1
|
Guglielmo A, Zengarini C, Agostinelli C, Motta G, Sabattini E, Pileri A. The Role of Cytokines in Cutaneous T Cell Lymphoma: A Focus on the State of the Art and Possible Therapeutic Targets. Cells 2024; 13:584. [PMID: 38607023 PMCID: PMC11012008 DOI: 10.3390/cells13070584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Cutaneous T cell lymphomas (CTCLs), encompassing mycosis fungoides (MF) and Sézary syndrome (SS), present a complex landscape influenced by cytokines and cellular responses. In this work, the intricate relationship between these inflammatory proteins and disease pathogenesis is examined, focusing on what is known at the clinical and therapeutic levels regarding the most well-known inflammatory mediators. An in-depth look is given to their possible alterations caused by novel immunomodulatory drugs and how they may alter disease progression. From this narrative review of the actual scientific landscape, Interferon-gamma (IFN-γ) emerges as a central player, demonstrating a dual role in both promoting and inhibiting cancer immunity, but the work navigates through all the major interleukins known in inflammatory environments. Immunotherapeutic perspectives are elucidated, highlighting the crucial role of the cutaneous microenvironment in shaping dysfunctional cell trafficking, antitumor immunity, and angiogenesis in MF, showcasing advancements in understanding and targeting the immune phenotype in CTCL. In summary, this manuscript aims to comprehensively explore the multifaceted aspects of CTCL, from the immunopathogenesis and cytokine dynamics centred around TNF-α and IFN-γ to evolving therapeutic modalities. Including all the major known and studied cytokines in this analysis broadens our understanding of the intricate interplay influencing CTCL, paving the way for improved management of this complex lymphoma.
Collapse
Affiliation(s)
- Alba Guglielmo
- Institute of Dermatology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), 33100 Udine, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
| | - Corrado Zengarini
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Claudio Agostinelli
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giovanna Motta
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Elena Sabattini
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Alessandro Pileri
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
2
|
Leśniak M, Lipniarska J, Majka P, Kopyt W, Lejman M, Zawitkowska J. The Role of TRL7/8 Agonists in Cancer Therapy, with Special Emphasis on Hematologic Malignancies. Vaccines (Basel) 2023; 11:vaccines11020277. [PMID: 36851155 PMCID: PMC9967151 DOI: 10.3390/vaccines11020277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Toll-like receptors (TLR) belong to the pattern recognition receptors (PRR). TLR7 and the closely correlated TLR8 affiliate with toll-like receptors family, are located in endosomes. They recognize single-stranded ribonucleic acid (RNA) molecules and synthetic deoxyribonucleic acid (DNA)/RNA analogs-oligoribonucleotides. TLRs are primarily expressed in hematopoietic cells. There is compiling evidence implying that TLRs also direct the formation of blood cellular components and make a contribution to the pathogenesis of certain hematopoietic malignancies. The latest research shows a positive effect of therapy with TRL agonists on the course of hemato-oncological diseases. Ligands impact activation of antigen-presenting cells which results in production of cytokines, transfer of mentioned cells to the lymphoid tissue and co-stimulatory surface molecules expression required for T-cell activation. Toll-like receptor agonists have already been used in oncology especially in the treatment of dermatological neoplastic lesions. The usage of these substances in the treatment of solid tumors is being investigated. The present review discusses the direct and indirect influence that TLR7/8 agonists, such as imiquimod, imidazoquinolines and resiquimod have on neoplastic cells and their promising role as adjuvants in anticancer vaccines.
