1
|
Lai MY, Li J, Zhang XX, Wu W, Li ZP, Sun ZX, Zhao MY, Yang DM, Wang DD, Li W, Zhao DM, Zhou XM, Yang LF. SARM1 participates in axonal degeneration and mitochondrial dysfunction in prion disease. Neural Regen Res 2022; 17:2293-2299. [PMID: 35259852 PMCID: PMC9083142 DOI: 10.4103/1673-5374.337051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Prion disease represents a group of fatal neurogenerative diseases in humans and animals that are associated with energy loss, axonal degeneration, and mitochondrial dysfunction. Axonal degeneration is an early hallmark of neurodegeneration and is triggered by SARM1. We found that depletion or dysfunctional mutation of SARM1 protected against NAD+ loss, axonal degeneration, and mitochondrial functional disorder induced by the neurotoxic peptide PrP106-126. NAD+ supplementation rescued prion-triggered axonal degeneration and mitochondrial dysfunction and SARM1 overexpression suppressed this protective effect. NAD+ supplementation in PrP106-126-incubated N2a cells, SARM1 depletion, and SARM1 dysfunctional mutation each blocked neuronal apoptosis and increased cell survival. Our results indicate that the axonal degeneration and mitochondrial dysfunction triggered by PrP106-126 are partially dependent on SARM1 NADase activity. This pathway has potential as a therapeutic target in the early stages of prion disease.
Collapse
Affiliation(s)
- Meng-Yu Lai
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jie Li
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xi-Xi Zhang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wei Wu
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhi-Ping Li
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhi-Xin Sun
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Meng-Yang Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dong-Ming Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dong-Dong Wang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wen Li
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - De-Ming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiang-Mei Zhou
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Li-Feng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Supattapone S. Cofactor molecules: Essential partners for infectious prions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:53-75. [PMID: 32958241 DOI: 10.1016/bs.pmbts.2020.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The protein-only hypothesis predicts that infectious mammalian prions are composed solely of PrPSc, a misfolded conformer of the normal prion protein, PrPC. However, to date, all wild type protein-only PrPSc preparations lack significant levels of prion infectivity. Using a systemic biochemical approach, our laboratory isolated and identified two different endogenous cofactor molecules, RNA (Deleault et al., 2003 [50]; Deleault et al., 2007 [59]) and phosphatidylethanolamine (Deleault et al., 2012 [61]; Deleault et al., 2012 [18]), which facilitate the formation of prions with high levels of specific infectivity, leading us to propose to the alternative hypothesis that cofactor molecules are required to form wild type infectious prions (Deleault et al., 2007 [59]; Deleault et al., 2012 [18]; Geoghegan et al., 2007 [57]). In addition, we found that purified cofactor molecules restrict the strain properties of chemically defined infectious prions (Deleault et al., 2012 [18]), suggesting a "cofactor selection" model in which natural variation in the distribution of strain-specific cofactor molecules in different parts of the brain may be responsible for strain-dependent patterns of neurotropism (Deleault et al., 2012 [18]; Geoghegan et al., 2007 [57]).
Collapse
Affiliation(s)
- Surachai Supattapone
- Department of Biochemistry and Cell Biology and Department of Medicine, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States.
| |
Collapse
|
3
|
Development and structural determination of an anti-PrP C aptamer that blocks pathological conformational conversion of prion protein. Sci Rep 2020; 10:4934. [PMID: 32188933 PMCID: PMC7080826 DOI: 10.1038/s41598-020-61966-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/05/2020] [Indexed: 01/07/2023] Open
Abstract
Prion diseases comprise a fatal neuropathy caused by the conversion of prion protein from a cellular (PrPC) to a pathological (PrPSc) isoform. Previously, we obtained an RNA aptamer, r(GGAGGAGGAGGA) (R12), that folds into a unique G-quadruplex. The R12 homodimer binds to a PrPC molecule, inhibiting PrPC-to-PrPSc conversion. Here, we developed a new RNA aptamer, r(GGAGGAGGAGGAGGAGGAGGAGGA) (R24), where two R12s are tandemly connected. The 50% inhibitory concentration for the formation of PrPSc (IC50) of R24 in scrapie-infected cell lines was ca. 100 nM, i.e., much lower than that of R12 by two orders. Except for some antibodies, R24 exhibited the lowest recorded IC50 and the highest anti-prion activity. We also developed a related aptamer, r(GGAGGAGGAGGA-A-GGAGGAGGAGGA) (R12-A-R12), IC50 being ca. 500 nM. The structure of a single R12-A-R12 molecule determined by NMR resembled that of the R12 homodimer. The quadruplex structure of either R24 or R12-A-R12 is unimolecular, and therefore the structure could be stably formed when they are administered to a prion-infected cell culture. This may be the reason they can exert high anti-prion activity.
