1
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
Spudich JA. One must reconstitute the functions of interest from purified proteins. Front Physiol 2024; 15:1390186. [PMID: 38827995 PMCID: PMC11140241 DOI: 10.3389/fphys.2024.1390186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 06/05/2024] Open
Abstract
I am often asked by students and younger colleagues and now by the editors of this issue to tell the history of the development of the in vitro motility assay and the dual-beam single-molecule laser trap assay for myosin-driven actin filament movement, used widely as key assays for understanding how both muscle and nonmuscle myosin molecular motors work. As for all discoveries, the history of the development of the myosin assays involves many people who are not authors of the final publications, but without whom the assays would not have been developed as they are. Also, early experiences shape how one develops ideas and experiments, and influence future discoveries in major ways. I am pleased here to trace my own path and acknowledge the many individuals involved and my early science experiences that led to the work I and my students, postdoctoral fellows, and sabbatical visitors did to develop these assays. Mentors are too often overlooked in historical descriptions of discoveries, and my story starts with those who mentored me.
Collapse
Affiliation(s)
- James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
3
|
Cao J, Wei Z, Nie Y, Chen HZ. Therapeutic potential of alternative splicing in cardiovascular diseases. EBioMedicine 2024; 101:104995. [PMID: 38350330 PMCID: PMC10874720 DOI: 10.1016/j.ebiom.2024.104995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/15/2024] Open
Abstract
RNA splicing is an important RNA processing step required by multiexon protein-coding mRNAs and some noncoding RNAs. Precise RNA splicing is required for maintaining gene and cell function; however, mis-spliced RNA transcripts can lead to loss- or gain-of-function effects in human diseases. Mis-spliced RNAs induced by gene mutations or the dysregulation of splicing regulators may result in frameshifts, nonsense-mediated decay (NMD), or inclusion/exclusion of exons. Genetic animal models have characterised multiple splicing factors required for cardiac development or function. Moreover, sarcomeric and ion channel genes, which are closely associated with cardiovascular function and disease, are hotspots for AS. Here, we summarise splicing factors and their targets that are associated with cardiovascular diseases, introduce some therapies potentially related to pathological AS targets, and raise outstanding questions and future directions in this field.
Collapse
Affiliation(s)
- Jun Cao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China; University of Texas Medical Branch at Galveston, TX, 77555, USA
| | - Ziyu Wei
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Hou-Zao Chen
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China; Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Li B, Hou L, Song C, Wang Z, Xue Q, Li Y, Qin J, Cao N, Jia C, Zhang Y, Shi W. Biological function of calcium-sensing receptor (CAS) and its coupling calcium signaling in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 180:74-80. [PMID: 35398653 DOI: 10.1016/j.plaphy.2022.03.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/09/2022] [Accepted: 03/26/2022] [Indexed: 05/23/2023]
Abstract
The calcium-sensing receptor (CAS), as a chloroplast thylakoid membrane protein, is involved in the process of external Ca2+-induced cytosolic Ca2+ increase in plants. However, the underlying mechanism regulating this process is lacking. Furthermore, recent evidence suggests that CAS may perform additional roles in plants. Here, we provided an update covering the multiple roles of CAS in stomatal movement regulation and Ca2+ signaling in plants. We also analyzed the possible phosphorylation mechanism of CAS by light and discuss the role of CAS in abiotic stress (drought, salt stress) and biotic stresses (plant immune signaling). Finally, we proposed a perspective for future experiments that are required to fill gaps in our understanding of the biological function of CAS in plants.
Collapse
Affiliation(s)
- Bin Li
- Center for Emerging Agricultural Education & Advanced Interdisciplinary Science, College of Plant Science, Jilin University, Changchun, 130062, PR China
| | - Liyuan Hou
- Center for Emerging Agricultural Education & Advanced Interdisciplinary Science, College of Plant Science, Jilin University, Changchun, 130062, PR China
| | - Chenggang Song
- Center for Emerging Agricultural Education & Advanced Interdisciplinary Science, College of Plant Science, Jilin University, Changchun, 130062, PR China
| | - Zhengbiao Wang
- Center for Emerging Agricultural Education & Advanced Interdisciplinary Science, College of Plant Science, Jilin University, Changchun, 130062, PR China
| | - Qiyang Xue
- Center for Emerging Agricultural Education & Advanced Interdisciplinary Science, College of Plant Science, Jilin University, Changchun, 130062, PR China
| | - Yuanyang Li
- Center for Emerging Agricultural Education & Advanced Interdisciplinary Science, College of Plant Science, Jilin University, Changchun, 130062, PR China
| | - Jianchun Qin
- Center for Emerging Agricultural Education & Advanced Interdisciplinary Science, College of Plant Science, Jilin University, Changchun, 130062, PR China
| | - Ning Cao
- Center for Emerging Agricultural Education & Advanced Interdisciplinary Science, College of Plant Science, Jilin University, Changchun, 130062, PR China
| | - Chengguo Jia
- Center for Emerging Agricultural Education & Advanced Interdisciplinary Science, College of Plant Science, Jilin University, Changchun, 130062, PR China
| | - Yubin Zhang
- Center for Emerging Agricultural Education & Advanced Interdisciplinary Science, College of Plant Science, Jilin University, Changchun, 130062, PR China.
| | - Wuliang Shi
- Center for Emerging Agricultural Education & Advanced Interdisciplinary Science, College of Plant Science, Jilin University, Changchun, 130062, PR China.
| |
Collapse
|
5
|
Rall JA. Investigation of the molecular motor of muscle: from generating life in a test tube to myosin structure over beers. ADVANCES IN PHYSIOLOGY EDUCATION 2021; 45:730-743. [PMID: 34498938 DOI: 10.1152/advan.00077.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
This article traces 60 years of investigation of the molecular motor of skeletal muscle from the 1940s through the 1990s. It started with the discovery that myosin interaction with actin in the presence of ATP caused shortening of threads of actin and myosin. In 1957, structures protruding from myosin filaments were seen for the first time and called "cross bridges." A combination of techniques led to the proposal in 1969 of the "swinging-tilting cross bridge" model of contraction. In the early 1980s, a major problem arose when it was shown that a probe attached to the cross bridges did not move during contraction. A spectacular breakthrough came when it was discovered that only the cross bridge was required to support movement in an in vitro motility assay. Next it was determined that single myosin molecules caused the movement of actin filaments in 10-nm steps. The atomic structure of the cross bridge was published in 1993, and this discovery supercharged the muscle field. The cross bridge contained a globular head or motor domain that bound actin and ATP. But the most striking feature was the long tail of the cross bridge surrounded by two subunits of the myosin molecule. This structure suggested that the tail might act as a lever arm magnifying head movement. Consistent with this proposal, genetic techniques that lengthened the lever arm resulted in larger myosin steps. Thus the molecular motor of muscle operated not by the tilting of the globular head of myosin but by tilting of the lever arm generating the driving force for contraction.
Collapse
Affiliation(s)
- Jack A Rall
- Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, Ohio
| |
Collapse
|
6
|
Chetverin AB. Alexander Spirin on Molecular Machines and Origin of Life. BIOCHEMISTRY (MOSCOW) 2021; 86:913-925. [PMID: 34488569 DOI: 10.1134/s0006297921080034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Once it was believed that ribosomal RNA encodes proteins, and GTP hydrolysis supplies the energy for protein synthesis. Everything has changed, when Alexander Spirin joined the science. It turned out that proteins are encoded by a completely different RNA, and GTP hydrolysis only accelerates the process already provided with energy. It was Spirin who first put forward the idea of a Brownian ratchet and explained how and why molecular machines could arise in the RNA world.
Collapse
Affiliation(s)
- Alexander B Chetverin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
7
|
Abstract
Myosin II is a biomolecular machine that is responsible for muscle contraction. Myosin II motors act cooperatively: during muscle contraction, multiple motors bind to a single actin filament and pull it against an external load, like people pulling on a rope in a tug-of-war. We model the dynamics of actomyosin filaments in order to study the evolution of motor-motor cooperativity. We find that filament backsliding-the distance an actin slides backward when a motor at the end of its cycle releases-is central to the speed and efficiency of muscle contraction. Our model predicts that this backsliding has been reduced through evolutionary adaptations to the motor's binding propensity, the strength of the motor's power stroke, and the force dependence of the motor's release from actin. These properties optimize the collective action of myosin II motors, which is not a simple sum of individual motor actions. The model also shows that these evolutionary variables can explain the speed-efficiency trade-off observed across different muscle tissues. This is an example of how evolution can tune the microscopic properties of individual proteins in order to optimize complex biological functions.
