteropathogens (FilmArray) includes P. shigelloides on its panel. Plesiomonads produce β-lactamases but are typically susceptible to many first-line antimicrobial agents, including quinolones and carbapenems.
Collapse
Affiliation(s)
- J Michael Janda
- Kern County Public Health Laboratory, Department of Public Health Services, Bakersfield, California, USA
| | - Sharon L Abbott
- Microbial Diseases Laboratory, California Department of Public Health, Richmond, California, USA
| | - Christopher J McIver
- Microbiology Department (SEALS), St. George Hospital, Kogarah, and School of Medical Sciences, University of New South Wales, NSW, Sydney, Australia
| |
Collapse
|
24
|
Sociality in Escherichia coli: Enterochelin Is a Private Good at Low Cell Density and Can Be Shared at High Cell Density. J Bacteriol 2015; 197:2122-2128. [PMID: 25733620 DOI: 10.1128/jb.02596-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/25/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Many bacteria produce secreted iron chelators called siderophores, which can be shared among cells with specific siderophore uptake systems regardless of whether the cell produces siderophores. Sharing secreted products allows freeloading, where individuals use resources without bearing the cost of production. Here we show that the Escherichia coli siderophore enterochelin is not evenly shared between producers and nonproducers. Wild-type Escherichia coli grows well in low-iron minimal medium, and an isogenic enterochelin synthesis mutant (ΔentF) grows very poorly. The enterochelin mutant grows well in low-iron medium supplemented with enterochelin. At high cell densities the ΔentF mutant can compete equally with the wild type in low-iron medium. At low cell densities the ΔentF mutant cannot compete. Furthermore, the growth rate of the wild type is unaffected by cell density. The wild type grows well in low-iron medium even at very low starting densities. Our experiments support a model where at least some enterochelin remains associated with the cells that produce it, and the cell-associated enterochelin enables iron acquisition even at very low cell density. Enterochelin that is not retained by producing cells at low density is lost to dilution. At high cell densities, cell-free enterochelin can accumulate and be shared by all cells in the group. Partial privatization is a solution to the problem of iron acquisition in low-iron, low-cell-density habitats. Cell-free enterochelin allows for iron scavenging at a distance at higher population densities. Our findings shed light on the conditions under which freeloaders might benefit from enterochelin uptake systems. IMPORTANCE Sociality in microbes has become a topic of great interest. One facet of sociality is the sharing of secreted products, such as the iron-scavenging siderophores. We present evidence that the Escherichia coli siderophore enterochelin is relatively inexpensive to produce and is partially privatized such that it can be efficiently shared only at high producer cell densities. At low cell densities, cell-free enterochelin is scarce and only enterochelin producers are able to grow in low-iron medium. Because freely shared products can be exploited by freeloaders, this partial privatization may help explain how enterochelin production is stabilized in E. coli and may provide insight into when enterochelin is available for freeloaders.
Collapse
|
25
|
Miskulin DC, Tangri N, Bandeen-Roche K, Zhou J, McDermott A, Meyer KB, Ephraim PL, Michels WM, Jaar BG, Crews DC, Scialla JJ, Sozio SM, Shafi T, Wu AW, Cook C, Boulware LE. Intravenous iron exposure and mortality in patients on hemodialysis. Clin J Am Soc Nephrol 2014; 9:1930-9. [PMID: 25318751 DOI: 10.2215/cjn.03370414] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Clinical trials assessing effects of larger cumulative iron exposure with outcomes are lacking, and observational studies have been limited by assessment of short-term exposure only and/or failure to assess cause-specific mortality. The associations between short- and long-term iron exposure on all-cause and cause-specific mortality were examined. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS The study included 14,078 United States patients on dialysis initiating dialysis between 2003 and 2008. Intravenous iron dose accumulations over 1-, 3-, and 6-month rolling windows were related to all-cause, cardiovascular, and infection-related mortality in Cox proportional hazards models that used marginal structural modeling to control for time-dependent confounding. RESULTS Patients in the 1-month model cohort (n=14,078) were followed a median of 19 months, during which there were 27.6% all-cause deaths, 13.5% cardiovascular deaths, and 3% infection-related deaths. A reduced risk of all-cause mortality with receipt of >150-350 (hazard ratio, 0.78; 95% confidence interval, 0.64 to 0.95) or >350 mg (hazard ratio, 0.79; 95% confidence interval, 0.62 to 0.99) intravenous iron compared with >0-150 mg over 1 month was observed. There was no relation of 1-month intravenous iron dose with cardiovascular or infection-related mortality and no relation of 3- or 6-month cumulative intravenous iron dose with all-cause or cardiovascular mortality. There was a nonstatistically significant increase in infection-related mortality with receipt of >1050 mg intravenous iron in 3 months (hazard ratio, 1.69; 95% confidence interval, 0.87 to 3.28) and >2100 mg in 6 months (hazard ratio, 1.59; 95% confidence interval, 0.73 to 3.46). CONCLUSIONS Among patients on incident dialysis, receipt of ≤ 1050 mg intravenous iron in 3 months or 2100 mg in 6 months was not associated with all-cause, cardiovascular, or infection-related mortality. However, nonstatistically significant findings suggested the possibility of infection-related mortality with receipt of >1050 mg in 3 months or >2100 mg in 6 months. Randomized clinical trials are needed to assess the safety of exposure to greater cumulative intravenous iron doses.