Collapse
|
4
|
Changes in hydrophobicity mainly promotes the aggregation tendency of ALS associated SOD1 mutants. Int J Biol Macromol 2020; 145:904-913. [PMID: 31669277 DOI: 10.1016/j.ijbiomac.2019.09.181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022]
Abstract
Protein misfolding and aggregation due to mutations, are associated with fatal neurodegenerative disorders. The mutations in Cu/Zn superoxide dismutase (SOD1) causing its misfolding and aggregation are found linked to the motor neuron disorder, amyotrophic lateral sclerosis. Since the mutations are scattered throughout SOD1 structure, determining the exact molecular mechanism underlying the ALS pathology remains unresolved. In this study, we have investigated the major molecular factors that mainly contribute to SOD1 destabilization, intrinsic disorder, and misfolding using sequence and structural information. We have analysed 153 ALS causing SOD1 point mutants for aggregation tendency using four different aggregation prediction tools, viz., Aggrescan3D (A3D), CamSol, GAP and Zyggregator. Our results suggest that 74-79 mutants are susceptible to aggregation, due to distorted native interactions originated at the mutation site. Majority of the aggregation prone mutants are located in the buried regions of SOD1 molecule. Further, the mutations at the hydrophobic amino acids primarily promote the aggregation tendency of SOD1 protein through different destabilizing mechanisms including changes in hydrophobic free energy, loss of electrostatic interactions in the protein's surface and loss of hydrogen bonds that bridges the protein core and surface.
Collapse
|
5
|
Marinko J, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 2019; 119:5537-5606. [PMID: 30608666 PMCID: PMC6506414 DOI: 10.1021/acs.chemrev.8b00532] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Advances over the past 25 years have revealed much about how the structural properties of membranes and associated proteins are linked to the thermodynamics and kinetics of membrane protein (MP) folding. At the same time biochemical progress has outlined how cellular proteostasis networks mediate MP folding and manage misfolding in the cell. When combined with results from genomic sequencing, these studies have established paradigms for how MP folding and misfolding are linked to the molecular etiologies of a variety of diseases. This emerging framework has paved the way for the development of a new class of small molecule "pharmacological chaperones" that bind to and stabilize misfolded MP variants, some of which are now in clinical use. In this review, we comprehensively outline current perspectives on the folding and misfolding of integral MPs as well as the mechanisms of cellular MP quality control. Based on these perspectives, we highlight new opportunities for innovations that bridge our molecular understanding of the energetics of MP folding with the nuanced complexity of biological systems. Given the many linkages between MP misfolding and human disease, we also examine some of the exciting opportunities to leverage these advances to address emerging challenges in the development of therapeutics and precision medicine.