Collapse
|
8
|
Jarvis KJ, Bell KM, Loya AK, Swank DM, Walcott S. Force-velocity and tension transient measurements from Drosophila jump muscle reveal the necessity of both weakly-bound cross-bridges and series elasticity in models of muscle contraction. Arch Biochem Biophys 2021; 701:108809. [PMID: 33610561 PMCID: PMC7986577 DOI: 10.1016/j.abb.2021.108809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/22/2021] [Accepted: 02/09/2021] [Indexed: 01/11/2023]
Abstract
Muscle contraction is a fundamental biological process where molecular interactions between the myosin molecular motor and actin filaments result in contraction of a whole muscle, a process spanning size scales differing in eight orders of magnitude. Since unique behavior is observed at every scale in between these two extremes, to fully understand muscle function it is vital to develop multi-scale models. Based on simulations of classic measurements of muscle heat generation as a function of work, and shortening rate as a function of applied force, we hypothesize that a model based on molecular measurements must be modified to include a weakly-bound interaction between myosin and actin in order to fit measurements at the muscle fiber or whole muscle scales. This hypothesis is further supported by the model's need for a weakly-bound state in order to qualitatively reproduce the force response that occurs when a muscle fiber is rapidly stretched a small distance. We tested this hypothesis by measuring steady-state force as a function of shortening velocity, and the force transient caused by a rapid length step in Drosophila jump muscle fibers. Then, by performing global parameter optimization, we quantitatively compared the predictions of two mathematical models, one lacking a weakly-bound state and one with a weakly-bound state, to these measurements. Both models could reproduce our force-velocity measurements, but only the model with a weakly-bound state could reproduce our force transient measurements. However, neither model could concurrently fit both measurements. We find that only a model that includes weakly-bound cross-bridges with force-dependent detachment and an elastic element in series with the cross-bridges is able to fit both of our measurements. This result suggests that the force response after stretch is not a reflection of distinct steps in the cross-bridge cycle, but rather arises from the interaction of cross-bridges with a series elastic element. Additionally, the model suggests that the curvature of the force-velocity relationship arises from a combination of the force-dependence of weakly- and strongly-bound cross-bridges. Overall, this work presents a minimal cross-bridge model that has predictive power at the fiber level.
Collapse
Affiliation(s)
- Katelyn J Jarvis
- Department of Mathematics, University of California, Davis, CA, USA
| | - Kaylyn M Bell
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Amy K Loya
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Douglas M Swank
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Sam Walcott
- Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA, USA.
| |
Collapse
|
9
|
Hornos F, Feng HZ, Rizzuti B, Palomino-Schätzlein M, Wieczorek D, Neira JL, Jin JP. The muscle-relaxing C-terminal peptide from troponin I populates a nascent helix, facilitating binding to tropomyosin with a potent therapeutic effect. J Biol Chem 2021; 296:100228. [PMID: 33814345 PMCID: PMC7948816 DOI: 10.1074/jbc.ra120.016012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 11/06/2022] Open
Abstract
The conserved C-terminal end segment of troponin I (TnI) plays a critical role in regulating muscle relaxation. This function is retained in the isolated C-terminal 27 amino acid peptide (residues 184-210) of human cardiac TnI (HcTnI-C27): When added to skinned muscle fibers, HcTnI-C27 reduces the Ca2+-sensitivity of activated myofibrils and facilitates relaxation without decreasing the maximum force production. However, the underlying mechanism of HcTnI-C27 function is unknown. We studied the conformational preferences of HcTnI-C27 and a myopathic mutant, Arg192His, (HcTnI-C27-H). Both peptides were mainly disordered in aqueous solution with a nascent helix involving residues from Trp191 to Ile195, as shown by NMR analysis and molecular dynamics simulations. The population of nascent helix was smaller in HcTnI-C27-H than in HcTnI-C27, as shown by circular dichroism (CD) titrations. Fluorescence and isothermal titration calorimetry (ITC) showed that both peptides bound tropomyosin (αTm), with a detectably higher affinity (∼10 μM) of HcTnI-C27 than that of HcTnI-C27-H (∼15 μM), consistent with an impaired Ca2+-desensitization effect of the mutant peptide on skinned muscle strips. Upon binding to αTm, HcTnI-C27 acquired a weakly stable helix-like conformation involving residues near Trp191, as shown by transferred nuclear Overhauser effect spectroscopy and hydrogen/deuterium exchange experiments. With the potent Ca2+-desensitization effect of HcTnI-C27 on skinned cardiac muscle from a mouse model of hypertrophic cardiomyopathy, the data support that the C-terminal end domain of TnI can function as an isolated peptide with the intrinsic capacity of binding tropomyosin, providing a promising therapeutic approach to selectively improve diastolic function of the heart.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Binding Sites
- Calcium/metabolism
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/metabolism
- Cardiomyopathy, Hypertrophic/pathology
- Cardiomyopathy, Hypertrophic/prevention & control
- Disease Models, Animal
- Gene Expression
- Humans
- Kinetics
- Mice
- Molecular Docking Simulation
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle Relaxation
- Mutation
- Myofibrils/drug effects
- Myofibrils/metabolism
- Myofibrils/pathology
- Peptides/chemistry
- Peptides/genetics
- Peptides/metabolism
- Peptides/pharmacology
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Interaction Domains and Motifs
- Sequence Alignment
- Sequence Homology, Amino Acid
- Substrate Specificity
- Tropomyosin/chemistry
- Tropomyosin/genetics
- Tropomyosin/metabolism
- Troponin I/chemistry
- Troponin I/genetics
- Troponin I/metabolism
Collapse
Affiliation(s)
- Felipe Hornos
- IDIBE, Universidad Miguel Hernández, Alicante, Spain
| | - Han-Zhong Feng
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, Cosenza, Italy
| | | | - David Wieczorek
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cinncinnnati, Ohio, USA
| | - José L Neira
- IDIBE, Universidad Miguel Hernández, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos, Zaragoza, Spain.
| | - J-P Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA.
| |
Collapse
|
10
|
Gogulothu R, Nagar D, Gopalakrishnan S, Garlapati VR, Kallamadi PR, Ismail A. Disrupted expression of genes essential for skeletal muscle fibre integrity and energy metabolism in Vitamin D deficient rats. J Steroid Biochem Mol Biol 2020; 197:105525. [PMID: 31705962 DOI: 10.1016/j.jsbmb.2019.105525] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/16/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Vitamin D, a secosteroid that regulates mineral homeostasis via its actions in intestine, bone, kidneys and parathyroid glands, has many other target tissues, including skeletal muscle. In the present study, we used rats to examine if diet-induced vitamin D deficiency or insufficiency altered protein synthesis in muscle via the mTOR pathway, and impaired skeletal muscle quality by changing expression of genes needed for its function. Vitamin D deficiency resulted in reduced levels of phosphorylated mTOR, and suppressed mTOR-dependent phosphorylation of 4E-BP1 and p70-S6K, implying a decrease in activity of the protein synthesis machinery. These changes were coupled with up regulation of genes that are negative regulators of muscle growth (Fbxo32 & Trim63), leading to a net loss of skeletal muscle mass. Vitamin D deficiency or insufficiency also led to a decrease in expression of both myosin and actin-associated proteins (Myh1, Myh2, Myh7, Tnnc1& Tnnt1), which are essential for generation of the mechanical force needed for muscle contraction. We also detected a decrease in expression of glycolytic and oxidative enzyme genes (Hk2, Pfkm, Cs, Pdk4 & βHad) and transcriptional coactivator genes (Ppargc-1α & Ppargc-1β) which indicate a low oxidative capacity of skeletal muscle in the vitamin D deficient state. Furthermore, decreased citrate synthase activity corroborates a decrease in mitochondrial density and aerobic capacity of the muscle. In conclusion, our study demonstrates that chronic vitamin D deficiency or insufficiency reduced the size of skeletal muscle fibres, altered their composition, and decreased their oxidative potential. Most of the changes observed were reversible, either partially or completely, by restoring vitamin D to the diet of the deficient rats.