Collapse
Affiliation(s)
- Dana C Miskulin
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material.
| | - Navdeep Tangri
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | - Karen Bandeen-Roche
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | - Jing Zhou
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | - Aidan McDermott
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | - Klemens B Meyer
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | - Patti L Ephraim
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | - Wieneke M Michels
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | - Bernard G Jaar
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | - Deidra C Crews
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | - Julia J Scialla
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | - Stephen M Sozio
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | - Tariq Shafi
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | - Albert W Wu
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | - Courtney Cook
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | - L Ebony Boulware
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | | |
Collapse
|
26
|
Abstract
The host organism is a complex mosaic of cell populations that requires adequate supplies of nutrients for maintenance, growth and proliferation. Because many nutrient requirements may be shared by host cells, pathogens and indigenous microflora, all these cells may potentially compete for growth-limiting resources. Ecological theory can explain some of the dynamics commonly seen in host-pathogen interactions; and mechanistic resource-consumer theory provides an instructive framework for viewing the disease process.
Collapse
Affiliation(s)
- V H Smith
- Val Smith is at the Dept of Systematics and Ecology, and Environmental Studies Program, University of Kansas, Lawrence, KS 66045, USA; Robert Holt is at the Dept of Systematics and Ecology, and the Natural History Museum, University of Kansas, Lawrence, KS 66045, USA
| | | |
Collapse
|
27
|
Cernat RC, Scott KP. Evaluation of novel assays to assess the influence of different iron sources on the growth of Clostridium difficile. Anaerobe 2012; 18:298-304. [PMID: 22554901 DOI: 10.1016/j.anaerobe.2012.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/14/2012] [Accepted: 04/16/2012] [Indexed: 01/05/2023]
Abstract
The ability of four Clostridium difficile strains to utilize various exogenous organic and inorganic iron sources for growth under iron-depleted (250 μM DPP) and iron-limited (75 μM DPP) conditions was analyzed in liquid broth cultures grown in tubes and in microtiter plates, and data compared with results from a bioassay developed on solid media. The growth profile of C. difficile varied depending on the iron source and availability. Addition of FeSO(4), FeCl(3), Fe citrate and ferritin allowed growth in an iron-depleted environment whereas glycoproteins (iron-saturated and low-iron lactoferrin, apo- and holo-transferrin) and heme proteins (hemoglobin, hematin and hemin) did not. All iron sources, except lactoferrin, were able to restore bacterial growth under iron-limited conditions to varying extents. The results demonstrated that the broth microtiter assay developed here was reproducible, reliable and convenient for high-throughput analysis of the growth of C. difficile compared to alternative traditional methods.
Collapse
Affiliation(s)
- Ramona C Cernat
- Microbial Ecology, Gut Health Division, Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, UK
| | | |
Collapse
|
28
|
Utilization Patterns of IV Iron and Erythropoiesis Stimulating Agents in Anemic Chronic Kidney Disease Patients: A Multihospital Study. Anemia 2012; 2012:248430. [PMID: 22577528 PMCID: PMC3345210 DOI: 10.1155/2012/248430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 01/24/2012] [Indexed: 01/06/2023] Open
Abstract
Intravenous (IV) iron and Erythropoiesis Stimulating Agents (ESAs) are recommended for anemia management in chronic kidney disease (CKD). This retrospective cohort study analyzed utilization patterns of IV iron and ESA in patients over 18 years of age admitted to University Health System Hospitals with a primary or secondary diagnosis of CKD between January 1, 2006 to December 31, 2008. A clustered binomial logistic regression using the GEE methodology was used to identify predictors of IV iron utilization. Only 8% (n = 6678) of CKD patients on ESA therapy received IV iron supplementation in university hospitals. Those receiving iron used significantly less amounts of ESAs. Patient demographics (age, race, primary payer), patient clinical conditions (admission status, severity of illness, dialysis status), and physician specialty were identified as predictors of IV iron use in CKD patients. Use of IV iron with ESAs was low despite recommendations from consensus guidelines. The low treatment rate of IV iron represents a gap in treatment practices and signals an opportunity for healthcare improvement in CKD anemic patients.