Collapse
Affiliation(s)
- Justin
T. Marinko
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Wesley D. Penn
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John A. Capra
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37245, United States
| | - Jonathan P. Schlebach
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
6
|
Lai M, Yao H, Shah SZA, Wu W, Wang D, Zhao Y, Wang L, Zhou X, Zhao D, Yang L. The NLRP3-Caspase 1 Inflammasome Negatively Regulates Autophagy via TLR4-TRIF in Prion Peptide-Infected Microglia. Front Aging Neurosci 2018; 10:116. [PMID: 29720937 PMCID: PMC5915529 DOI: 10.3389/fnagi.2018.00116] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 04/03/2018] [Indexed: 12/15/2022] Open
Abstract
Prion diseases are neurodegenerative disorders characterized by the accumulation of misfolded prion protein, spongiform changes in the brain, and brain inflammation as a result of the wide-spread activation of microglia. Autophagy is a highly conserved catabolic process for the clearance of cytoplasmic components, including protein aggregates and damaged organelles; this process also eliminates pathological PrPSc as it accumulates during prion infection. The NALP3 inflammasome is a multiprotein complex that is a component of the innate immune system and is responsible for the release of pro-inflammatory cytokines. Our previous study showed that the neurotoxic prion peptide PrP106-126 induces NALP3 inflammasome activation and subsequent IL-1β release in microglia. Autophagy is involved in the regulation of the immune responses and inflammation in many diseases including neurodegenerative diseases. However, the relationship between autophagy and NALP3 inflammasome in prion diseases has not been investigated. In this study, we demonstrated that the processing and release of mature IL-1β is significantly enhanced by the inhibition of autophagy. Conversely, gene-silencing of the NALP3 inflammasome promotes autophagy. Suppression of TRIF or TLR4 by siRNA attenuated PrP106-126-induced autophagy, which is indicating that the TLR4-TRIF signaling pathway is involved in PrP106-26-induced autophagy. Caspase 1 directly cleaved TRIF to diminish TLR-4-TRIF mediated autophagy. Our findings suggest that the inhibition of autophagy by NALP3 inflammasome is probably mediated by activated Caspase-1-induced TRIF cleavage. This is the first study reporting that the NALP3 inflammasome complex negatively regulates autophagy in response to PrP106-126 stimulation in microglia, and partly explains the mechanism of autophagy inhibition by Caspase-1 in PrP106-126-induced BV2 cell activation. Our findings suggest that autophagy up-regulation and inhibition of Caspase-1 may protect against prion-induced neuroinflammation and accelerate misfolded protein degradation and are potential therapeutic approaches for prion diseases.
Collapse
Affiliation(s)
- Mengyu Lai
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Hao Yao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Syed Zahid Ali Shah
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Wei Wu
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Di Wang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Ying Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Lu Wang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Xiangmei Zhou
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Deming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Lifeng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Ishikawa T. [Applications of the Fragment Molecular Orbital Method in Drug Discovery]. YAKUGAKU ZASSHI 2016; 136:121-30. [PMID: 26725679 DOI: 10.1248/yakushi.15-00230-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recently, ab initio quantum mechanical calculations have been applied to large molecules, including biomolecular systems. The fragment molecular orbital (FMO) method is one of the most efficient approaches for the quantum mechanical investigation of such molecules. In the FMO method, dividing a target molecule into small fragments reduces computational effort. The clear definition of inter-fragment interaction energy (IFIE) as an expression of total energy is another valuable feature of the FMO method because it provides the ability to analyze interactions in biomolecules. Thus, the FMO method is expected to be useful for drug discovery. This study demonstrates applications of the FMO method related to drug discovery. First, IFIE, according to FMO calculations, was used in the optimization of drug candidates for the development of anti-prion compounds. The second example involved interaction analysis of the human immunodeficiency virus type 1 (HIV-1) protease and a drug compound that used a novel analytical method for dispersion interaction, i.e., fragment interaction analysis based on LMP2 (FILM).
Collapse
Affiliation(s)
- Takeshi Ishikawa
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University
| |
Collapse
|
8
|
Abstract
The hamster species used as research models include the Syrian (golden), Mesocricetus auratus; the Chinese (striped-back), Cricetulus griseus; the Armenian (gray), C. migratorius; the European, Cricetus cricetus; and the Djungarian, Phodopus campbelli (Russian dwarf) and P. sungorus (Siberian dwarf). Hamsters are classified as members of the order Rodentia, suborder Myomorpha, superfamily Muroidea and in family Cricetidae. Animals in this family are characterized by large cheek pouches, thick bodies, short tails, and an excess of loose skin. They have incisors that erupt continuously and cuspidate molars that do not continue to grow ((I 1/1, C 0/0, PM 0/0, M 3/3) × 2 = 16). In 2010, it was reported that approximately 146,000 hamsters were used in research in the United States (United States Department of Agriculture, 2010).