Collapse
Affiliation(s)
- Maria Leśniak
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Justyna Lipniarska
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Patrycja Majka
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Weronika Kopyt
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence:
| |
Collapse
|
3
|
Molecular pathogenesis of Cutaneous T cell Lymphoma: Role of chemokines, cytokines, and dysregulated signaling pathways. Semin Cancer Biol 2022; 86:382-399. [PMID: 34906723 DOI: 10.1016/j.semcancer.2021.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 01/27/2023]
Abstract
Cutaneous T cell lymphomas (CTCLs) are a heterogeneous group of lymphoproliferative neoplasms that exhibit a wide spectrum of immune-phenotypical, clinical, and histopathological features. The biology of CTCL is complex and remains elusive. In recent years, the application of next-generation sequencing (NGS) has evolved our understanding of the pathogenetic mechanisms, including genetic aberrations and epigenetic abnormalities that shape the mutational landscape of CTCL and represent one of the important pro-tumorigenic principles in CTCL initiation and progression. Still, identification of the major pathophysiological pathways including genetic and epigenetic components that mediate malignant clonal T cell expansion has not been achieved. This is of prime importance given the role of malignant T cell clones in fostering T helper 2 (Th2)-bias tumor microenvironment and fueling progressive immune dysregulation and tumor cell growth in CTCL patients, manifested by the secretion of Th2-associated cytokines and chemokines. Alterations in malignant cytokine and chemokine expression patterns orchestrate the inflammatory milieu and influence the migration dynamics of malignant clonal T cells. Here, we highlight recent insights about the molecular mechanisms of CTCL pathogenesis, emphasizing the role of cytokines, chemokines, and associated downstream signaling networks in driving immune defects, malignant transformation, and disease progression. In-depth characterization of the CTCL immunophenotype and tumoral microenvironment offers a facile opportunity to expand the therapeutic armamentarium of CTCL, an intractable malignant skin disease with poor prognosis and in dire need of curative treatment approaches.
Collapse
|
4
|
Rendón-Serna N, Correa-Londoño LA, Velásquez-Lopera MM, Bermudez-Muñoz M. Cell signaling in cutaneous T-cell lymphoma microenvironment: promising targets for molecular-specific treatment. Int J Dermatol 2021; 60:1462-1480. [PMID: 33835479 DOI: 10.1111/ijd.15451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/31/2020] [Accepted: 01/12/2021] [Indexed: 01/01/2023]
Abstract
Cutaneous T-cell lymphomas (CTCL) result from the infiltration and proliferation of a population of T cells in the skin, inducing changes in the activity of both T cells and surrounding skin cells. In the CTCL microenvironment, cell interactions mediated by cell signaling pathways are altered. Defining changes in cell signaling enables to understand T-cell deregulations in the CTCL microenvironment and thus the progression of the disease. Moreover, characterizing signaling networks activated in CTCL stages can lead to consider new molecular biomarkers and therapeutic targets. Focusing on mycosis fungoides (MF), the most frequent variant of CTCL, and Sézary syndrome (SS), its leukemic variant, this review highlights recent molecular and genetic findings revealing modifications of key signaling pathways involved in (1) cell proliferation, cell growth, and cell survival such as MAP kinases and PI3K/Akt; (2) immune responses derived from TCR, TLR, JAK/STAT, and NF-kB; and (3) changes in tissue conditions such as extracellular matrix remodeling, hypoxia, and angiogenesis. Alterations in these signaling networks promote malignant T-cell proliferation and survival, T-cell migration, inflammation, and suppression of immune regulation of malignant T cells, making a skin microenvironment that allows disease progression. Targeting key proteins of these signaling pathways, using molecules already available and used in research, in clinical trials, and with other disease indications, can open the way to different therapeutic options in CTCL treatment.