Collapse
|
29
|
Petrikkos G, Drogari-Apiranthitou M. Zygomycosis in Immunocompromised non-Haematological Patients. Mediterr J Hematol Infect Dis 2011; 3:e2011012. [PMID: 21625316 PMCID: PMC3103240 DOI: 10.4084/mjhid.2011.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 01/16/2011] [Indexed: 12/22/2022] Open
Abstract
Zygomycoses caused by fungi of the mucorales order (mucormycoses) are emerging fungal diseases with a high fatality rate. The most important risk factors include neutropenia or functional neutropenia, diabetic ketoacidosis, iron overload, major trauma, prolonged use of corticosteroids, illicit intravenous drug (ID) use, neonatal prematurity, malnourishment, and maybe a previous exposure to antifungal agents with no activity against zygomycetes, such as voriconazole and echinocandins.A high index of suspicion is crucial for the diagnosis, as prompt and appropriate management can considerably reduce morbidity and mortality. Suspicion index can be increased through recognition of the differential patterns of clinical presentation. In the non- haematological immunocompromised patients, mucormycosis can manifest in various clinical forms, depending on the underlying condition: mostly as rhino-orbital or rhino-cerebral in diabetes patients, pulmonary infection in patients with malignancy or solid organ transplantation, disseminated infection in iron overloaded or deferoxamine treated patients, cerebral - with no sinus involvement - in ID users, gastrointestinal in premature infants or malnourishment, and cutaneous after direct inoculation in immunocompetent individuals with trauma or burns.Treating a patient's underlying medical condition and reducing immunosuppression are essential to therapy. Rapid correction of metabolic abnormalities is mandatory in cases such as uncontrolled diabetes, and corticosteroids or other immunosuppressive drugs should be discontinued where feasible. AmphotericinB or its newer and less toxic lipid formulations are the drugs of choice regarding antifungal chemotherapy, while extensive surgical debridement is essential to reduce infected and necrotic tissue. A high number of cases could be prevented through measures including diabetes control programmes and proper pre- and post-surgical hygiene.
Collapse
Affiliation(s)
- George Petrikkos
- 4st Dept. of Internal Medicine, School of Medicine,
National and Kapodistrian University of Athens, “ATTIKON”
Hospital, RIMINI 1 – Haidari, Athens - 12464. Greece
| | - Miranda Drogari-Apiranthitou
- 4st Dept. of Internal Medicine, School of Medicine,
National and Kapodistrian University of Athens, “ATTIKON”
Hospital, RIMINI 1 – Haidari, Athens - 12464. Greece
| |
Collapse
|
30
|
Franklin DP, Laux DC, Williams TJ, Falk MC, Cohen PS. Growth of Salmonella typhimurium SL5319 and Escherichia coli F-18 in mouse cecal mucus: role of peptides and iron. FEMS Microbiol Ecol 2011. [DOI: 10.1111/j.1574-6941.1990.tb01688.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
31
|
Seiffert A, Goeke K, Fielder HP, Zähner H. Production of the siderophore enterobactin: use of four different fermentation systems and identification of the compound by HPLC. Biotechnol Bioeng 2010; 41:237-44. [PMID: 18609543 DOI: 10.1002/bit.260410210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The article describes four different fermentation procedures for Escherichia coli AN311, a producer of enterobactin. A regular rotary shaker culture with a biphasic system consisting of an agar layer (as a reservoir for feeding processes) and a layer of liquid medium, 2.4 L and 10 L batch cultures, and a novel dialysis membrane fermentor were used. With the use of this latter fermentor type, the production of enterobactin could be increased by a factor of about 9.5, while growth increased by a factor of 12 compared to the other systems. For the rapid and reliable quantification of the concentration and purity of enterobactin an analytical and preparative high-performance liquid chromatography (HPLC) method was established. The degradation compounds of this siderophore were detected by diodearray and bioassays. A comparison of total catechol production as well as the distribution between enterobactin and its degradation compounds is given.