Collapse
Affiliation(s)
- Emily L. Miedel
- University of Pennsylvania, University Laboratory Animal Resources, Philadelphia, PA, USA
| | | |
Collapse
|
9
|
Abstract
The cellular prion protein (PrPC) has been widely investigated ever since its conformational isoform, the prion (or PrPSc), was identified as the etiological agent of prion disorders. The high homology shared by the PrPC-encoding gene among mammals, its high turnover rate and expression in every tissue strongly suggest that PrPC may possess key physiological functions. Therefore, defining PrPC roles, properties and fate in the physiology of mammalian cells would be fundamental to understand its pathological involvement in prion diseases. Since the incidence of these neurodegenerative disorders is enhanced in aging, understanding PrPC functions in this life phase may be of crucial importance. Indeed, a large body of evidence suggests that PrPC plays a neuroprotective and antioxidant role. Moreover, it has been suggested that PrPC is involved in Alzheimer disease, another neurodegenerative pathology that develops predominantly in the aging population. In prion diseases, PrPC function is likely lost upon protein aggregation occurring in the course of the disease. Additionally, the aging process may alter PrPC biochemical properties, thus influencing its propensity to convert into PrPSc. Both phenomena may contribute to the disease development and progression. In Alzheimer disease, PrPC has a controversial role because its presence seems to mediate β-amyloid toxicity, while its down-regulation correlates with neuronal death. The role of PrPC in aging has been investigated from different perspectives, often leading to contrasting results. The putative protein functions in aging have been studied in relation to memory, behavior and myelin maintenance. In aging mice, PrPC changes in subcellular localization and post-translational modifications have been explored in an attempt to relate them to different protein roles and propensity to convert into PrPSc. Here we provide an overview of the most relevant studies attempting to delineate PrPC functions and fate in aging.
Collapse
Affiliation(s)
- Lisa Gasperini
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati Trieste, Italy
| |
Collapse
|
10
|
Mashima T, Nishikawa F, Kamatari YO, Fujiwara H, Saimura M, Nagata T, Kodaki T, Nishikawa S, Kuwata K, Katahira M. Anti-prion activity of an RNA aptamer and its structural basis. Nucleic Acids Res 2012. [PMID: 23180780 PMCID: PMC3553944 DOI: 10.1093/nar/gks1132] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Prion proteins (PrPs) cause prion diseases, such as bovine spongiform encephalopathy. The conversion of a normal cellular form (PrPC) of PrP into an abnormal form (PrPSc) is thought to be associated with the pathogenesis. An RNA aptamer that tightly binds to and stabilizes PrPC is expected to block this conversion and to thereby prevent prion diseases. Here, we show that an RNA aptamer comprising only 12 residues, r(GGAGGAGGAGGA) (R12), reduces the PrPSc level in mouse neuronal cells persistently infected with the transmissible spongiform encephalopathy agent. Nuclear magnetic resonance analysis revealed that R12, folded into a unique quadruplex structure, forms a dimer and that each monomer simultaneously binds to two portions of the N-terminal half of PrPC, resulting in tight binding. Electrostatic and stacking interactions contribute to the affinity of each portion. Our results demonstrate the therapeutic potential of an RNA aptamer as to prion diseases.