Collapse
Affiliation(s)
- Natalia Rendón-Serna
- Instituto de Biología, Universidad de Antioquia, Medellin, Colombia.,Centro de Investigaciones Dermatológicas CIDERM, Facultad de Medicina, Universidad De Antioquia, Medellin, Colombia
| | - Luis A Correa-Londoño
- Centro de Investigaciones Dermatológicas CIDERM, Facultad de Medicina, Universidad De Antioquia, Medellin, Colombia
| | - Margarita M Velásquez-Lopera
- Centro de Investigaciones Dermatológicas CIDERM, Facultad de Medicina, Universidad De Antioquia, Medellin, Colombia
| | - Maria Bermudez-Muñoz
- Instituto de Biología, Universidad de Antioquia, Medellin, Colombia.,Centro de Investigaciones Dermatológicas CIDERM, Facultad de Medicina, Universidad De Antioquia, Medellin, Colombia
| |
Collapse
|
5
|
Manfrere KCG, Torrealba MP, Miyashiro DR, Oliveira LMS, de Carvalho GC, Lima JF, Branco ACCC, Pereira NZ, Pereira J, Sanches JA, Sato MN. Toll-like receptor agonists partially restore the production of pro-inflammatory cytokines and type I interferon in Sézary syndrome. Oncotarget 2018; 7:74592-74601. [PMID: 27780938 PMCID: PMC5342689 DOI: 10.18632/oncotarget.12816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/14/2016] [Indexed: 12/31/2022] Open
Abstract
Sézary syndrome (SS) carries a poor prognosis, and infections represent the most frequent cause of death in SS patients. Toll-like receptors (TLRs) are a family of innate immune receptors that induce protective immune responses against infections. We sought to evaluate the ability of TLR agonists to induce inflammatory cytokine, Th2 cytokine, and type I interferon (IFN-I) production by peripheral blood mononuclear cells (PBMC) of untreated SS patients. We detected impaired IL-6, IL-10 and IL-13 secretion by PBMC induced by the agonists for TLR5, TLR3, TLR7 and TLR9 in SS patients, while it was partially recovered by TLR2/TLR4 and TLR7/8 agonists TNF secretion was restored following stimulation with TLR2/TLR4 agonists. IFN-γ was scarcely produced upon TLR activation in SS cells, albeit TLR 7/8 (CL097) enhanced their secretion at lower levels than the control group. TLR9 agonist efficiently induced IFN-I in SS patients, although this positive regulation was not observed for other cytokines, in direct contrast to the broad activity of CL097. Among the TLR agonists, TLR4 was able to induce pro-inflammatory, IL-10 and Th2 secretion, while TLR7-8 agonist induced the inflammatory cytokines, IFN-I and IFN-γ. These findings reveal a dysfunctional cytokine response upon both extracellular and intracellular TLR activation in SS patients, which was partially restored by TLRs agonists.
Collapse
Affiliation(s)
- Kelly C G Manfrere
- Department of Dermatology, Laboratory of Medical Investigation (LIM 56), Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, Brazil
| | - Marina P Torrealba
- Department of Dermatology, Laboratory of Medical Investigation (LIM 56), Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, Brazil
| | - Denis R Miyashiro
- Department of Dermatology, Cutaneous Lymphoma Clinic, Hospital das Clínicas, University of São Paulo, Medical School, Brazil
| | - Luanda M S Oliveira
- Department of Dermatology, Laboratory of Medical Investigation (LIM 56), Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, Brazil
| | - Gabriel C de Carvalho
- Department of Dermatology, Laboratory of Medical Investigation (LIM 56), Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, Brazil
| | - Josenilson F Lima
- Department of Dermatology, Laboratory of Medical Investigation (LIM 56), Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, Brazil
| | - Anna Claudia C C Branco
- Department of Dermatology, Laboratory of Medical Investigation (LIM 56), Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, Brazil
| | - Nátalli Z Pereira
- Department of Dermatology, Laboratory of Medical Investigation (LIM 56), Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, Brazil
| | - Juliana Pereira
- Department of Hematology, University of São Paulo Medical School, Brazil
| | - José A Sanches
- Department of Dermatology, Cutaneous Lymphoma Clinic, Hospital das Clínicas, University of São Paulo, Medical School, Brazil
| | - Maria N Sato
- Department of Dermatology, Laboratory of Medical Investigation (LIM 56), Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, Brazil
| |
Collapse
|
6
|
ManfrereC KCG, Torrealba MP, Miyashiro DR, Pereira NZ, Yoshikawa FSY, de M Oliveira L, Cury-Martins J, Duarte AJS, Sanches JA, Sato MN. Profile of differentially expressed Toll-like receptor signaling genes in the natural killer cells of patients with Sézary syndrome. Oncotarget 2017; 8:92183-92194. [PMID: 29190907 PMCID: PMC5696173 DOI: 10.18632/oncotarget.21006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/27/2017] [Indexed: 11/25/2022] Open
Abstract
Sézary syndrome (SS), an aggressive and leukemic form of cutaneous T-cell lymphoma, usually results in shortened survival. Improving innate immunity in SS by targeting natural killer (NK) cells with Toll-like receptor (TLR) agonists could be an interesting modulatory strategy. We evaluated the NK cell populations in SS patients assessing activating and inhibitory receptors expression and profiled the differential expression of TLR signaling pathway genes in unstimulated NK cells and after TLR7/8 stimulation. We observed preserved CD56bright NK cells and a low percentage of CD56dim NK cells in the peripheral blood of SS patients compared to those in the healthy control group. Both NK cell populations showed down-modulation of NKG2C and NKG2D expression, which was associated with high serum levels of the soluble form of NKG2D ligands. In contrast, an expansion of “memory” CD57+ NKG2C+ NK cells and high cytomegalovirus antibody titers were detected in SS patients. Profiling of the TLR signaling genes in NK cells from SS patients showed an abundance of differentially expressed genes (DEGs) in NK cells in the unstimulated condition, with mostly up-regulation of NFκB/JNK p38 pathway genes, but there was down-regulation of type I (IFN-α/β) and II (IFN-γ) interferon and IL-12A. After activation of NK cells with TLR7/8 agonist, the down-regulated genes correlated with the IFN response, and IL-12 became up-regulated, together with other antitumor factors. NK cell activation with a dual agonist for TLR7 and TLR8 is able to induce the expression of IFN-γ and type I IFN, which can improve immunity in SS patients.
