2
|
Trivellin G, Daly AF, Hernández-Ramírez LC, Araldi E, Tatsi C, Dale RK, Fridell G, Mittal A, Faucz FR, Iben JR, Li T, Vitali E, Stojilkovic SS, Kamenicky P, Villa C, Baussart B, Chittiboina P, Toro C, Gahl WA, Eugster EA, Naves LA, Jaffrain-Rea ML, de Herder WW, Neggers SJCMM, Petrossians P, Beckers A, Lania AG, Mains RE, Eipper BA, Stratakis CA. Germline loss-of-function PAM variants are enriched in subjects with pituitary hypersecretion. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.20.23284646. [PMID: 36711613 PMCID: PMC9882627 DOI: 10.1101/2023.01.20.23284646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Pituitary adenomas (PAs) are common, usually benign tumors of the anterior pituitary gland which, for the most part, have no known genetic cause. PAs are associated with major clinical effects due to hormonal dysregulation and tumoral impingement on vital brain structures. Following the identification of a loss-of-function variant (p.Arg703Gln) in the PAM gene in a family with pituitary gigantism, we investigated 299 individuals with sporadic PAs and 17 familial isolated pituitary adenomas kindreds for PAM variants. PAM encodes a multifunctional protein responsible for the essential C-terminal amidation of secreted peptides. Genetic screening was performed by germline and tumor sequencing and germline copy number variation (CNV) analysis. No germline CNVs or somatic single nucleotide variants (SNVs) were identified. We detected seven likely pathogenic heterozygous missense, truncating, and regulatory SNVs. These SNVs were found in sporadic subjects with GH excess (p.Gly552Arg and p.Phe759Ser), pediatric Cushing disease (c.-133T>C and p.His778fs), or with different types of PAs (c.-361G>A, p.Ser539Trp, and p.Asp563Gly). The SNVs were functionally tested in vitro for protein expression and trafficking by Western blotting, for splicing by minigene assays, and for amidation activity in cell lysates and serum samples. These analyses confirmed a deleterious effect on protein expression and/or function. By interrogating 200,000 exomes from the UK Biobank, we confirmed a significant association of the PAM gene and rare PAM SNVs to diagnoses linked to pituitary gland hyperfunction. Identification of PAM as a candidate gene associated with pituitary hypersecretion opens the possibility of developing novel therapeutics based on altering PAM function.
Collapse
Affiliation(s)
- Giampaolo Trivellin
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele – Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano – Milan, Italy
| | - Adrian F. Daly
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Domaine Universitaire du Sart-Tilman, 4000 Liège, Belgium
| | - Laura C. Hernández-Ramírez
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Tlalpan, CDMX 14080, Mexico
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Elisa Araldi
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, CH-8603, Switzerland
| | - Christina Tatsi
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Ryan K. Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Gus Fridell
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Arjun Mittal
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Fabio R. Faucz
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - James R. Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Tianwei Li
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Eleonora Vitali
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano – Milan, Italy
| | - Stanko S. Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Peter Kamenicky
- Université Paris-Saclay, INSERM, Physiologie et Physiopathologie Endocriniennes, 94270 Le Kremlin-Bicêtre, France
| | - Chiara Villa
- Département de Neuropathologie de la Pitié Salpêtrière, Hôpital de la Pitié-Salpêtrière - APHP Sorbonne Université, 47-83 Bd de l’Hôpital 75651, Paris, France
- INSERM U1016, CNRS UMR 8104, Institut Cochin, 75014 Paris, France
| | - Bertrand Baussart
- INSERM U1016, CNRS UMR 8104, Institut Cochin, 75014 Paris, France
- Service de Neurochirurgie, Hôpital Pitié-Salpêtrière, AP-HP Sorbonne, 47-83 Boulevard de l’Hôpital, 75651 Paris, France
| | - Prashant Chittiboina
- Neurosurgery Unit for Pituitary and Inheritable Diseases and Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Camilo Toro
- NIH Undiagnosed Diseases Program, Office of the Clinical Director, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - William A. Gahl
- NIH Undiagnosed Diseases Program, Office of the Clinical Director, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Erica A. Eugster
- Division of Endocrinology & Diabetes, Department of Pediatrics, Riley Hospital for Children at IU Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Luciana A. Naves
- Service of Endocrinology, University Hospital, Faculty of Medicine, University of Brasilia, 70910900 Brasilia, Brazil
| | - Marie-Lise Jaffrain-Rea
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Neuromed Institute, Istituto di Ricovero e Cura a Carattere Scientifico, 86077 Pozzilli, Italy
| | - Wouter W. de Herder
- Department of Medicine, Section Endocrinology, Pituitary Center Rotterdam, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Sebastian JCMM Neggers