Collapse
Affiliation(s)
- Ramesh Gogulothu
- Department of Biochemistry, National Institute of Nutrition, Hyderabad, India
| | - Devika Nagar
- Department of Biochemistry, National Institute of Nutrition, Hyderabad, India
| | | | - Venkat R Garlapati
- Department of Biochemistry, National Institute of Nutrition, Hyderabad, India
| | | | - Ayesha Ismail
- Department of Biochemistry, National Institute of Nutrition, Hyderabad, India.
| |
Collapse
|
11
|
Is the cell really a machine? J Theor Biol 2019; 477:108-126. [PMID: 31173758 DOI: 10.1016/j.jtbi.2019.06.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 05/06/2019] [Accepted: 06/03/2019] [Indexed: 01/03/2023]
Abstract
It has become customary to conceptualize the living cell as an intricate piece of machinery, different to a man-made machine only in terms of its superior complexity. This familiar understanding grounds the conviction that a cell's organization can be explained reductionistically, as well as the idea that its molecular pathways can be construed as deterministic circuits. The machine conception of the cell owes a great deal of its success to the methods traditionally used in molecular biology. However, the recent introduction of novel experimental techniques capable of tracking individual molecules within cells in real time is leading to the rapid accumulation of data that are inconsistent with an engineering view of the cell. This paper examines four major domains of current research in which the challenges to the machine conception of the cell are particularly pronounced: cellular architecture, protein complexes, intracellular transport, and cellular behaviour. It argues that a new theoretical understanding of the cell is emerging from the study of these phenomena which emphasizes the dynamic, self-organizing nature of its constitution, the fluidity and plasticity of its components, and the stochasticity and non-linearity of its underlying processes.
Collapse
|
12
|
Amrutha AS, Sunil Kumar KR, Tamaoki N. Azobenzene‐Based Photoswitches Facilitating Reversible Regulation of Kinesin and Myosin Motor Systems for Nanotechnological Applications. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ammathnadu S. Amrutha
- Research Institute for Electronic ScienceHokkaido University Kita 20, Nishi 10, Kita-ku, Sapporo Hokkaido 001-0020 Japan
| | - K. R. Sunil Kumar
- Department of Chemistry and BiotechnologySchool of EngineeringThe University of Tokyo 7-3-1 Hongo, Bunkyo-Ku Tokyo 113-8656 Japan
| | - Nobuyuki Tamaoki
- Research Institute for Electronic ScienceHokkaido University Kita 20, Nishi 10, Kita-ku, Sapporo Hokkaido 001-0020 Japan
| |
Collapse
|
13
|
Menezes HM, Islam MJ, Takahashi M, Tamaoki N. Driving and photo-regulation of myosin-actin motors at molecular and macroscopic levels by photo-responsive high energy molecules. Org Biomol Chem 2018; 15:8894-8903. [PMID: 28902195 DOI: 10.1039/c7ob01293d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We employed an azobenzene based non-nucleoside triphosphate, AzoTP, in a myosin-actin motile system and demonstrated its efficiency as an energy molecule to drive and photo-regulate the myosin-actin motile function at the macroscopic level along with an in vitro motility assay. The AzoTP in its trans state induced shortening of a glycerinated muscle fibre whilst a cis isomer had no significant effect. Direct photoirradiation of a cis-AzoTP infused muscle fibre induced shortening triggered by a locally photo-generated trans-AzoTP in the muscle fibre. Furthermore, we designed and synthesized three new derivatives of AzoTPs that served as substrates for myosin by driving and photo-regulating the myosin-actin motile function at the molecular as well as the macroscopic level with varied efficiencies.
Collapse
Affiliation(s)
- Halley M Menezes
- Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-Ku, Sapporo, Hokkaido, 001-0020, Japan.
| | | | | | | |
Collapse
|
14
|
Trivedi DV, Adhikari AS, Sarkar SS, Ruppel KM, Spudich JA. Hypertrophic cardiomyopathy and the myosin mesa: viewing an old disease in a new light. Biophys Rev 2017; 10:27-48. [PMID: 28717924 PMCID: PMC5803174 DOI: 10.1007/s12551-017-0274-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/12/2017] [Indexed: 12/15/2022] Open
Abstract
The sarcomere is an exquisitely designed apparatus that is capable of generating force, which in the case of the heart results in the pumping of blood throughout the body. At the molecular level, an ATP-dependent interaction of myosin with actin drives the contraction and force generation of the sarcomere. Over the past six decades, work on muscle has yielded tremendous insights into the workings of the sarcomeric system. We now stand on the cusp where the acquired knowledge of how the sarcomere contracts and how that contraction is regulated can be extended to an understanding of the molecular mechanisms of sarcomeric diseases, such as hypertrophic cardiomyopathy (HCM). In this review we present a picture that combines current knowledge of the myosin mesa, the sequestered state of myosin heads on the thick filament, known as the interacting-heads motif (IHM), their possible interaction with myosin binding protein C (MyBP-C) and how these interactions can be abrogated leading to hyper-contractility, a key clinical manifestation of HCM. We discuss the structural and functional basis of the IHM state of the myosin heads and identify HCM-causing mutations that can directly impact the equilibrium between the 'on state' of the myosin heads (the open state) and the IHM 'off state'. We also hypothesize a role of MyBP-C in helping to maintain myosin heads in the IHM state on the thick filament, allowing release in a graded manner upon adrenergic stimulation. By viewing clinical hyper-contractility as the result of the destabilization of the IHM state, our aim is to view an old disease in a new light.
Collapse
Affiliation(s)
- Darshan V Trivedi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Arjun S Adhikari
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Saswata S Sarkar
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA. .,Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
15
|
Mustaev A, Roberts J, Gottesman M. Transcription elongation. Transcription 2017; 8:150-161. [PMID: 28301288 PMCID: PMC5501382 DOI: 10.1080/21541264.2017.1289294] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 12/23/2022] Open
Abstract
This review is focused on recent progress in understanding how Escherichia coli RNAP polymerase translocates along the DNA template and the factors that affect this movement. We discuss the fundamental aspects of RNAP translocation, template signals that influence forward or backward movement, and host or phage factors that modulate translocation.
Collapse
Affiliation(s)
- Arkady Mustaev
- PHRI Center, NJMS, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Jeffrey Roberts
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Max Gottesman
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
16
|
Mondal A, Jin JP. Protein Structure-Function Relationship at Work: Learning from Myopathy Mutations of the Slow Skeletal Muscle Isoform of Troponin T. Front Physiol 2016; 7:449. [PMID: 27790152 PMCID: PMC5062619 DOI: 10.3389/fphys.2016.00449] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/20/2016] [Indexed: 12/03/2022] Open
Abstract
Troponin T (TnT) is the sarcomeric thin filament anchoring subunit of the troponin complex in striated muscles. A nonsense mutation in exon 11 of the slow skeletal muscle isoform of TnT (ssTnT) gene (TNNT1) was found in the Amish populations in Pennsylvania and Ohio. This single nucleotide substitution causes a truncation of the ssTnT protein at Glu180 and the loss of the C-terminal tropomyosin (Tm)-binding site 2. As a consequence, it abolishes the myofilament integration of ssTnT and the loss of function causes an autosomal recessive nemaline myopathy (NM). More TNNT1 mutations have recently been reported in non-Amish ethnic groups with similar recessive NM phenotypes. A nonsense mutation in exon 9 truncates ssTnT at Ser108, deleting Tm-binding site 2 and a part of the middle region Tm-binding site 1. Two splicing site mutations result in truncation of ssTnT at Leu203 or deletion of the exon 14-encoded C-terminal end segment. Another splicing mutation causes an internal deletion of the 39 amino acids encoded by exon 8, partially damaging Tm-binding site 1. The three splicing mutations of TNNT1 all preserve the high affinity Tm-binding site 2 but still present recessive NM phenotypes. The molecular mechanisms for these mutations to cause myopathy provide interesting models to study and understand the structure-function relationship of TnT. This focused review summarizes the current knowledge of TnT isoform regulation, structure-function relationship of TnT and how various ssTnT mutations cause recessive NM, in order to promote in depth studies for further understanding the pathogenesis and pathophysiology of TNNT1 myopathies toward the development of effective treatments.