Collapse
Affiliation(s)
- Kelly C G ManfrereC
- Laboratory of Medical Investigation, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - Marina P Torrealba
- Laboratory of Medical Investigation, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - Denis R Miyashiro
- Cutaneous Lymphoma Clinic, Hospital das Clínicas, Department of Dermatology, University of São Paulo Medical School, São Paulo, Brazil
| | - Nátalli Z Pereira
- Laboratory of Medical Investigation, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - Fabio S Y Yoshikawa
- Laboratory of Medical Investigation, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - Luana de M Oliveira
- Laboratory of Medical Investigation, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - Jade Cury-Martins
- Cutaneous Lymphoma Clinic, Hospital das Clínicas, Department of Dermatology, University of São Paulo Medical School, São Paulo, Brazil
| | - Alberto J S Duarte
- Laboratory of Medical Investigation, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - José A Sanches
- Cutaneous Lymphoma Clinic, Hospital das Clínicas, Department of Dermatology, University of São Paulo Medical School, São Paulo, Brazil
| | - Maria N Sato
- Laboratory of Medical Investigation, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
7
|
El Tawdy AM, Amin IM, Abdel Hay RM, Hassan AS, Gad ZS, Rashed LA. Toll-like receptor (TLR)7 expression in mycosis fungoides and psoriasis: a case-control study. Clin Exp Dermatol 2017; 42:172-177. [DOI: 10.1111/ced.13008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2016] [Indexed: 11/29/2022]
Affiliation(s)
- A. M. El Tawdy
- Dermatology Department; Faculty of Medicine; Cairo University; Cairo Egypt
| | - I. M. Amin
- Dermatology Department; Faculty of Medicine; Cairo University; Cairo Egypt
| | - R. M. Abdel Hay
- Dermatology Department; Faculty of Medicine; Cairo University; Cairo Egypt
| | - A. S. Hassan
- Dermatology Department; Faculty of Medicine; Cairo University; Cairo Egypt
| | - Z. S. Gad
- Surgical Oncology Department; National Cancer Institute; Cairo University; Cairo Egypt
| | - L. A. Rashed
- Clinical Biochemistry Department; Faculty of Medicine; Cairo University; Cairo Egypt
| |
Collapse
|
8
|
Dietsch GN, Lu H, Yang Y, Morishima C, Chow LQ, Disis ML, Hershberg RM. Coordinated Activation of Toll-Like Receptor8 (TLR8) and NLRP3 by the TLR8 Agonist, VTX-2337, Ignites Tumoricidal Natural Killer Cell Activity. PLoS One 2016; 11:e0148764. [PMID: 26928328 PMCID: PMC4771163 DOI: 10.1371/journal.pone.0148764] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/20/2016] [Indexed: 01/11/2023] Open
Abstract
VTX-2337 (USAN: motolimod) is a selective toll-like receptor 8 (TLR8) agonist, which is in clinical development as an immunotherapy for multiple oncology indications, including squamous cell carcinoma of the head and neck (SCCHN). Activation of TLR8 enhances natural killer cell activation, increases antibody-dependent cell-mediated cytotoxicity, and induces Th1 polarizing cytokines. Here, we show that VTX-2337 stimulates the release of mature IL-1β and IL-18 from monocytic cells through coordinated actions on both TLR8 and the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome complex. In vitro, VTX-2337 primed monocytic cells to produce pro-IL-1β, pro-IL-18, and caspase-1, and also activated the NLRP3 inflammasome, thereby mediating the release of mature IL-1β family cytokines. Inhibition of caspase-1 blocked VTX-2337-mediated NLRP3 inflammasome activation, but had little impact on production of other TLR8-induced mediators such as TNFα. IL-18 activated natural killer cells and complemented other stimulatory pathways, including FcγRIII and NKG2D, resulting in IFNγ production and expression of CD107a. NLRP3 activation in vivo was