Collapse
Affiliation(s)
- Tsukasa Mashima
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hosokawa-Muto J, Kimura T, Kuwata K. Respiratory and cardiovascular toxicity studies of a novel antiprion compound, GN8, in rats and dogs. Drug Chem Toxicol 2011; 35:264-71. [DOI: 10.3109/01480545.2011.598533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Wongsrikeao P, Sutou S, Kunishi M, Dong YJ, Bai X, Otoi T. Combination of the somatic cell nuclear transfer method and RNAi technology for the production of a prion gene-knockdown calf using plasmid vectors harboring the U6 or tRNA promoter. Prion 2011; 5:39-46. [PMID: 21084838 DOI: 10.4161/pri.5.1.14075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
By combining RNAi technology with SCNT method, we attempted to produce transgenic calves with knocked down bPRNP for technological assessments. The respective utilities of type II (tRNA) and type III (hU6) Pol III promoters in mediating plasmid vector-based RNAi for the production of a bPRNP-knockdown calf were compared. Plasmid harboring DNA for siRNA expression was introduced stably into the genome of primary cultured bovine cells. By inserting the transgenic cell into an enucleated bovine egg, SCNT embryos were produced. The ability for SCNT embryos to develop to blastocysts was higher in hU6 based vector groups (44-53%) than in a tRNA group (32%). In all, 30 hU6-embryos and 12 tRNA-embryos were transferred to 11 recipients. Only tRNA-embryos were able to impregnate recipients (6 out of 11 transfers), resulting in four aborted fetuses, one stillbirth, and one live-born calf. The expression of EGFP, a marker, was detected in all six. The bPRNP transcript levels in the nervous tissues (brain, cerebellum, spinal bulb, and spinal cord) from the calf, which was killed 20 days after birth, were reduced to 35% of those of the control calf on average, as determined by qRT-PCR. The PrPC levels, as estimated by western blot were reduced to 86% on average in the nervous tissues. These findings suggest that SCNT technology remains immature, that the tRNA promoter is useful, and that RNAi can significantly reduce PRNP mRNA levels, but insufficient reduction of PrPC levels exists in cattle under these conditions.
Collapse
Affiliation(s)
- Pimprapar Wongsrikeao
- Laboratory of Animal Reproduction, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Ishikawa T, Kuwata K. Interaction Analysis of the Native Structure of Prion Protein with Quantum Chemical Calculations. J Chem Theory Comput 2009; 6:538-47. [DOI: 10.1021/ct900456v] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takeshi Ishikawa
- Division of Prion Research, Center for Emerging Infectious Disease, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan, and CREST Project, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Kazuo Kuwata
- Division of Prion Research, Center for Emerging Infectious Disease, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan, and CREST Project, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
14
|
Ishikawa T, Ishikura T, Kuwata K. Theoretical study of the prion protein based on the fragment molecular orbital method. J Comput Chem 2009; 30:2594-601. [DOI: 10.1002/jcc.21265] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Kuwata K, Nishida N, Matsumoto T, Kamatari YO, Hosokawa-Muto J, Kodama K, Nakamura HK, Kimura K, Kawasaki M, Takakura Y, Shirabe S, Takata J, Kataoka Y, Katamine S. Hot spots in prion protein for pathogenic conversion. Proc Natl Acad Sci U S A 2007; 104:11921-6. [PMID: 17616582 PMCID: PMC1924567 DOI: 10.1073/pnas.0702671104] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Prion proteins are key molecules in transmissible spongiform encephalopathies (TSEs), but the precise mechanism of the conversion from the cellular form (PrP(C)) to the scrapie form (PrP(Sc)) is still unknown. Here we discovered a chemical chaperone to stabilize the PrP(C) conformation and identified the hot spots to stop the pathogenic conversion. We conducted in silico screening to find compounds that fitted into a "pocket" created by residues undergoing the conformational rearrangements between the native and the sparsely populated high-energy states (PrP*) and that directly bind to those residues. Forty-four selected compounds were tested in a TSE-infected cell culture model, among which one, 2-pyrrolidin-1-yl-N-[4-[4-(2-pyrrolidin-1-yl-acetylamino)-benzyl]-phenyl]-acetamide, termed GN8, efficiently reduced PrP(Sc). Subsequently, administration of GN8 was found to prolong the survival of TSE-infected mice. Heteronuclear NMR and computer simulation showed that the specific binding sites are the A-S2 loop (N159) and the region from helix B (V189, T192, and K194) to B-C loop (E196), indicating that the intercalation of these distant regions (hot spots) hampers the pathogenic conversion process. Dynamics-based drug discovery strategy, demonstrated here focusing on the hot spots of PrP(C), will open the way to the development of novel anti-prion drugs.