Collapse
Affiliation(s)
- Anupom Mondal
- Department of Physiology, Wayne State University School of Medicine Detroit, MI, USA
| | - J-P Jin
- Department of Physiology, Wayne State University School of Medicine Detroit, MI, USA
| |
Collapse
|
17
|
Tewari SG, Bugenhagen SM, Palmer BM, Beard DA. Dynamics of cross-bridge cycling, ATP hydrolysis, force generation, and deformation in cardiac muscle. J Mol Cell Cardiol 2016; 96:11-25. [PMID: 25681584 PMCID: PMC4532654 DOI: 10.1016/j.yjmcc.2015.02.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/29/2015] [Accepted: 02/04/2015] [Indexed: 11/27/2022]
Abstract
Despite extensive study over the past six decades the coupling of chemical reaction and mechanical processes in muscle dynamics is not well understood. We lack a theoretical description of how chemical processes (metabolite binding, ATP hydrolysis) influence and are influenced by mechanical processes (deformation and force generation). To address this need, a mathematical model of the muscle cross-bridge (XB) cycle based on Huxley's sliding filament theory is developed that explicitly accounts for the chemical transformation events and the influence of strain on state transitions. The model is identified based on elastic and viscous moduli data from mouse and rat myocardial strips over a range of perturbation frequencies, and MgATP and inorganic phosphate (Pi) concentrations. Simulations of the identified model reproduce the observed effects of MgATP and MgADP on the rate of force development. Furthermore, simulations reveal that the rate of force re-development measured in slack-restretch experiments is not directly proportional to the rate of XB cycling. For these experiments, the model predicts that the observed increase in the rate of force generation with increased Pi concentration is due to inhibition of cycle turnover by Pi. Finally, the model captures the observed phenomena of force yielding suggesting that it is a result of rapid detachment of stretched attached myosin heads.
Collapse
Affiliation(s)
- Shivendra G Tewari
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Scott M Bugenhagen
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Bradley M Palmer
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA
| | - Daniel A Beard
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
18
|
Temperature effect on the chemomechanical regulation of substeps within the power stroke of a single Myosin II. Sci Rep 2016; 6:19506. [PMID: 26786569 PMCID: PMC4726395 DOI: 10.1038/srep19506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/14/2015] [Indexed: 11/08/2022] Open
Abstract
Myosin IIs in the skeletal muscle are highly efficient nanoscale machines evolved in nature. Understanding how they function can not only bring insights into various biological processes but also provide guidelines to engineer synthetic nanoscale motors working in the vicinity of thermal noise. Though it was clearly demonstrated that the behavior of a skeletal muscle fiber, or that of a single myosin was strongly affected by the temperature, how exactly the temperature affects the kinetics of a single myosin is not fully understood. By adapting the newly developed transitional state model, which successfully explained the intriguing motor force regulation during skeletal muscle contraction, here we systematically explain how exactly the power stroke of a single myosin proceeds, with the consideration of the chemomechanical regulation of sub-steps within the stroke. The adapted theory is then utilized to investigate the temperature effect on various aspects of the power stroke. Our analysis suggests that, though swing rates, the isometric force, and the maximal stroke size all strongly vary with the temperature, the temperature can have a very small effect on the releasable elastic energy within the power stroke.
Collapse
|
19
|
Abstract
Cells actively sense the mechanical properties of the extracellular matrix, such as its rigidity, morphology, and deformation. The cell-matrix interaction influences a range of cellular processes, including cell adhesion, migration, and differentiation, among others. This article aims to review some of the recent progress that has been made in modeling mechanosensing in cell-matrix interactions at different length scales. The issues discussed include specific interactions between proteins, the structure and mechanosensitivity of focal adhesions, the cluster effects of the specific binding, the structure and behavior of stress fibers, cells' sensing of substrate stiffness, and cell reorientation on cyclically stretched substrates. The review concludes by looking toward future opportunities in the field and at the challenges to understanding active cell-matrix interactions.
Collapse
Affiliation(s)
- Bin Chen
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China;
| | | | | |
Collapse
|
20
|
Astumian RD. Irrelevance of the power stroke for the directionality, stopping force, and optimal efficiency of chemically driven molecular machines. Biophys J 2015; 108:291-303. [PMID: 25606678 DOI: 10.1016/j.bpj.2014.11.3459] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 11/10/2014] [Accepted: 11/14/2014] [Indexed: 11/19/2022] Open
Abstract
A simple model for a chemically driven molecular walker shows that the elastic energy stored by the molecule and released during the conformational change known as the power-stroke (i.e., the free-energy difference between the pre- and post-power-stroke states) is irrelevant for determining the directionality, stopping force, and efficiency of the motor. Further, the apportionment of the dependence on the externally applied force between the forward and reverse rate constants of the power-stroke (or indeed among all rate constants) is irrelevant for determining the directionality, stopping force, and efficiency of the motor. Arguments based on the principle of microscopic reversibility demonstrate that this result is general for all chemically driven molecular machines, and even more broadly that the relative energies of the states of the motor have no role in determining the directionality, stopping force, or optimal efficiency of the machine. Instead, the directionality, stopping force, and optimal efficiency are determined solely by the relative heights of the energy barriers between the states. Molecular recognition--the ability of a molecular machine to discriminate between substrate and product depending on the state of the machine--is far more important for determining the intrinsic directionality and thermodynamics of chemo-mechanical coupling than are the details of the internal mechanical conformational motions of the machine. In contrast to the conclusions for chemical driving, a power-stroke is very important for the directionality and efficiency of light-driven molecular machines and for molecular machines driven by external modulation of thermodynamic parameters.
Collapse
|
21
|
Poorly understood aspects of striated muscle contraction. BIOMED RESEARCH INTERNATIONAL 2015; 2015:245154. [PMID: 25961006 PMCID: PMC4415482 DOI: 10.1155/2015/245154] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/28/2014] [Indexed: 11/23/2022]
Abstract
Muscle contraction results from cyclic interactions between the contractile proteins myosin and actin, driven by the turnover of adenosine triphosphate (ATP). Despite intense studies, several molecular events in the contraction process are poorly understood, including the relationship between force-generation and phosphate-release in the ATP-turnover. Different aspects of the force-generating transition are reflected in the changes in tension development by muscle cells, myofibrils and single molecules upon changes in temperature, altered phosphate concentration, or length perturbations. It has been notoriously difficult to explain all these events within a given theoretical framework and to unequivocally correlate observed events with the atomic structures of the myosin motor. Other incompletely understood issues include the role of the two heads of myosin II and structural changes in the actin filaments as well as the importance of the three-dimensional order. We here review these issues in relation to controversies regarding basic physiological properties of striated muscle. We also briefly consider actomyosin mutation effects in cardiac and skeletal muscle function and the possibility to treat these defects by drugs.
Collapse
|
22
|
Kodera N, Ando T. The path to visualization of walking myosin V by high-speed atomic force microscopy. Biophys Rev 2014; 6:237-260. [PMID: 25505494 PMCID: PMC4256461 DOI: 10.1007/s12551-014-0141-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 05/07/2014] [Indexed: 01/14/2023] Open
Abstract
The quest for understanding the mechanism of myosin-based motility started with studies on muscle contraction. From numerous studies, the basic frameworks for this mechanism were constructed and brilliant hypotheses were put forward. However, the argument about the most crucial issue of how the actin-myosin interaction generates contractile force and shortening has not been definitive. To increase the "directness of measurement", in vitro motility assays and single-molecule optical techniques were created and used. Consequently, detailed knowledge of the motility of muscle myosin evolved, which resulted in provoking more arguments to a higher level. In parallel with technical progress, advances in cell biology led to the discovery of many classes of myosins. Myosin V was discovered to be a processive motor, unlike myosin II. The processivity reduced experimental difficulties because it allowed continuous tracing of the motor action of single myosin V molecules. Extensive studies of myosin V were expected to resolve arguments and build a consensus but did not necessarily do so. The directness of measurement was further enhanced by the recent advent of high-speed atomic force microscopy capable of directly visualizing biological molecules in action at high spatiotemporal resolution. This microscopy clearly visualized myosin V molecules walking on actin filaments and at last provided irrefutable evidence for the swinging lever-arm motion propelling the molecules. However, a peculiar foot stomp behavior also appeared in the AFM movie, raising new questions of the chemo-mechanical coupling in this motor and myosin motors in general. This article reviews these changes in the research of myosin motility and proposes new ideas to resolve the newly raised questions.