confirmed by a dose-related increase in plasma IL-1β and IL-18 levels in cynomolgus monkeys administered VTX-2337. These results are highly relevant to clinical studies of combination VTX-2337/cetuximab treatment. Cetuximab, a clinically approved, epidermal growth factor receptor-specific monoclonal antibody, activates NK cells through interactions with FcγRIII and facilitates ADCC of tumor cells. Our preliminary findings from a Phase I open-label, dose-escalation, trial that enrolled 13 patients with recurrent or metastatic SCCHN show that patient NK cells become more responsive to stimulation by NKG2D or FcγRIII following VTX-2337 treatment. Together, these results indicate that TLR8 stimulation and inflammasome activation by VTX-2337 can complement FcγRIII engagement and may augment clinical responses in SCCHN patients treated with cetuximab. Trial Registration: ClinicalTrials.gov NCT01334177
Collapse
MESH Headings
- Animals
- Benzazepines/pharmacology
- Benzazepines/therapeutic use
- Carrier Proteins/agonists
- Caspase 1/metabolism
- Cell Degranulation/drug effects
- Cell Degranulation/immunology
- Cell Line, Tumor
- Cytotoxicity, Immunologic/immunology
- Disease Models, Animal
- Female
- Humans
- Inflammasomes/metabolism
- Interleukin-18/biosynthesis
- Interleukin-1beta/biosynthesis
- K562 Cells
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
- Macaca fascicularis
- Male
- NLR Family, Pyrin Domain-Containing 3 Protein
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/metabolism
- Receptors, IgG/metabolism
- Toll-Like Receptor 8/agonists
Collapse
Affiliation(s)
| | - Hailing Lu
- Tumor Vaccine Group, Center for Translational Medicine in Women’s Health, University of Washington, Seattle, WA, United States of America
| | - Yi Yang
- Tumor Vaccine Group, Center for Translational Medicine in Women’s Health, University of Washington, Seattle, WA, United States of America
| | - Chihiro Morishima
- Tumor Vaccine Group, Center for Translational Medicine in Women’s Health, University of Washington, Seattle, WA, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States of America
| | - Laura Q. Chow
- Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Mary L. Disis
- Tumor Vaccine Group, Center for Translational Medicine in Women’s Health, University of Washington, Seattle, WA, United States of America
| | | |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW The use of agents which exhibit the ability to potently activate the innate immune response has gained significant interest as therapeutics to treat cancer. We will review the history and the current applications of these agents to treat skin cancer and cutaneous T-cell lymphoma. RECENT FINDINGS Particular attention has been focused upon Toll-like receptor (TLR) agonists, including imidazoquinolines, which can trigger TLR 7 and TLR 8, and cytosine-phosphate-guanine (CpG) oligodeoxynucleotides, which activate TLR 9-expressing cells. Imiquimod, a TLR 7 agonist, has been found to be efficacious for basal cell and squamous cell cancers, as well as cutaneous T-cell lymphoma and lentigo maligna melanoma. CpGs have demonstrated efficacy for cutaneous T-cell lymphoma. Additional more potent compounds, including resiquimod, are presently in clinical trials for several types of skin cancers. SUMMARY TLR agonists that can activate the innate immune response have been used to treat a variety of skin cancers including basal cell cancer, squamous cell cancer, lentigo maligna melanoma and cutaneous T-cell lymphoma. Significant clinical efficacy has been observed for all of these conditions. It is anticipated that additional members of the TLR agonist family will be available in the clinic for the future treatment of skin cancers as well as other malignancies.