Collapse
Affiliation(s)
- Kazuo Kuwata
- Center for Emerging Infectious Diseases, Department of Gene and Development, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Deleault NR, Harris BT, Rees JR, Supattapone S. Formation of native prions from minimal components in vitro. Proc Natl Acad Sci U S A 2007; 104:9741-6. [PMID: 17535913 PMCID: PMC1887554 DOI: 10.1073/pnas.0702662104] [Citation(s) in RCA: 485] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The conformational change of a host protein, PrP(C), into a disease-associated isoform, PrP(Sc), appears to play a critical role in the pathogenesis of prion diseases such as Creutzfeldt-Jakob disease and scrapie. However, the fundamental mechanism by which infectious prions are produced in neurons remains unknown. To investigate the mechanism of prion formation biochemically, we conducted a series of experiments using the protein misfolding cyclic amplification (PMCA) technique with a preparation containing only native PrP(C) and copurified lipid molecules. These experiments showed that successful PMCA propagation of PrP(Sc) molecules in a purified system requires accessory polyanion molecules. In addition, we found that PrP(Sc) molecules could be formed de novo from these defined components in the absence of preexisting prions. Inoculation of samples containing either prion-seeded or spontaneously generated PrP(Sc) molecules into hamsters caused scrapie, which was transmissible on second passage. These results show that prions able to infect wild-type hamsters can be formed from a minimal set of components including native PrP(C) molecules, copurified lipid molecules, and a synthetic polyanion.
Collapse
Affiliation(s)
| | | | - Judy R. Rees
- Community and Family Medicine (Biostatistics and Epidemiology), and
| | - Surachai Supattapone
- Departments of *Biochemistry
- Medicine, Dartmouth Medical School, Hanover, NH 03755
- To whom correspondence should be addressed at:
Department of Biochemistry, 7200 Vail Building, Dartmouth Medical School, Hanover, NH 03755. E-mail:
| |
Collapse
|
17
|
Omi K, Hachiya NS, Tokunaga K, Kaneko K. siRNA-mediated inhibition of endogenous Huntington disease gene expression induces an aberrant configuration of the ER network in vitro. Biochem Biophys Res Commun 2005; 338:1229-35. [PMID: 16256944 DOI: 10.1016/j.bbrc.2005.10.061] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 10/06/2005] [Indexed: 11/18/2022]
Abstract
Huntingtin is a ubiquitously expressed cytoplasmic protein encoded by the Huntington disease (HD) gene, in which a CAG expansion induces an autosomal dominant progressive neurodegenerative disorder; however, its biological function has not been completely elucidated. Here, we report for the first time that short interfering RNA (siRNA)-mediated inhibition of endogenous Hdh (a mouse homologue of huntingtin) gene expression induced an aberrant configuration of the endoplasmic reticulum (ER) network in vitro. Studies using immunofluorescence microscopy with several ER markers revealed that the ER network appeared to be congregated in various types of cell lines transfected with siRNA directed against Hdh, but not with other siRNAs so far tested. Other subcellular organelles and structures, including the nucleus, Golgi apparatus, mitochondria, lysosomes, microtubules, actin cytoskeletons, cytoplasm, lipid rafts, and plasma membrane, exhibited normal configurations. Western blot analysis of cellular prion protein (PrP(C)) revealed normal glycosylation, which is a simple marker of post-translational modification in the ER and Golgi compartments, and immunofluorescence microscopy detected no altered subcellular distribution of PrP(C) in the post-ER compartments. Further investigation is required to determine whether the distorted ER network, i.e., loss of the huntingtin function, participates in the development of HD.