Collapse
Affiliation(s)
- Noriyuki Kodera
- Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa, 920-1192 Japan
- PREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, 332-0012 Japan
| | - Toshio Ando
- Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa, 920-1192 Japan
- Department of Physics, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, 332-0012 Japan
| |
Collapse
|
23
|
Liu R, Feng HZ, Jin JP. Physiological contractility of cardiomyocytes in the wall of mouse and rat azygos vein. Am J Physiol Cell Physiol 2014; 306:C697-704. [PMID: 24477237 PMCID: PMC3962596 DOI: 10.1152/ajpcell.00004.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 01/25/2014] [Indexed: 01/19/2023]
Abstract
We recently demonstrated the abundant presence of cardiomyocytes in the wall of thoracic veins of adult mouse and rat. The highly differentiated morphology and myofilament protein contents of the venous cardiomyocytes suggested contractile functions. Here we further investigated the contractility of mouse and rat azygos venous rings compared with that of atrial strips and ventricular papillary muscle. 5-Bromo-4-chloro-indolyl-galactopyranoside (X-gal) staining of transgenic mouse vessels expressing lacZ under a cloned cardiac troponin T promoter demonstrated that the venous cardiomyocytes are discontinuous from atrial myocardium and aligned in the wall of thoracic veins perpendicular to the vessel axis. Histological sections displayed sarcomeric striations in the venous cardiomyocytes, which indicate an encirclement orientation of myofibrils in the vessel wall. Mechanical studies found that the rings of mouse and rat azygos vein produce strong cardiac type twitch contractions when stimulated with electrical pacing in contrast to the weak and slow smooth muscle contractions induced using 90 mM KCl. The twitch contraction and relaxation of mouse azygos veins further exhibited a cardiac type of β-adrenergic responses. Quantitative comparison showed that the contractions of venous cardiomyocytes are slightly slower than those of atrium muscle but significantly faster than those of ventricular papillary muscle. These novel findings indicate that the cardiomyocytes abundant in the wall of rodent thoracic veins possess fully differentiated cardiac muscle phenotype despite their anatomical and functional segregations from the heart.
Collapse
Affiliation(s)
- Rong Liu
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | | | | |
Collapse
|
24
|
Ferenczi MA, Bershitsky SY, Koubassova NA, Kopylova GV, Fernandez M, Narayanan T, Tsaturyan AK. Why muscle is an efficient shock absorber. PLoS One 2014; 9:e85739. [PMID: 24465673 PMCID: PMC3900422 DOI: 10.1371/journal.pone.0085739] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/02/2013] [Indexed: 11/25/2022] Open
Abstract
Skeletal muscles power body movement by converting free energy of ATP hydrolysis into mechanical work. During the landing phase of running or jumping some activated skeletal muscles are subjected to stretch. Upon stretch they absorb body energy quickly and effectively thus protecting joints and bones from impact damage. This is achieved because during lengthening, skeletal muscle bears higher force and has higher instantaneous stiffness than during isometric contraction, and yet consumes very little ATP. We wish to understand how the actomyosin molecules change their structure and interaction to implement these physiologically useful mechanical and thermodynamical properties. We monitored changes in the low angle x-ray diffraction pattern of rabbit skeletal muscle fibers during ramp stretch compared to those during isometric contraction at physiological temperature using synchrotron radiation. The intensities of the off-meridional layer lines and fine interference structure of the meridional M3 myosin x-ray reflection were resolved. Mechanical and structural data show that upon stretch the fraction of actin-bound myosin heads is higher than during isometric contraction. On the other hand, the intensities of the actin layer lines are lower than during isometric contraction. Taken together, these results suggest that during stretch, a significant fraction of actin-bound heads is bound non-stereo-specifically, i.e. they are disordered azimuthally although stiff axially. As the strong or stereo-specific myosin binding to actin is necessary for actin activation of the myosin ATPase, this finding explains the low metabolic cost of energy absorption by muscle during the landing phase of locomotion.
Collapse
Affiliation(s)
- Michael A. Ferenczi
- National Heart and Lung Institute, Imperial College London, London, UK and Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| | - Sergey Y. Bershitsky
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | | | - Galina V. Kopylova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | | | | | | |
Collapse
|
25
|
Flexibility within the heads of muscle myosin-2 molecules. J Mol Biol 2013; 426:894-907. [PMID: 24333017 PMCID: PMC3919154 DOI: 10.1016/j.jmb.2013.11.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/25/2013] [Accepted: 11/29/2013] [Indexed: 11/26/2022]
Abstract
We show that negative-stain electron microscopy and image processing of nucleotide-free (apo) striated muscle myosin-2 subfragment-1 (S1), possessing one light chain or both light chains, is capable of resolving significant amounts of structural detail. The overall appearance of the motor and the lever is similar in rabbit, scallop and chicken S1. Projection matching of class averages of the different S1 types to projection views of two different crystal structures of apo S1 shows that all types most commonly closely resemble the appearance of the scallop S1 structure rather than the methylated chicken S1 structure. Methylation of chicken S1 has no effect on the structure of the molecule at this resolution: it too resembles the scallop S1 crystal structure. The lever is found to vary in its angle of attachment to the motor domain, with a hinge point located in the so-called pliant region between the converter and the essential light chain. The chicken S1 crystal structure lies near one end of the range of flexion observed. The Gaussian spread of angles of flexion suggests that flexibility is driven thermally, from which a torsional spring constant of ~ 23 pN·nm/rad2 is estimated on average for all S1 types, similar to myosin-5. This translates to apparent cantilever-type stiffness at the tip of the lever of 0.37 pN/nm. Because this stiffness is lower than recent estimates from myosin-2 heads attached to actin, we suggest that binding to actin leads to an allosteric stiffening of the motor–lever junction. Elasticity of muscle crossbridges is important, but its structural basis is obscure. Muscle myosin heads from rabbit, scallop and chicken share a common structure. The lever domain hinges about its connection with the motor domain. The stiffness of the motor–lever hinge is lower than estimates for crossbridges. Flexibility within the myosin head can be the basis of crossbridge stiffness.
Collapse
|
26
|
Chen B. Self-Regulation of Motor Force Through Chemomechanical Coupling in Skeletal Muscle Contraction. JOURNAL OF APPLIED MECHANICS 2013; 80. [DOI: 10.1115/1.4023680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
It is intriguing how the mechanics of molecular motors is regulated to perform the mechanical work in living systems. In sharp contrast to the conventional wisdom, recent experiments indicated that motor force maintains ∼6 pN upon a wide range of filament loads during skeletal muscle contraction at the steady state. Here we find that this rather precise regulation which takes place in an essentially chaotic system, can be due to that a “working” motor is arrested in a transitional state when the motor force is ∼6 pN. Our analysis suggests that the motor force can be self-regulated through chemomechanical coupling, and motor force homeostasis is a built-in feature at the level of a single motor, which provides insights to understanding the coordinated function of multiple molecular motors existing in various physiological processes. With a coupled stochastic-elastic numerical framework, the kinetic model for a Actin-myosin-ATP cycle constructed in this work might pave the way to decently investigate the transient behaviors of the skeletal muscle or other actomyosin complex structures.
Collapse
Affiliation(s)
- Bin Chen
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, PRC e-mail:
| |
Collapse
|
27
|
Comparison of the longissimus muscle proteome between obese and lean pigs at 180 days. Mamm Genome 2012; 24:72-9. [DOI: 10.1007/s00335-012-9440-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/12/2012] [Indexed: 12/28/2022]
|
28
|
Koubassova NA, Tsaturyan AK. Molecular mechanism of actin-myosin motor in muscle. BIOCHEMISTRY (MOSCOW) 2012; 76:1484-506. [PMID: 22339600 DOI: 10.1134/s0006297911130086] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The interaction of actin and myosin powers striated and smooth muscles and some other types of cell motility. Due to its highly ordered structure, skeletal muscle is a very convenient object for studying the general mechanism of the actin-myosin molecular motor. The history of investigation of the actin-myosin motor is briefly described. Modern concepts and data obtained with different techniques including protein crystallography, electron microscopy, biochemistry, and protein engineering are reviewed. Particular attention is given to X-ray diffraction studies of intact muscles and single muscle fibers with permeabilized membrane as they give insight into structural changes that underlie force generation and work production by the motor. Time-resolved low-angle X-ray diffraction on contracting muscle fibers using modern synchrotron radiation sources is used to follow movement of myosin heads with unique time and spatial resolution under near physiological conditions.