Collapse
Affiliation(s)
- A Seiffert
- Biologisches institut, LB Mikrobiologie/Antibiotika, Universität Tübingen, auf der Morgenstelle 28, 7400 Tübingen, Germany
| | | | | | | |
Collapse
|
32
|
Differential gene expression in Streptococcus pneumoniae in response to various iron sources. Microb Pathog 2009; 47:101-9. [DOI: 10.1016/j.micpath.2009.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 05/04/2009] [Accepted: 05/07/2009] [Indexed: 11/23/2022]
|
33
|
Chen D, Wu R, Bryan TL, Dunaway-Mariano D. In vitro kinetic analysis of substrate specificity in enterobactin biosynthetic lower pathway enzymes provides insight into the biochemical function of the hot dog-fold thioesterase EntH. Biochemistry 2009; 48:511-3. [PMID: 19119850 DOI: 10.1021/bi802207t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Escherichia coli siderophore enterobactin is assembled from 2,3-dihydroxybenzoate (2,3-DHB) and l-serine by the nonribosomal peptide synthetases EntB and EntF. The processive thiol-template strategy used can be sabotaged by EntB misacylation. Through in vitro kinetic analysis, we demonstrate two potential routes to EntB misacylation and provide evidence for two mechanisms by which the hot dog-fold thioesterase EntH can potentially prevent or reverse EntB misacylation.
Collapse
Affiliation(s)
- Danqi Chen
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | | | |
Collapse
|
34
|
Miller MJ, Zhu H, Xu Y, Wu C, Walz AJ, Vergne A, Roosenberg JM, Moraski G, Minnick AA, McKee-Dolence J, Hu J, Fennell K, Kurt Dolence E, Dong L, Franzblau S, Malouin F, Möllmann U. Utilization of microbial iron assimilation processes for the development of new antibiotics and inspiration for the design of new anticancer agents. Biometals 2009; 22:61-75. [PMID: 19130268 PMCID: PMC4066965 DOI: 10.1007/s10534-008-9185-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 12/07/2008] [Indexed: 11/28/2022]
Abstract
Pathogenic microbes rapidly develop resistance to antibiotics. To keep ahead in the "microbial war", extensive interdisciplinary research is needed. A primary cause of drug resistance is the overuse of antibiotics that can result in alteration of microbial permeability, alteration of drug target binding sites, induction of enzymes that destroy antibiotics (ie., beta-lactamase) and even induction of efflux mechanisms. A combination of chemical syntheses, microbiological and biochemical studies demonstrate that the known critical dependence of iron assimilation by microbes for growth and virulence can be exploited for the development of new approaches to antibiotic therapy. Iron recognition and active transport relies on the biosyntheses and use of microbe-selective iron-chelating compounds called siderophores. Our studies, and those of others, demonstrate that siderophores and analogs can be used for iron transport-mediated drug delivery ("Trojan Horse" antibiotics) and induction of iron limitation/starvation (Development of new agents to block iron assimilation). Recent extensions of the use of siderophores for the development of novel potent and selective anticancer agents are also described.
Collapse
Affiliation(s)
- Marvin J Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Raza W, Wu H, Shah MAA, Shen Q. Retracted: A catechol type siderophore, bacillibactin: biosynthesis, regulation and transport in Bacillus subtilis. J Basic Microbiol 2008; 48. [PMID: 18785660 DOI: 10.1002/jobm.200800097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Retraction: The following article from the Journal of Basic Microbiology, "A catechol type siderophore, bacillibactin: biosynthesis, regulation and transport in Bacillus subtilis" by Waseem Raza, Hongsheng Wu, Muhammad Ali Abdullah Shah and Qirong Shen, published online on 11 September 2008 in Wiley InterScience (www.interscience.wiley.com), has been retracted by agreement between the authors, the journal Editor-in-Chief, Erika Kothe, and the publisher Wiley-VCH. The retraction has been agreed due to substantial overlap of the content of this article with previously published articles in other journals.The Journal of Basic Microbiology apologises to our readership.
Collapse
Affiliation(s)
- Waseem Raza
- College of Resource and Environmental Sciences, Nanjing Agriculture University, Nanjing, China
| | | | | | | |
Collapse
|
36
|
|
37
|
Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin Microbiol Rev 2008; 21:26-59. [PMID: 18202436 DOI: 10.1128/cmr.00019-07] [Citation(s) in RCA: 477] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Catheter-associated urinary tract infections (CAUTIs) represent the most common type of nosocomial infection and are a major health concern due to the complications and frequent recurrence. These infections are often caused by Escherichia coli and Proteus mirabilis. Gram-negative bacterial species that cause CAUTIs express a number of virulence factors associated with adhesion, motility, biofilm formation, immunoavoidance, and nutrient acquisition as well as factors that cause damage to the host. These infections can be reduced by limiting catheter usage and ensuring that health care professionals correctly use closed-system Foley catheters. A number of novel approaches such as condom and suprapubic catheters, intermittent catheterization, new surfaces, catheters with antimicrobial agents, and probiotics have thus far met with limited success. While the diagnosis of symptomatic versus asymptomatic CAUTIs may be a contentious issue, it is generally agreed that once a catheterized patient is believed to have a symptomatic urinary tract infection, the catheter is removed if possible due to the high rate of relapse. Research focusing on the pathogenesis of CAUTIs will lead to a better understanding of the disease process and will subsequently lead to the development of new diagnosis, prevention, and treatment options.