Collapse
|
10
|
Willerslev-Olsen A, Litvinov IV, Fredholm SM, Petersen DL, Sibbesen NA, Gniadecki R, Zhang Q, Bonefeld CM, Wasik MA, Geisler C, Zhou Y, Woetmann A, Sasseville D, Krejsgaard T, Odum N. IL-15 and IL-17F are differentially regulated and expressed in mycosis fungoides (MF). Cell Cycle 2014; 13:1306-12. [PMID: 24621498 DOI: 10.4161/cc.28256] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Skin lesions from mycosis fungoides (MF) patients display an increased expression of interleukin-15 (IL-15), IL-17F, and other cytokines implicated in inflammation and malignant cell proliferation in cutaneous T-cell lymphoma (CTCL). In the leukemic variant of CTCL, Sézary syndrome (SS), IL-2 and IL-15 trigger activation of the Jak-3/STAT3 pathway and transcription of IL17A gene, whereas it is unknown what causes IL-15 expression, Jak3/STAT3 activation, and production of IL-17F in MF. Here, we studied the expression and regulation of IL-15 and its relation to IL-17F in MF cell lines and skin lesions from 60 MF patients. We show that: (1) the spontaneous IL-15 mRNA expression is resistant to Jak3 and STAT3 inhibitors at concentrations that profoundly inhibit STAT3 activation and IL-17F mRNA expression; (2) anti-IL-15 antibody blocks STAT3 activation induced by exogenous IL-15 in non-malignant MF T cells, whereas the spontaneous STAT3 activation and IL-17F expression in malignant T cells is not inhibited; (3) patients display heterogeneous IL-15/IL-17F mRNA expression patterns in skin lesions; and (4) IL-15 expression (in contrast to IL-17F) is not associated with progressive disease. Taken together, these findings indicate that IL-15 and IL-17F are differentially regulated and expressed in MF. We propose that IL-15 and IL-17F are markers for different inflammatory environments and play distinct roles in the development and progression of MF.
Collapse
Affiliation(s)
- Andreas Willerslev-Olsen
- Department of International Health, Immunology, and Microbiology; University of Copenhagen; Copenhagen, Denmark
| | - Ivan V Litvinov
- Division of Dermatology; McGill University Health Centre; Montréal, Quebec, Canada
| | - Simon M Fredholm
- Department of International Health, Immunology, and Microbiology; University of Copenhagen; Copenhagen, Denmark
| | - David L Petersen
- Department of International Health, Immunology, and Microbiology; University of Copenhagen; Copenhagen, Denmark
| | - Nina A Sibbesen
- Department of International Health, Immunology, and Microbiology; University of Copenhagen; Copenhagen, Denmark
| | - Robert Gniadecki
- Departmen of Dermatology; Copenhagen University Hospital; Bispebjerg, Copenhagen, Denmark
| | - Qian Zhang
- Department of Pathology and Laboratory Medicine; University of Pennsylvania; Philadelphia, PA USA
| | - Charlotte M Bonefeld
- Department of International Health, Immunology, and Microbiology; University of Copenhagen; Copenhagen, Denmark
| | - Mariusz A Wasik
- Department of Pathology and Laboratory Medicine; University of Pennsylvania; Philadelphia, PA USA
| | - Carsten Geisler
- Department of International Health, Immunology, and Microbiology; University of Copenhagen; Copenhagen, Denmark
| | - Youwen Zhou
- Department of Dermatology and Skin Science; University of British Columbia; Vancouver, British Columbia, Canada
| | - Anders Woetmann
- Department of International Health, Immunology, and Microbiology; University of Copenhagen; Copenhagen, Denmark
| | - Denis Sasseville
- Division of Dermatology; McGill University Health Centre; Montréal, Quebec, Canada
| | - Thorbjørn Krejsgaard
- Department of International Health, Immunology, and Microbiology; University of Copenhagen; Copenhagen, Denmark
| | - Niels Odum
- Department of International Health, Immunology, and Microbiology; University of Copenhagen; Copenhagen, Denmark
| |
Collapse
|
11
|