Collapse
Affiliation(s)
- N A Koubassova
- Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia.
| | | |
Collapse
|
29
|
Lewis JH, Beausang JF, Sweeney HL, Goldman YE. The azimuthal path of myosin V and its dependence on lever-arm length. ACTA ACUST UNITED AC 2012; 139:101-20. [PMID: 22291144 PMCID: PMC3269788 DOI: 10.1085/jgp.201110715] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Myosin V (myoV) is a two-headed myosin capable of taking many successive steps along actin per diffusional encounter, enabling it to transport vesicular and ribonucleoprotein cargos in the dense and complex environment within cells. To better understand how myoV navigates along actin, we used polarized total internal reflection fluorescence microscopy to examine angular changes of bifunctional rhodamine probes on the lever arms of single myoV molecules in vitro. With a newly developed analysis technique, the rotational motions of the lever arm and the local orientation of each probe relative to the lever arm were estimated from the probe’s measured orientation. This type of analysis could be applied to similar studies on other motor proteins, as well as other proteins with domains that undergo significant rotational motions. The experiments were performed on recombinant constructs of myoV that had either the native-length (six IQ motifs and calmodulins [CaMs]) or truncated (four IQ motifs and CaMs) lever arms. Native-length myoV-6IQ mainly took straight steps along actin, with occasional small azimuthal tilts around the actin filament. Truncated myoV-4IQ showed an increased frequency of azimuthal steps, but the magnitudes of these steps were nearly identical to those of myoV-6IQ. The results show that the azimuthal deflections of myoV on actin are more common for the truncated lever arm, but the range of these deflections is relatively independent of its lever-arm length.
Collapse
Affiliation(s)
- John H Lewis
- The Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
30
|
|
31
|
Hong Y, Peng J, Jiang W, Fu Z, Liu J, Shi Y, Li X, Lin J. Proteomic analysis of schistosoma japonicum schistosomulum proteins that are differentially expressed among hosts differing in their susceptibility to the infection. Mol Cell Proteomics 2011; 10:M110.006098. [PMID: 21593212 DOI: 10.1074/mcp.m110.006098] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Schistosomiasis is a tropical, parasitic disease affecting humans and several animal species. The aim of this study was to identify proteins involved in the growth and survival of the parasitic forms inside a host. Schistosomula of Schistosoma japonicum were isolated from three different hosts: the susceptible BALB/c mice; the Wistar rats, which have a considerably lower susceptibility; and the resistant reed vole, Microtus fortis. Soluble proteins of the schistosomula collected from the above three hosts 10 days postinfection were subjected to two-dimensional difference gel electrophoresis. Comparative proteomic analyses revealed that 39, 21, and 25 protein spots were significantly differentially expressed between schistosomula from mice and rats, mice and reed voles, or rats and reed voles, respectively (ANCOVA, p < 0.05). Further, the protein spots were identified by liquid chromatography-tandem MS. Bioinformatics analysis showed that the differentially expressed proteins were essentially those involved in the metabolism of proteins, ribonucleotides, or carbohydrates, or in stress response or cellular movement. This study represents the first attempt at profiling S. japonicum living in different states and provides a basis for a better understanding of the molecular mechanisms in the development and survival of S. japonicum in different host environments.
Collapse
Affiliation(s)
- Yang Hong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, PR China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Skubiszak L. Geometrical conditions indispensable for muscle contraction. Int J Mol Sci 2011; 12:2138-57. [PMID: 21731432 PMCID: PMC3127108 DOI: 10.3390/ijms12042138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 03/10/2011] [Accepted: 03/18/2011] [Indexed: 11/16/2022] Open
Abstract
Computer simulation has uncovered the geometrical conditions under which the vertebrate striated muscle sarcomere can contract. First, all thick filaments should have identical structure, namely: three myosin cross-bridges, building a crown, should be aligned at angles of 0°, 120°, 180°, and the successive crowns and the two filament halves should be turned around 120°. Second, all thick filaments should act simultaneously. Third, coordination in action of the myosin cross-bridges should exist, namely: the three cross-bridges of a crown should act simultaneously and the cross-bridge crowns axially 43 and 14.333 nm apart should act, respectively, simultaneously and with a phase shift. Fifth, six thin filaments surrounding the thick filament should be turned around 180° to each other in each sarcomere half. Sixth, thin filaments should be oppositely oriented in relation to the sarcomere middle. Finally, the structure of each of the thin filaments should change in consequence of strong interaction with myosin heads, namely: the axial distance and the angular alignment between neighboring actin monomers should be, respectively, 2.867 nm and 168° instead of 2.75 nm and 166.15°. These conditions ensure the stereo-specific interaction between actin and myosin and good agreement with the data gathered by electron microscopy and X-ray diffraction methods. The results suggest that the force is generated not only by the myosin cross-bridges but also by the thin filaments; the former acts by cyclical unwrapping and wrapping the thick filament backbone, and the latter byelongation.
Collapse
Affiliation(s)
- Ludmila Skubiszak
- Nałęcz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences, Ks. Trojdena 4, 02-109 Warszawa, Poland; E-Mail: ; Tel.: +48-22-6599143
| |
Collapse
|
33
|
Galkin VE, Orlova A, Schröder GF, Egelman EH. Structural polymorphism in F-actin. Nat Struct Mol Biol 2010; 17:1318-23. [PMID: 20935633 PMCID: PMC2988880 DOI: 10.1038/nsmb.1930] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 09/15/2010] [Indexed: 12/31/2022]
Abstract
Actin has maintained an exquisite degree of sequence conservation over large evolutionary distances for reasons that are not understood. The desire to explain phenomena from muscle contraction to cytokinesis in mechanistic detail has driven the generation of an atomic model of the actin filament (F-actin). Here we use electron cryomicroscopy to show that frozen-hydrated actin filaments contain a multiplicity of different structural states. We show (at ∼10 Å resolution) that subdomain 2 can be disordered and can make multiple contacts with the C terminus of a subunit above it. We link a number of disease-causing mutations in the human ACTA1 gene to the most structurally dynamic elements of actin. Because F-actin is structurally polymorphic, it cannot be described using only one atomic model and must be understood as an ensemble of different states.
Collapse
Affiliation(s)
- Vitold E Galkin
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA.
| | | | | | | |
Collapse
|
34
|
Wu S, Liu J, Reedy MC, Tregear RT, Winkler H, Franzini-Armstrong C, Sasaki H, Lucaveche C, Goldman YE, Reedy MK, Taylor KA. Electron tomography of cryofixed, isometrically contracting insect flight muscle reveals novel actin-myosin interactions. PLoS One 2010; 5. [PMID: 20844746 PMCID: PMC2936580 DOI: 10.1371/journal.pone.0012643] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 07/29/2010] [Indexed: 11/18/2022] Open
Abstract
Background Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ. Methodology We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the “target zone”, situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77°/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127° range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening. Conclusion We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very different from strong binding attachments.
Collapse
Affiliation(s)
- Shenping Wu
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Jun Liu
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Mary C. Reedy
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Richard T. Tregear
- Medical Research Council Laboratory of Molecular Biology, Cambridge, England
| | - Hanspeter Winkler
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Clara Franzini-Armstrong
- Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hiroyuki Sasaki
- Division of Fine Morphology, Core Research Facilities, Jikei University School of Medicine, Tokyo, Japan
| | - Carmen Lucaveche
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Yale E. Goldman
- Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael K. Reedy
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kenneth A. Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
35
|
Okuro K, Kinbara K, Takeda K, Inoue Y, Ishijima A, Aida T. Adhesion effects of a guanidinium ion appended dendritic "molecular glue" on the ATP-driven sliding motion of actomyosin. Angew Chem Int Ed Engl 2010; 49:3030-3. [PMID: 20229546 DOI: 10.1002/anie.200906139] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kou Okuro
- Department of Chemistry and Biotechnology, School of Engineering and Center for NanoBio Integration, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Jomová K, Zelenický L, Morris H, Mazúr M, Valko M. Chemo-mechanical coupling in molecular motors interpreted through the uncertainty relations. Chem Phys 2010. [DOI: 10.1016/j.chemphys.2010.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Okuro K, Kinbara K, Takeda K, Inoue Y, Ishijima A, Aida T. Adhesion Effects of a Guanidinium Ion Appended Dendritic “Molecular Glue” on the ATP-Driven Sliding Motion of Actomyosin. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200906139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Colombini B, Nocella M, Benelli G, Cecchi G, Griffiths PJ, Bagni MA. Reversal of the myosin power stroke induced by fast stretching of intact skeletal muscle fibers. Biophys J 2010; 97:2922-9. [PMID: 19948121 DOI: 10.1016/j.bpj.2009.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 10/20/2022] Open
Abstract
Force generation and movement in skeletal muscle result from a cyclical interaction of overlapping myosin and actin filaments that permits the free energy of ATP hydrolysis to be converted into mechanical work. The rapid force recovery that occurs after a step release imposed on a muscle is thought to result from a synchronized tilting of myosin lever arms toward a position of lower free energy (the power stroke). We investigated the power stroke mechanism in intact muscle fibers of Rana esculenta using a fast stretch to detach forcibly cross-bridges. Stretches were applied either with or without a conditioning step release. Cross-bridge rupture tension was not significantly influenced by the release, whereas sarcomere elongation at the rupture point increased immediately after the release and returned to the prerelease condition within 15-20 ms, following a slower time course compared to the recovery of tension. These observations suggest that the rupture force of a bridge is unaltered by a conditioning release, but rupture must first be preceded by a power stroke reversal, which restores the prepower stroke state. The sarcomere extension at the rupture point indicates both the extent of this power stroke reversal and the time course of strained bridge replenishment.