Collapse
|
38
|
Schobert R, Stangl A, Hannemann K. Mixed catechol-hydroxamate and catechol-(o-hydroxy)phenacyl siderophores: synthesis and uptake studies with receptor-deficient Escherichia coli mutants. Tetrahedron 2008. [DOI: 10.1016/j.tet.2007.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Lau HY, Clegg S, Moore TA. Identification of Klebsiella pneumoniae genes uniquely expressed in a strain virulent using a murine model of bacterial pneumonia. Microb Pathog 2007; 42:148-55. [PMID: 17369011 PMCID: PMC1892313 DOI: 10.1016/j.micpath.2007.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 12/28/2006] [Accepted: 01/09/2007] [Indexed: 11/24/2022]
Abstract
Klebsiella pneumoniae is a gram-negative bacterium of significant clinical importance. This study examines the differential pulmonary host anti-bacterial responses towards two clinical isolates of K. pneumoniae. Intratracheal inoculation with 7 x 10(4)CFU of strain 43816 induced 100% mortality in C57BL/6J mice within 5 days post infection, whereas infection with 5 x 10(5)CFU of strain IA565 resulted in 100% survival. Infection with strain 43816 resulted in significant pulmonary and peripheral blood bacterial burden and induction of the chemokines MIP-2, KC and MCP-1 by 24h post infection. In contrast, IA565-infected mice displayed basal chemokine levels and no detectable bacteria by 24h post inoculation were isolated from lungs or peripheral blood. These data indicate an apparent lack of pathogenicity of strain IA565. Since little is known about Klebsiella-specific virulence genes, we have utilized PCR-based genomic DNA and cDNA suppressive subtractive hybridization and identified nine DNA sequences unique to the pathogenic strain of K. pneumoniae 43816. These sequences were highly homologous to enteric bacterial genes regulating iron uptake, fimbrial-mediated adhesion, energy production and conversion, transcriptional regulation, signal transduction, restriction endonuclease activity, and membrane transport.
Collapse
Affiliation(s)
- Helen Y Lau
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
40
|
Abstract
Infections are still a major cause of morbidity and mortality in end-stage renal disease (ESRD) patients. The susceptibility of ESRD patients to infections is typically ascribed to the immunodeficient state associated with uremia. A central role in the host defense against bacterial infections is played by phagocytic polymorphonuclear white blood cells, which are characterized by the capacity to ingest and subsequently destroy bacteria. Disorders in polymorphonuclear cell function are exacerbated by the dialysis procedure and numerous factors including uremic toxins, iron overload, anemia of renal disease, and dialyzer bioincompatibility. It is concluded that the phagocytic defect observed in ESRD is multifactorial, and each factor should be managed individually with specific therapeutic approaches.
Collapse
Affiliation(s)
- Michel Chonchol
- Division of Renal Diseases and Hypertension, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| |
Collapse
|
41
|
Warren BR, Parish ME, Schneider KR. Shigellaas a Foodborne Pathogen and Current Methods for Detection in Food. Crit Rev Food Sci Nutr 2006; 46:551-67. [PMID: 16954064 DOI: 10.1080/10408390500295458] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Shigella, the causative agent of shigellosis or "bacillary dysentery," has been increasingly involved in foodborne outbreaks. According to the Centers for Disease Control and Prevention's Emerging Infections Program, Foodborne Diseases Active Surveillance Network (FoodNet), Shigella was the third most reported foodborne bacterial pathogen in 2002. Foods are most commonly contaminated with Shigella by an infected food handler who practices poor personal hygiene. Shigella is acid resistant, salt tolerant, and can survive at infective levels in many types of foods such as fruits and vegetables, low pH foods, prepared foods, and foods held in modified atmosphere or vacuum packaging. Survival is often increased when food is held at refrigerated temperatures. Detection methods for Shigella include conventional culture methods, immunological methods, and molecular microbiological methods. Conventional culture of Shigella in foods is often problematic due to the lack of appropriate selective media. Immunological methods for Shigella have been researched, yet there is only one commercially available test kit. Molecular microbiological methods such as PCR, oligonucleotide microarrays, and rep-PCR have also been developed for the detection and identification of Shigella. This manuscript reviews the general characteristics, prevalence, growth and survival, and methods for detection of Shigella in food.