Collapse
Affiliation(s)
- Kazuya Omi
- Second Department of Physiology, Tokyo Medical University, Tokyo 160-8402, Japan
| | | | | | | |
Collapse
|
18
|
Teng MH, Yin JY, Vidal R, Ghiso J, Kumar A, Rabenou R, Shah A, Jacobson DR, Tagoe C, Gallo G, Buxbaum J. Amyloid and nonfibrillar deposits in mice transgenic for wild-type human transthyretin: a possible model for senile systemic amyloidosis. J Transl Med 2001; 81:385-96. [PMID: 11310831 DOI: 10.1038/labinvest.3780246] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The human serum protein transthyretin (TTR) is highly fibrillogenic in vitro and is the fibril precursor in both autosomal dominant (familial amyloidotic polyneuropathy [FAP] and familial amyloidotic cardiomyopathy [FAC]) and sporadic (senile systemic amyloidosis [SSA]) forms of human cardiac amyloidosis. We have produced mouse strains transgenic for either wild-type or mutant (TTRLeu55Pro) human TTR genes. Eighty-four percent of C57BI/6xDBA/2 mice older than 18 months, transgenic for the wild-type human TTR gene, develop TTR deposits that occur primarily in heart and kidney. In most of the animals, the deposits are nonfibrillar and non-Congophilic, but 20% of animals older than 18 months that bear the transgene have human TTR cardiac amyloid deposits identical to the lesions seen in SSA. Amino terminal amino acid sequence analysis and mass spectrometry of the major component extracted from amyloid and nonamyloid deposits revealed that both were intact human TTR monomers with no evidence of proteolysis or codeposition of murine TTR. This is the first instance in which the proteins from amyloid and nonfibrillar deposits in the same or syngeneic animals have been shown to be identical by sequence analysis. It is also the first time in any form of amyloidosis that nonfibrillar deposits have been shown to systematically occur temporally before the appearance of fibrils derived from the same precursor in the same tissues. These findings suggest, but do not prove, that the nonamyloid deposits represent a precursor of the fibril. The differences in the ultrastructure and binding properties of the deposits, despite the identical sizes and amino terminal amino acid sequences of the TTR and the dissociation of deposition and fibril formation, provide evidence that in vivo factors, perhaps associated with aging, impact on both systemic precursor deposition and amyloid fibril formation.
Collapse
Affiliation(s)
- M H Teng
- Research Service, New York Department of Veterans Affairs Medical Center, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Krakauer DC. The evolutionary imperative and the origin of the prion pathogen. Nutrition 1997; 13:692-4. [PMID: 9263264 DOI: 10.1016/s0899-9007(97)83016-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
21
|
Ossa JE, Machado G, Giraldo MA, McEwen JG. Prion plaques: molecular tumors. A hypothesis on the etiopathogenesis of prion diseases. Med Hypotheses 1995; 44:124-6. [PMID: 7596306 DOI: 10.1016/0306-9877(95)90084-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In spite of remarkable advances in the etiopathogenesis of spongiform encephalopathies in man and animals and the growing acceptance of the prion hypothesis, there is no explanation for the supposed 'autocatalytic' activity of this protein molecule. Our molecular tumor hypothesis proposes that the prion protein is a genotoxin which interacts directly or indirectly but specifically with its homologous cellular gene introducing mutations which lead to aberrant processing and accumulation of the protein. It is also speculated that this hypothesis would shed some light on other diseases not presently classified as prion diseases and in the process of ageing.
Collapse
Affiliation(s)
- J E Ossa
- Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | | | | | | |
Collapse
|
22
|
Lazarini F, Boussin F, Deslys JP, Tardy M, Dormont D. Astrocyte gene expression in experimental mouse scrapie. J Comp Pathol 1994; 111:87-98. [PMID: 7962730 DOI: 10.1016/s0021-9975(05)80114-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The biological hallmark of transmissible spongiform encephalopathies is a significant accumulation, in brain, of the scrapie prion protein (PrPsc), often associated with an increased glial fibrillary acidic protein (GFAP) expression. This study was focused on astrocyte gene expression during scrapie development over a period of 172 days in intracerebrally inoculated newborn mice. The levels of expression of PrP and two specific astrocyte proteins, -GFAP and glutamine synthetase (GS)-, were investigated by Western and Northern blots. In brain, a 10-fold increased expression of GFAP mRNAS was demonstrated from 112 days post-inoculation to 172 days, whereas the "upregulation" of GS mRNAs was two-fold. GFAP was observed to increase 10- to 20-fold in scrapie-infected brain from day 112 to day 172, while PrP showed a three- to four-fold elevation. Both proteins were found in greater amount in the frontal cortex and cerebellum of animals with clinical scrapie than in those given an injection of normal brain. PrPsc was detected in scrapie brain from day 84 after inoculation, and thereafter increased about 20-fold until day 172. On the other hand, the concentration of glutamine synthetase remained constant in brain throughout the scrapie disease. To conclude, these results show that GFAP and GS mRNAs are differently upregulated in brain in the scrapie mouse model.