Collapse
Affiliation(s)
- Barbara Colombini
- Dipartimento di Scienze Fisiologiche, Università degli Studi di Firenze, Firenze, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Spudich JA, Sivaramakrishnan S. Myosin VI: an innovative motor that challenged the swinging lever arm hypothesis. Nat Rev Mol Cell Biol 2010; 11:128-37. [PMID: 20094053 DOI: 10.1038/nrm2833] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The swinging crossbridge hypothesis states that energy from ATP hydrolysis is transduced to mechanical movement of the myosin head while bound to actin. The light chain-binding region of myosin is thought to act as a lever arm that amplifies movements near the catalytic site. This model has been challenged by findings that myosin VI takes larger steps along actin filaments than early interpretations of its structure seem to allow. We now know that myosin VI does indeed operate by an unusual approximately 180 degrees lever arm swing and achieves its large step size using special structural features in its tail domain.
Collapse
Affiliation(s)
- James A Spudich
- Department of Biochemistry, B400 Beckman Center, Stanford University School of Medicine, Stanford, California 94305-5307, USA.
| | | |
Collapse
|
40
|
Drew DA, Koch GA, Vellante H, Talati R, Sanchez O. Analyses of mechanisms for force generation during cell septation in Escherichia coli. Bull Math Biol 2009; 71:980-1005. [PMID: 19229658 DOI: 10.1007/s11538-008-9390-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 12/05/2008] [Indexed: 10/21/2022]
Abstract
Escherichia coli is a rod-shaped bacterium that divides at its midplane, partitioning its cellular material into two roughly equal parts. At the appropriate time, a septum forms, creating the two daughter cells. Septum formation starts with the appearance of a ring of FtsZ proteins on the cell membrane at midplane. This Z-ring causes an invagination in the membrane, which is followed by growth of two new endcaps for the daughter cells. Invagination occurs against a cell overpressure of several atmospheres. A model is presented for the shape of the cell as determined by the tension in the Z-ring. This model allows the calculation of the force required for invagination. Then three possible models to generate the force necessary to achieve invagination are presented and analyzed. These models are based on converting GTP-bound FtsZ polymeric structures to GDP-bound FtsZ structures, which then leave the polymer. Each model is able to generate the force by relating the hydrolyzation to an irreversible molecular binding event, resulting in a net motion of putative anchors for the structures. All three models show that cross-linking the FtsZ protofilaments into a polymer structure allows the removal of GDP-FtsZ without interrupting the structure during force generation, as would happen for a simple polymeric chain.
Collapse
Affiliation(s)
- Donald A Drew
- Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA.
| | | | | | | | | |
Collapse
|
41
|
Hooper SL, Hobbs KH, Thuma JB. Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle. Prog Neurobiol 2008; 86:72-127. [PMID: 18616971 PMCID: PMC2650078 DOI: 10.1016/j.pneurobio.2008.06.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 05/08/2008] [Accepted: 06/12/2008] [Indexed: 11/26/2022]
Abstract
This is the second in a series of canonical reviews on invertebrate muscle. We cover here thin and thick filament structure, the molecular basis of force generation and its regulation, and two special properties of some invertebrate muscle, catch and asynchronous muscle. Invertebrate thin filaments resemble vertebrate thin filaments, although helix structure and tropomyosin arrangement show small differences. Invertebrate thick filaments, alternatively, are very different from vertebrate striated thick filaments and show great variation within invertebrates. Part of this diversity stems from variation in paramyosin content, which is greatly increased in very large diameter invertebrate thick filaments. Other of it arises from relatively small changes in filament backbone structure, which results in filaments with grossly similar myosin head placements (rotating crowns of heads every 14.5 nm) but large changes in detail (distances between heads in azimuthal registration varying from three to thousands of crowns). The lever arm basis of force generation is common to both vertebrates and invertebrates, and in some invertebrates this process is understood on the near atomic level. Invertebrate actomyosin is both thin (tropomyosin:troponin) and thick (primarily via direct Ca(++) binding to myosin) filament regulated, and most invertebrate muscles are dually regulated. These mechanisms are well understood on the molecular level, but the behavioral utility of dual regulation is less so. The phosphorylation state of the thick filament associated giant protein, twitchin, has been recently shown to be the molecular basis of catch. The molecular basis of the stretch activation underlying asynchronous muscle activity, however, remains unresolved.
Collapse
Affiliation(s)
- Scott L. Hooper
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Kevin H. Hobbs
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Jeffrey B. Thuma
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| |
Collapse
|
42
|
Czuryło EA, Kulikova N, Sobota A. Disturbance of smooth muscle regulatory function by Eisenia foetida toxin lysenin: Insight into the mechanism of smooth muscle contraction. Toxicon 2008; 51:1090-102. [DOI: 10.1016/j.toxicon.2008.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 01/04/2008] [Accepted: 01/28/2008] [Indexed: 01/25/2023]
|
43
|
Thiol reactivity as a sensor of rotation of the converter in myosin. Biochem Biophys Res Commun 2007; 369:115-23. [PMID: 18068118 DOI: 10.1016/j.bbrc.2007.11.148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 11/22/2007] [Indexed: 11/22/2022]
Abstract
Smooth muscle myosin has two reactive thiols located near the C-terminal region of its motor domain, the "converter", which rotates by approximately 70 degrees upon the transition from the "nucleotide-free" state to the "pre-power stroke" state. The incorporation rates of a thiol reagent, 5-(((2-iodoacetyl)amino)ethyl)aminonaphthalene-1-sulfonic acid (IAEDANS), into these thiols were greatly altered by adding ATP or changing the myosin conformation. Comparisons of the myosin structures in the pre-power stroke state and the nucleotide-free state explained why the reactivity of both thiols is especially sensitive to a conformational change around the converter, and thus can be used as a sensor of the rotation of the converter. Modeling of the myosin structure in the pre-power stroke state, in which the most reactive thiol, "SH1", was selectively modified with IAEDANS, revealed that this label becomes an obstacle when the converter completely rotates toward its position in the pre-power stroke state, thus resulting in incomplete rotation of the converter. Therefore, we suggest that the limitation of the converter rotation by modification causes the as-yet unexplained phenomena of SH1-modified myosin, including the inhibition of 10S myosin formation and the losses in phosphorylation-dependent regulation of the basic and actin-activated Mg-ATPase activities of myosin.
Collapse
|
44
|
Yielder P, Gutnik B, Kobrin VI, Leaver J, Guo W. Viscoelastic properties of a skin-and-muscle compartment in the right and the left hands. Biophysics (Nagoya-shi) 2007. [DOI: 10.1134/s0006350907020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
45
|
Tallima H, El Ridi R. Praziquantel binds Schistosoma mansoni adult worm actin. Int J Antimicrob Agents 2007; 29:570-5. [PMID: 17341443 DOI: 10.1016/j.ijantimicag.2006.12.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 12/28/2006] [Indexed: 11/19/2022]
Abstract
Praziquantel (PZQ) is widely used for the treatment of schistosomiasis. It induces worm muscle contractions and tegumental disruption, followed by exposure of parasite surface membrane antigens to the host immunological defence mechanisms. It may be assumed that PZQ, like cholesterol, is too hydrophobic to traverse the schistosome outer lipid bilayers by passive diffusion and probably requires binding to a surface membrane protein carrier for distribution throughout the worm. However, the PZQ binding site on the schistosome surface and the precise mechanism of action are not yet known. The Claisen condensation reaction was used to bind PZQ on cellulose acetate membranes. Triton-insoluble surface membrane antigens of Schistosoma mansoni adult worms were allowed to bind to the PZQ column. The identity of the bound molecules was examined by amino acid microsequencing and immunogenicity in outbred and inbred mice. The PZQ column was found to bind molecules of 45 kDa selectively from the Triton-insoluble surface membrane antigens of S. mansoni adult worms. Amino acid microsequencing revealed that the 45 kDa species consist predominantly of schistosome actin. This finding was supported by the poor immunogenicity of the 45 kDa molecules in outbred and inbred mice. PZQ was also shown to bind bovine actin but not bovine serum albumin. However, pre-incubation with bovine actin did not impair the effect of PZQ on adult worms in vitro. The study represents an attempt to understand how PZQ distributes across schistosome outer lipid bilayers.