Collapse
Affiliation(s)
- B R Warren
- University of Florida, Department of Food Science and Human Nutrition, 359 FSHN Bldg, Newell Drive, Gainesville, FL 32611, USA
| | | | | |
Collapse
|
42
|
Daniel C, Bissinger MC, Courcol RJ. Effects of host iron transport compounds on growth kinetics and outer-membrane protein expression of Bilophila wadsworthia. Anaerobe 2006; 4:103-9. [PMID: 16887629 DOI: 10.1006/anae.1998.0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/1997] [Accepted: 03/04/1998] [Indexed: 11/22/2022]
Abstract
Since the environmental iron concentration has emerged as an important attribute in the expression of bacterial virulence, the purpose of this study was to determine the effects of transferrin, lactoferrin, heme compounds, and inorganic iron sources (ferric and ferrous sulfate) on the growth of Bilophila wadsworthia and to study its outer membrane composition when grown under these different simulated in vivo conditions. Lactoferrin, transferrin, hemin and hemoglobin supported full growth of the bacteria in media lacking other iron sources. Bilophila wadsworthia was also capable of growing in the presence of ferrous and ferric sulfate. Profiles obtained by SDS-PAGE showed two iron-regulated outer membrane proteins (IROMPs) of 190 kDa and 88 kDa. The 190 kDa was susceptible to proteinase K cleavage in whole cells, indicating its exposure at the cell surface. These two major IROMPs were expressed in iron-restricted media supplemented with iron-bound organic sources and repressed by the addition of inorganic iron sources.
Collapse
Affiliation(s)
- C Daniel
- Bacteriology-Hygiene Laboratory, A. Calmette Hospital, Lille, France
| | | | | |
Collapse
|
43
|
Brandl MT. Fitness of human enteric pathogens on plants and implications for food safety. ANNUAL REVIEW OF PHYTOPATHOLOGY 2006; 44:367-92. [PMID: 16704355 DOI: 10.1146/annurev.phyto.44.070505.143359] [Citation(s) in RCA: 342] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The continuous rise in the number of outbreaks of foodborne illness linked to fresh fruit and vegetables challenges the notion that enteric pathogens are defined mostly by their ability to colonize the intestinal habitat. This review describes the epidemiology of produce-associated outbreaks of foodborne disease and presents recently acquired knowledge about the behavior of enteric pathogens on plants, with an emphasis on Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes. The growth and survival of enteric pathogens on plants are discussed in the light of knowledge and concepts in plant microbial ecology, including epiphytic fitness, the physicochemical nature of plant surfaces, biofilm formation, and microbe-microbe and plant-microbe interactions. Information regarding the various stresses that affect the survival of enteric pathogens and the molecular events that underlie their interactions in the plant environment provides a good foundation for assessing their role in the infectious dose of the pathogens when contaminated fresh produce is the vehicle of illness.
Collapse
Affiliation(s)
- Maria T Brandl
- Produce Safety and Microbiology Research Unit, Agricultural Research Services, U.S. Department of Agriculture, Albany, California 94710, USA.
| |
Collapse
|
44
|
St Peter WL, Obrador GT, Roberts TL, Collins AJ. Trends in Intravenous Iron Use Among Dialysis Patients in the United States (1994-2002). Am J Kidney Dis 2005; 46:650-60. [PMID: 16183420 DOI: 10.1053/j.ajkd.2005.06.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Accepted: 06/30/2005] [Indexed: 11/11/2022]
Abstract
BACKGROUND Two new intravenous (IV) iron products, ferric gluconate and iron sucrose, recently were approved for use in the United States. We report trends in IV iron use in both incident (1994 to 2001) and prevalent (1994 to 2002) Medicare US dialysis patients. METHODS Included patients had Medicare as a primary payer. Recombinant human erythropoietin doses, IV iron use, and hemoglobin data were obtained from Medicare outpatient files. The most recent cohorts included 241,770 prevalent hemodialysis (HD) patients in 2002 and 11,744 incident HD patients in 2001. RESULTS For incident HD patients in the first 9 months of dialysis therapy, the percentage of patients administered IV iron increased sharply between 1994 and 1997 and then increased gradually between 1997 and 2001. In 2002, a total of 84.4% of HD and 19.3% of peritoneal dialysis (PD) patients were administered IV iron. Ferric gluconate use increased slowly in 2000, increased from 5.7% to 18.6% from December 2000 to January 2001, increased to 29.8% in April 2002, and was 23.3% in December 2002. Iron sucrose use increased to 26% by December 2002. The absolute monthly percentage of HD patients administered IV iron dextran decreased from 49.6% in January 2000 to 3.6% in December 2002. CONCLUSION In US patients with end-stage renal disease, IV iron use has increased, although slowly, from 1997 to 2002. Ferric gluconate and iron sucrose have become the predominant form of therapy. IV iron therapy was used in a much smaller percentage of PD compared with HD patients, and racial and geographic variability was observed.