Collapse
Affiliation(s)
- F Lazarini
- Laboratoire de Neuropathologie Expérimentale et Neurovirologie, CRSSA, Commissariat à l'Energie Atomique, DPTE/DSV, Fontenay aux Roses, France
| | | | | | | | | |
Collapse
|
23
|
|
24
|
Aguzzi A, Brandner S, Sure U, Rüedi D, Isenmann S. Transgenic and knock-out mice: models of neurological disease. Brain Pathol 1994; 4:3-20. [PMID: 8025701 DOI: 10.1111/j.1750-3639.1994.tb00806.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Besides providing useful model systems for basic science, studies based on modification of the mammalian germ line are changing our understanding of pathogenetic principles. In this article, we review the most popular techniques for generating specific germ line mutations in vivo and discuss the impact of various transgenic models on the study of neurodegenerative diseases. The "gain of function" approach, i.e., ectopic expression of exogenous genes in neural structures, has deepened our understanding of neurodegeneration resulting from infection with papova viruses, picorna viruses, and human retroviruses. Further, inappropriate expression of mutated cellular molecules in the nervous system of transgenic mice is proving very useful for studying conditions whose pathogenesis is controversial, such as Alzheimer's disease and motor neuron diseases. As a complementary approach, ablation of entire cell lineages by tissue-specific expression of toxins has been useful in defining the role of specific cellular compartments. Modeling of recessive genetic diseases, such as Lesch-Nyhan syndrome, was helped by the development of techniques for targeted gene deletion (colloquially termed "gene knock-out"). Introduction of subtle homozygous mutations in the mouse genome was made possible by the latter approach. Such "loss of function" mutants have been used for clarifying the role of molecules thought to be involved in development and structural maintenance of the nervous system, such as the receptors for nerve growth factor and the P0 protein of peripheral myelin. In addition, these models are showing their assets also in the study of enigmatic diseases such as spongiform encephalopathies.
Collapse
Affiliation(s)
- A Aguzzi
- Department of Pathology, University Hospital Zurich, Switzerland
| | | | | | | | | |
Collapse
|
25
|
Schreuder BE. General aspects of transmissible spongiform encephalopathies and hypotheses about the agents. Vet Q 1993; 15:167-74. [PMID: 8122355 DOI: 10.1080/01652176.1993.9694399] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
This article reviews the shared characteristics of the group of transmissible spongiform encephalopathies (SEs), both human and animal, and the major theories regarding the nature of the agents involved. All transmissible SE diseases share two striking characteristics: the degenerative changes including vacuolation in the central nervous system, and the assumption that these disorders are caused by unconventional, transmissible agents. This article examines the major hypotheses that have been postulated about these agents: the virus theory, the virino theory, the prion theory, and the recently proposed 'unified theory'. Both the virus and the virino hypotheses assume that a small nucleic acid is involved as part of the agent, while the prion hypothesis does not. The prion model obviates the need for a role of a nucleic acid in the propagation and replication of the agent, but does not explain the existence of strain variation. Nucleic acids in a micro-organism, as proposed in the virino and the virus hypotheses, could explain this variation. However, to date, no disease-specific nucleic acids have been identified. The 'unified' theory tries to reconcile the essentials of the virino and prion theories. The article also describes the discovery of the so-called prion protein (PrP), its isoforms, and the coding host gene, the PrP gene. It goes on to discuss the results of experiments with transgenic animals, indicating that mutations in the PrP gene may play a decisive role in the pathogenesis of at least some SEs. Finally, two different models, both involving the conversion of normal PrPC into PrPSc as part of the pathogenesis of SE, are discussed.
Collapse
Affiliation(s)
- B E Schreuder
- DLO-Central Veterinary Institute, Dept. of Pathophysiology and Epidemiology, Lelystad, The Netherlands
| |
Collapse
|