Toll-like receptors in lymphoid malignancies: Double-edged sword. Crit Rev Oncol Hematol 2014; 89:262-83. [DOI: 10.1016/j.critrevonc.2013.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/04/2013] [Accepted: 08/20/2013] [Indexed: 12/31/2022] Open
|
12
|
Dummer R, Rozati S, Guenova E, Cozzio A. Less can be more: the impact of chemotherapy on cutaneous T-cell lymphomas. Future Oncol 2013; 9:1061-4. [PMID: 23902236 DOI: 10.2217/fon.13.87] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Buitendijk M, Eszterhas SK, Howell AL. Gardiquimod: a Toll-like receptor-7 agonist that inhibits HIV type 1 infection of human macrophages and activated T cells. AIDS Res Hum Retroviruses 2013; 29:907-18. [PMID: 23316755 DOI: 10.1089/aid.2012.0313] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Immune response modifiers are being studied as therapeutic agents for viral infections and cancer. These molecules include agonists for the Toll-like receptors (TLR), a family of innate immune receptors. TLR7 and 8, located in cellular endosomes, bind single-stranded RNA characteristic of viral genomes, and trigger intracellular signaling pathways that induce inflammatory cytokines and antiviral innate immune factors. We studied the anti-HIV-1 effects of gardiquimod, a specific TLR7 agonist when used at concentrations below 10 μM, in macrophages and activated peripheral blood mononuclear cells (PBMCs). Gardiquimod, added prior to or within 2 days after infection with X4, R5, or dual-tropic (R5/X4) strains of HIV-1, significantly reduced infection in these cells. Cocultures of activated PBMCs added to gardiquimod-treated and HIV-1-exposed macrophages demonstrated minimal HIV-1 replication for up to 10 days, suggesting that gardiquimod inhibited activated PBMCs viral amplification from HIV-1-exposed macrophages. Gardiquimod treatment of both activated PBMCs and macrophages induced interferon-alpha (IFN-α) transcription within hours of addition, and sustained IFN-α protein secretion for several days. Treatment of cells with a peptide inhibitor to the MyD88 adaptor protein blocked the induction of IFN-α by gardiquimod, and partially reversed the anti-HIV effects in activated PBMCs. Blocking the IFN-α receptor with a neutralizing antibody also reduced the anti-HIV effect of gardiquimod. Gardiquimod inhibited HIV-1 reverse transcriptase, an early step in the life cycle of HIV-1. These findings suggest that gardiquimod, functioning as both an immune system modifier and a reverse transcriptase inhibitor, could be developed as a novel therapeutic agent to block systemic and mucosal transmission of HIV-1.
Collapse
Affiliation(s)
- Maarten Buitendijk
- V.A. Medical Center, White River Junction, Vermont
- Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire
| | - Susan K. Eszterhas
- V.A. Medical Center, White River Junction, Vermont
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire
| | - Alexandra L. Howell
- V.A. Medical Center, White River Junction, Vermont
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire
| |
Collapse
|
14
|
Martin PD, Argyle DJ. Advances in the management of skin cancer. Vet Dermatol 2013; 24:173-80.e38. [PMID: 23331695 DOI: 10.1111/j.1365-3164.2012.01107.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Skin cancer is one of the most commonly diagnosed cancers in the world today in both humans and our pet population. Advances in molecular techniques are now affording us an opportunity to develop therapeutics targeted at specific cancer-related cellular pathways. However, despite progress in conventional treatments, such as chemotherapy and radiation, and the new targeted therapies, some cancers, such as melanoma and cutaneous lymphoma, continue to cause significant mortality and morbidity. This short synopsis is not complete but is aimed at providing an insight into current advanced treatments and horizon therapies for cutaneous malignancies in dogs and cats with comparative aspects.