Collapse
|
45
|
Sood S, Rishi P, Vohra H, Sharma S, Ganguly NK. Cellular immune response induced by Salmonella enterica serotype Typhi iron-regulated outer-membrane proteins at peripheral and mucosal levels. J Med Microbiol 2005; 54:815-821. [PMID: 16091431 DOI: 10.1099/jmm.0.46042-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The role of purified iron-regulated outer-membrane proteins (IROMPs) from Salmonella enterica serotype Typhi in modulation of specific T-cell responses was studied. The cellular immune response induced by IROMPs was measured by assessing the delayed-type hypersensitivity (DTH) response, lymphocyte proliferation, T-cell phenotyping and cytokine-producing cells using lymphocytes isolated from the spleen and Peyer's patches of IROMPs-immunized, immunized-challenged, infected and control mice. IROMPs immunization resulted in an enhanced DTH response and exhibited a significant increase in the protein-specific proliferative response of lymphocyte from the spleen as well as Peyer's patches. A significant increase was also observed in the ratio of CD4+/CD8+ cells in the immunized mice as compared to the infected mice. Results of the cytokine analysis revealed that during the initial period there was increased production of interleukin (IL)-2- and interferon (IFN)-gamma-producing cells in the spleen and Peyer's patches, indicating a Th1 type response, whereas in the later period of the study, increased production of IL-4-producing cells suggested a Th2 type response. The results of this study suggest a role for S. Typhi IROMPs in modulating the cellular immune response at peripheral and mucosal levels.
Collapse
Affiliation(s)
- Shaloo Sood
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India 2Department of Microbiology, Panjab University, Chandigarh 160 014, India
| | - Praveen Rishi
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India 2Department of Microbiology, Panjab University, Chandigarh 160 014, India
| | - Harpreet Vohra
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India 2Department of Microbiology, Panjab University, Chandigarh 160 014, India
| | - Saroj Sharma
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India 2Department of Microbiology, Panjab University, Chandigarh 160 014, India
| | - Nirmal K Ganguly
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India 2Department of Microbiology, Panjab University, Chandigarh 160 014, India
| |
Collapse
|
46
|
Sood S, Rishi P, Dhawan V, Sharma S, Ganguly NK. Protection mediated by antibodies to iron-regulated outer-membrane proteins of S. typhi in a mouse peritonitis model. Mol Cell Biochem 2005; 273:69-78. [PMID: 16013441 DOI: 10.1007/s11010-005-7756-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Iron limitation induces the expression of iron-regulated outer-membrane proteins, which are not expressed under iron sufficient growth conditions. In the present study, these proteins were purified in order to evaluate their protective potential in the experimental model. Anti IROMPs antiserum was raised in rabbits. In mice, passively transferred anti-IROMPs antibodies provided 60% protection against the serovar Typhi challenge dose (9.6 LD50). The hyperimmune serum containing anti-IROMPs antibodies were also found to be bactericidal in the presence of complement whereas no bacterial killing was observed with pre-immunized serum. Bactericidal titre of anti-IROMPs serum was fond to be 2000 as more than 50% killing was observed with serum diluted to 1:2000. The role of IROMPs was assessed in actively-immunized mice followed by challenge with serovar Typhi. These proteins provided protection in 90% mice against challenge (480 LD50) with the pathogen. The levels of isotypes of antibodies (IgG, IgM & IgA) in the sera and secretory antibodies (sIgA) in the gut fluid of immunized mice correlated with the protection. This study, thus indicates that anti IROMPs antibodies may play an important role in providing protection at systemic as well as at mucosal level.
Collapse
Affiliation(s)
- Shaloo Sood
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | | | |
Collapse
|
47
|
Sengoelge G, Sunder-Plassmann G, Hörl WH. Potential risk for infection and atherosclerosis due to iron therapy. J Ren Nutr 2005; 15:105-10. [PMID: 15648017 DOI: 10.1053/j.jrn.2004.09.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Iron is an essential nutrient, but carries potential risks. Iron therapy not only affects the functions of leukocytes, endothelial cells, and cytokine production, but also causes oxidative stress and can support bacterial growth. Intravenous iron therapy may result in nontransferrin-bound iron. This may act as a catalytic agent in the formation of hydroxyl radicals, and thus potentially contribute to cell damage and atherosclerosis. Potential long-term complications of intravenous iron therapy in end-stage renal disease patients include atherosclerosis and infection, particularly in patients with iron overload.