- Department of Medicine, Section Endocrinology, Pituitary Center Rotterdam, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Patrick Petrossians
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Domaine Universitaire du Sart-Tilman, 4000 Liège, Belgium
| | - Albert Beckers
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Domaine Universitaire du Sart-Tilman, 4000 Liège, Belgium
| | - Andrea G. Lania
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele – Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano – Milan, Italy
| | - Richard E. Mains
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Betty A. Eipper
- Department of Molecular Biology and Biophysics, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Constantine A. Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Human Genetics & Precision Medicine, IMBB, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece
- Research Institute, ELPEN, Pikermi, 19009 Athens, Greece
| |
Collapse
|
3
|
Merkler DJ, Hawley AJ, Eipper BA, Mains RE. Peptidylglycine α-amidating monooxygenase as a therapeutic target or biomarker for human diseases. Br J Pharmacol 2022; 179:3306-3324. [PMID: 35124797 PMCID: PMC9177522 DOI: 10.1111/bph.15815] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 01/20/2024] Open
Abstract
Peptides play a key role in controlling many physiological and neurobiological pathways. Many bioactive peptides require a C-terminal α-amide for full activity. The bifunctional enzyme catalysing α-amidation, peptidylglycine α-amidating monooxygenase (PAM), is the sole enzyme responsible for amidated peptide biosynthesis, from Chlamydomonas reinhardtii to Homo sapiens. Many neuronal and endocrine functions are dependent upon amidated peptides; additional amidated peptides are growth promoters in tumours. The amidation reaction occurs in two steps, glycine α-hydroxylation followed by dealkylation to generate the α-amide product. Currently, most potentially useful inhibitors target the first reaction, which is rate-limiting. PAM is a membrane-bound enzyme that visits the cell surface during peptide secretion. PAM is then used again in the biosynthetic pathway, meaning that cell-impermeable inhibitors or inactivators could have therapeutic value for the treatment of cancer or psychiatric abnormalities. To date, inhibitor design has not fully exploited the structures and mechanistic details of PAM.
Collapse
Affiliation(s)
- David J Merkler
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | - Aidan J Hawley
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | - Betty A Eipper
- Department of Molecular Biology & Biophysics, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030 USA
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030 USA
| | - Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030 USA
| |
Collapse
|
4
|
Mains RE, Blaby-Haas C, Rheaume BA, Eipper BA. Changes in Corticotrope Gene Expression Upon Increased Expression of Peptidylglycine α-Amidating Monooxygenase. Endocrinology 2018; 159:2621-2639. [PMID: 29788427 PMCID: PMC6287594 DOI: 10.1210/en.2018-00235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/09/2018] [Indexed: 11/19/2022]
Abstract
Throughout evolution, secretion has played an essential role in the ability of organisms and single cells to survive in the face of a changing environment. Peptidylglycine α-amidating monooxygenase (PAM) is an integral membrane monooxygenase, first identified for its role in the biosynthesis of neuroendocrine peptides released by the regulated secretory pathway. PAM was subsequently identified in Chlamydomonas reinhardtii, a unicellular green alga, where it plays an essential role in constitutive secretion and in ciliogenesis. Reduced expression of C. reinhardtii PAM resulted in significant changes in secretion and ciliogenesis. Hence, a screen was performed for transcripts and proteins whose expression responded to changes in PAM levels in a mammalian corticotrope tumor cell line. The goal was to identify genes not previously known to play a role in secretion. The screen identified transcription factors, peptidyl prolyl isomerases, endosomal/lysosomal proteins, and proteins involved in tissue-specific responses to glucose and amino acid availability that had not previously been recognized as relevant to the secretory pathway. Perhaps reflecting the dependence of PAM on molecular oxygen, many PAM-responsive genes are known to be hypoxia responsive. The data highlight the extent to which the performance of the secretory pathway may be integrated into a wide diversity of signaling pathways.
Collapse
Affiliation(s)
- Richard E Mains
- Neuroscience, University of Connecticut Health Center, Farmington,
Connecticut
- Correspondence: Richard E. Mains, PhD, University of Connecticut Health Center, 263 Farmington
Avenue, Farmington, Connecticut 06030. E-mail:
| | | | - Bruce A Rheaume
- Neuroscience, University of Connecticut Health Center, Farmington,
Connecticut
| | - Betty A Eipper
- Neuroscience, University of Connecticut Health Center, Farmington,
Connecticut
- Molecular Biology & Biophysics, University of Connecticut, Farmington,
Connecticut
| |
Collapse
|