Collapse
Affiliation(s)
- Hatem Tallima
- Zoology Department, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | | |
Collapse
|
46
|
Andreev OA, Reshetnyak YK. Mechanism of formation of actomyosin interface. J Mol Biol 2006; 365:551-4. [PMID: 17081565 DOI: 10.1016/j.jmb.2006.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2006] [Revised: 10/04/2006] [Accepted: 10/05/2006] [Indexed: 11/20/2022]
Abstract
Force generation in muscle results from binding of myosin to F-actin. ATP binding to myosin provides energy to dissociate actomyosin complex while the hydrolysis of ATP is needed for re-binding of myosin to F-actin. At the end of each cycle myosin and actin form a tight complex with a substantial interface area. We investigated the dynamics of formation of actomyosin interface in presence and absence of nucleotides by quenched flow cross-linking technique. We showed previously that myosin head (subfragment 1, S1) directly interacts with at least two monomers in the actin filament. The quenched flow cross-linking experiments revealed that the initial contact (in presence or absence of nucleotides) occurs between loop 635-647 of S1 and 1-12 N-terminal residues of one actin and, then, the second contact forms between loop 567-574 of S1 and the N terminus of the second actin. The distance between these two loops in S1 corresponds to the distance between N termini of two actins in the same strand (53 A) but is smaller than that between two actins from the different strands (102 A). The formation of the actomyosin complex proceeds in ordered sequence: S1 initially binds to one actin then binds with the second actin located in the same strand but probably closer to the barbed end of F-actin. The presence of nucleotides slows down the interaction of S1 with the second actin, which correlates with recently proposed cleft movement in a 50 kDa domain of S1. The sequential mechanism of formation of actomyosin interface starting from one end and developing towards the barbed end might be involved in force generation and directional movement in actin-myosin system.
Collapse
Affiliation(s)
- Oleg A Andreev
- Physics Department, University of Rhode Island, East Hall, 2 Lippitt Road, Kingston, RI 02881, USA.
| | | |
Collapse
|
47
|
Affiliation(s)
- Jonathon Howard
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
48
|
Widén C, Barclay CJ. ATP splitting by half the cross-bridges can explain the twitch energetics of mouse papillary muscle. J Physiol 2006; 573:5-15. [PMID: 16497711 PMCID: PMC1779702 DOI: 10.1113/jphysiol.2006.104992] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The aim of this study was to quantify the fraction of cross-bridges that cycle during a cardiac twitch. Measurements of the energetics of contracting left ventricular mouse papillary muscle were made in vitro (27 degrees C) using the myothermic technique. Enthalpy output was partitioned into force-dependent and force-independent components using 2,3-butanedione monoxime (BDM) to selectively inhibit cross-bridge cycling. For isometric contractions and a contraction frequency of 2 Hz the net enthalpy output was 5.7 +/- 0.8 mJ g(-1) twitch(-1) and initial enthalpy output was 2.3 +/- 0.3 mJ g(-1) twitch(-1) (n = 11). Assuming that low concentrations of BDM did not affect Ca2+ cycling, force-independent enthalpy output was 18.6 +/- 1.9% (n = 7) of the initial enthalpy output. Enthalpy output decreased with increased contraction frequency but was independent of shortening velocity. On the basis of these values, it was calculated that the twitch energetics were consistent with ATP splitting by half the cross-bridges and the pumping of one Ca2+ into the sarcoplasmic reticulum for every three cross-bridge cycles. The simplest interpretation is that half the cross-bridges completed one ATP-splitting cycle in each twitch. The lack of influence of shortening velocity on energy cost supports the idea that the amount of energy to be used is determined early in a twitch and is not greatly influenced by events that occur during the contraction.
Collapse
Affiliation(s)
- C Widén
- School of Physiotherapy and Exercise Science, Griffith University, Gold Coast, PMB50 Gold Coast Mail Centre, Queensland 9726, Australia
| | | |
Collapse
|
49
|
Brenner B. The stroke size of myosins: a reevaluation. J Muscle Res Cell Motil 2006; 27:173-87. [PMID: 16470332 DOI: 10.1007/s10974-006-9056-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 01/09/2006] [Indexed: 10/25/2022]
Abstract
In this article results are reviewed from different experimental approaches to determine the size of the power stroke generated by myosin molecules during their ATPase cycle. While data from fiber studies and protein crystallography predict a stroke size of about 10 nm for skeletal muscle myosins, single molecule studies imply a stroke size for these myosins of only about 5 nm. Single molecule studies also showed the stroke size to be proportional to the length of the light chain binding domain, acting like a lever arm. At the same lever arm length, however, the stroke size of smooth muscle myosin II is found about twice as large and a stroke size of about 14 nm was reported for class-I myosins. It was proposed that such different stroke sizes for molecules with same lever arm length result from different extend of converter domain rotation. Only for class-I myosins, however, an about 30 degrees larger rotation of the converter was found so far by protein crystallography. This, however, is far too small to account for the almost 3-fold larger stroke size reported from single molecule studies. In this contribution we discuss some factors that might account for the apparent discrepancies between single molecule studies on the one hand and protein crystallography as well as some fiber studies on the other hand. In addition, we present some modeling to illustrate that the power stroke very likely is underestimated to a large extent in current single molecule approaches. We further show that differences in the stroke size for various classes of myosins reported from single molecule studies might be related to small differences in the probability to execute the power stroke kinetics. We demonstrate that such small changes in power stroke kinetics can seriously affect the extent to which the 'true' power stroke is underestimated by present single molecule approaches.
Collapse
Affiliation(s)
- Bernhard Brenner
- Department of Molecular and Cell Physiology, Medical School Hannover, Carl-Neuberg-Street 1, D-30625, Hannover, Germany.
| |
Collapse
|
50
|
Brotto MA, Biesiadecki BJ, Brotto LS, Nosek TM, Jin JP. Coupled expression of troponin T and troponin I isoforms in single skeletal muscle fibers correlates with contractility. Am J Physiol Cell Physiol 2005; 290:C567-76. [PMID: 16192301 PMCID: PMC1409758 DOI: 10.1152/ajpcell.00422.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Striated muscle contraction is powered by actin-activated myosin ATPase. This process is regulated by Ca(2+) via the troponin complex. Slow- and fast-twitch fibers of vertebrate skeletal muscle express type I and type II myosin, respectively, and these myosin isoenzymes confer different ATPase activities, contractile velocities, and force. Skeletal muscle troponin has also diverged into fast and slow isoforms, but their functional significance is not fully understood. To investigate the expression of troponin isoforms in mammalian skeletal muscle and their functional relationship to that of the myosin isoforms, we concomitantly studied myosin, troponin T (TnT), and troponin I (TnI) isoform contents and isometric contractile properties in single fibers of rat skeletal muscle. We characterized a large number of Triton X-100-skinned single fibers from soleus, diaphragm, gastrocnemius, and extensor digitorum longus muscles and selected fibers with combinations of a single myosin isoform and a single class (slow or fast) of the TnT and TnI isoforms to investigate their role in determining contractility. Types IIa, IIx, and IIb myosin fibers produced higher isometric force than that of type I fibers. Despite the polyploidy of adult skeletal muscle fibers, the expression of fast or slow isoforms of TnT and TnI is tightly coupled. Fibers containing slow troponin had higher Ca(2+) sensitivity than that of the fast troponin fibers, whereas fibers containing fast troponin showed a higher cooperativity of Ca(2+) activation than that of the slow troponin fibers. These results demonstrate distinct but coordinated regulation of troponin and myosin isoform expression in skeletal muscle and their contribution to the contractile properties of muscle.
Collapse
Affiliation(s)
- Marco A Brotto
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | | | | | | |
Collapse
|