Collapse
Affiliation(s)
- Gürkan Sengoelge
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
48
|
Thomas X, Destoumieux-Garzón D, Peduzzi J, Afonso C, Blond A, Birlirakis N, Goulard C, Dubost L, Thai R, Tabet JC, Rebuffat S. Siderophore Peptide, a New Type of Post-translationally Modified Antibacterial Peptide with Potent Activity. J Biol Chem 2004; 279:28233-42. [PMID: 15102848 DOI: 10.1074/jbc.m400228200] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microcin E492 (MccE492, 7886 Da), the 84-amino acid antimicrobial peptide from Klebsiella pneumoniae, was purified in a post-translationally modified form, MccE492m (8717 Da), from culture supernatants of either the recombinant Escherichia coli VCS257 strain harboring the pJAM229 plasmid or the K. pneumoniae RYC492 strain. Chymotrypsin digestion of MccE492m led to the MccE492m-(74-84) C-terminal fragment that carries the modification and that was analyzed by mass spectrometry and nuclear magnetic resonance at natural abundance. The 831-Da post-translational modification consists of a trimer of N-(2,3-dihydroxybenzoyl)-l-serine linked via a C-glycosidic linkage to a beta-d-glucose moiety, itself linked to the MccE492m Ser-84-carboxyl through an O-glycosidic bond. This modification, which mimics a catechol-type siderophore, was shown to bind ferric ions by analysis of the collision-induced dissociation pattern obtained for MccE492m-(74-84) by electrospray ion trap mass spectrometry experiments in the presence of FeCl(3). By using a series of wild-type and mutant isogenic strains, the three catechol-type siderophore receptors Fiu, Cir, and FepA were shown to be responsible for the recognition of MccE492m at the outer membrane of sensitive bacteria. Because MccE492m shows a broader spectrum of antibacterial activity and is more potent than MccE492, we propose that by increasing the microcin/receptor affinity, the modification leads to a better recognition and subsequently to a higher antimicrobial activity of the microcin. Therefore, MccE492m is the first member of a new class of antimicrobial peptides carrying a siderophore-like post-translational modification and showing potent activity, which we term siderophore-peptides.
Collapse
Affiliation(s)
- Xavier Thomas
- Laboratoire de Chimie et Biochimie des Substances Naturelles, UMR 5154 CNRS USM 502, the Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, 63 Rue Buffon, 75005 Paris
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Anemia of critical illness is a multifactorial condition caused by phlebotomy, ongoing blood loss, and inadequate production of red blood cells. It occurs early in the course of critical illness. Although red blood cell transfusion is the treatment of choice for immediate management of anemia in the intensive care unit, controversy surrounds the most appropriate hemoglobin concentration or hematocrit "trigger." Therapeutic options, including blood-conservation tools, minimization of phlebotomy, erythropoietic agents, and investigational oxygen-carrying agents, may be alternatives to red blood cell transfusions in critically ill patients with anemia. Patient selection for erythropoietic agents will depend on further work dealing with outcomes and the total cost of care in managing the anemia of critical illness.
Collapse
Affiliation(s)
- Maria I Rudis
- Department of Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California 90033, USA.
| | | | | | | |
Collapse
|
50
|
Tanabe T, Funahashi T, Nakao H, Miyoshi SI, Shinoda S, Yamamoto S. Identification and characterization of genes required for biosynthesis and transport of the siderophore vibrioferrin in Vibrio parahaemolyticus. J Bacteriol 2004; 185:6938-49. [PMID: 14617658 PMCID: PMC262695 DOI: 10.1128/jb.185.23.6938-6949.2003] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In response to low iron availability, Vibrio parahaemolyticus synthesizes and secretes a polyhydroxycarboxylate-type siderophore vibrioferrin which is composed of 1 mol each of 2-ketoglutaric acid, L-alanine, ethanolamine, and citric acid. We have previously reported the cloning and characterization of the pvuA gene, which encodes the 78-kDa outer membrane receptor protein for ferric vibrioferrin. In this study, nine genes involved in the biosynthesis and transport of vibrioferrin have been identified in the genomic regions surrounding the pvuA gene. The genes were sequenced, and gene disruptants were constructed by insertion mutation for phenotype analysis. Five of the genes, named pvsABCDE, constitute an operon that is expressed under iron-limiting conditions. Homology searches of their predicted protein products suggested that the four genes pvsABDE are implicated in the biosynthesis of the siderophore. Another gene in the same operon, pvsC, encodes a putative exporter that is homologous to members of the major facilitator superfamily of multidrug efflux pumps. The remaining four genes, named pvuBCDE, encode proteins strongly homologous to Escherichia coli FecBCDE, respectively, which are components of the ATP-binding cassette transporter system for ferric dicitrate. Reverse transcriptase PCR analysis revealed that these transport genes are transcribed as a single mRNA with the upstream genes, psuA and pvuA. Phenotypic comparison between the wild-type strain and its targeted gene disruptants supported the biological functions for the respective operons that were expected on the basis of the homology search.
Collapse
Affiliation(s)
- Tomotaka Tanabe
- Faculty of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | | | |
Collapse
|