Collapse
Affiliation(s)
- Pamela D Martin
- Royal (Dick) School of Veterinary Studies and Roslin Institute, Easter Bush, Midlothian EH25 9RG, UK
| | | |
Collapse
|
15
|
Kelly-Sell MJ, Kim YH, Straus S, Benoit B, Harrison C, Sutherland K, Armstrong R, Weng WK, Showe LC, Wysocka M, Rook AH. The histone deacetylase inhibitor, romidepsin, suppresses cellular immune functions of cutaneous T-cell lymphoma patients. Am J Hematol 2012; 87:354-60. [PMID: 22367792 DOI: 10.1002/ajh.23112] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 12/27/2011] [Indexed: 11/06/2022]
Abstract
Romidepsin is the second histone deacetylase inhibitor (HDACi) approved for the treatment of advanced stages of cutaneous T-cell lymphoma (CTCL). Recent in vitro data suggest that HDACis suppress immune function although these findings have not been confirmed in patients. Thus, we serially examined the cellular immune function of eight CTCL patients undergoing treatment with three cycles of romidepsin. We measured the patients' natural killer (NK) and dendritic cell (DC) function and performed an in vitro terminal deoxynucleotidyl transferase dUTP nick end labeling assay to measure cellular apoptosis. Patients' NK cell cytolytic activity decreased from baseline to the third cycle of treatment (P = 0.018) but stimulation with a toll-like receptor (TLR) agonist increased this activity (P = 0.018). At baseline, a TLR agonist could both activate patients' DC (P = 0.043) and stimulate interleukin-12 protein production (P = 0.043) but both were suppressed after the first cycle of romidepsin. Finally, we observed increased specificity for romidepsin-induced CD4+ tumor cell apoptosis and dose-dependent increases in cellular apoptosis of healthy cells in multiple lineages (P < 0.05). These findings raise concern that HDACis suppress immune function in CTCL patients and they support the concurrent use of multiple immune stimulatory agents to preserve the host immune response.
Collapse
MESH Headings
- Adjuvants, Immunologic/therapeutic use
- Apoptosis/drug effects
- Cells, Cultured/drug effects
- Cells, Cultured/immunology
- Cytotoxicity, Immunologic/drug effects
- Depression, Chemical
- Depsipeptides/adverse effects
- Depsipeptides/pharmacology
- Depsipeptides/therapeutic use
- Drug Screening Assays, Antitumor
- Histone Deacetylase Inhibitors/adverse effects
- Histone Deacetylase Inhibitors/pharmacology
- Histone Deacetylase Inhibitors/therapeutic use
- Humans
- Imidazoles/pharmacology
- Immunity, Cellular/drug effects
- In Vitro Techniques
- Interferon-alpha/pharmacology
- Interleukin-12/pharmacology
- Killer Cells, Natural/drug effects
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Lymphocyte Count
- Lysosomal-Associated Membrane Protein 1/analysis
- Neoplasm Proteins/antagonists & inhibitors
- Quinolines/pharmacology
- Sezary Syndrome/drug therapy
- Sezary Syndrome/immunology
- Skin Neoplasms/drug therapy
- Skin Neoplasms/immunology
- T-Lymphocytes, Regulatory/drug effects
- Toll-Like Receptor 7/agonists
- Toll-Like Receptor 8/agonists
Collapse
Affiliation(s)
- Michael J Kelly-Sell
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 , USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Shah A, Safaya A. Granulomatous slack skin disease: a review, in comparison with mycosis fungoides. J Eur Acad Dermatol Venereol 2012; 26:1472-8. [PMID: 22435618 DOI: 10.1111/j.1468-3083.2012.04513.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Granulomatous slack skin (GSS) is a rare cutaneous disorder characterized by the evolution of circumscribed erythematous loose skin masses, especially in the body folds, and histologically by a loss of elastic fibers and granulomatous T-cell infiltrates. This disease is often associated with preceding or successive lymphoproliferative malignancies, especially Mycosis Fungoides (MF) and Hodgkin's Disease (HD). Whether Granulomatous Slack Skin Disease is a benign disorder, an unusual host reaction or a precursor of malignant lymphoma or an indolent Cutaneous T-cell Lymphoma (CTCL) in itself, is still a controversy. This article reviews its literature on the etiology, clinical findings, and treatment of Granulomatous Slack Skin Disease. It also concentrates on its association with Hodgkin's disease and its comparison with Mycosis Fungoides and Sezary Syndrome.
Collapse
Affiliation(s)
- A Shah
- Dr. D.Y. Patil Hospital and Research Centre, Nerul, Mumbai, Maharshtra, India
| | | |
Collapse
|
17
|
Abstract
It is barely more than a decade since Toll-like receptors (TLRs) were linked to the innate immune response.1 Yet substantial data are now emerging that indicate that TLR agonists may have a significant role in the therapy of mycosis fungoides and Sezary syndrome.2,3
Collapse
|