1
|
Kishawy ATY, Ibrahim D, Roushdy EM, Moustafa A, Eldemery F, Hussein EM, Hassan FAM, Elazab ST, Elabbasy MT, Kanwal R, Kamel WM, Atteya MR, Zaglool AW. Impact of resveratrol-loaded liposomal nanocarriers on heat-stressed broiler chickens: Effects on performance, sirtuin expression, oxidative stress regulators, and muscle building factors. Front Vet Sci 2023; 10:1137896. [PMID: 37056226 PMCID: PMC10086338 DOI: 10.3389/fvets.2023.1137896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
Climate change is considered to be the primary cause of heat stress (HS) in broiler chickens. Owing to the unique properties of extracted polyphenols, resveratrol-loaded liposomal nanoparticles (Resv-Lipo NPs) were first explored to mitigate the harmful effects of HS. The dietary role of Resv-Lipo NPs in heat-stressed birds was investigated based on their growth performance, antioxidative potential, and the expression of heat shock proteins, sirtuins, antioxidant, immune, and muscle-building related genes. A total of 250 1-day-old Ross 308 broiler chickens were divided into five experimental groups (5 replicates/group, 10 birds/replicate) for 42 days as follows: the control group was fed a basal diet and reared in thermoneutral conditions, and the other four HS groups were fed a basal diet supplemented with Resv-Lipo NPsI, II, and III at the levels of 0, 50, 100, and 150 mg/kg diet, respectively. The results indicated that supplementation with Resv-Lipo NP improved the growth rate of the HS group. The Resv-Lipo NP group showed the most significant improvement in body weight gain (p < 0.05) and FCR. Additionally, post-HS exposure, the groups that received Resv-Lipo NPs showed restored functions of the kidney and the liver as well as improvements in the lipid profile. The restoration occurred especially at higher levels in the Resv-Lipo NP group compared to the HS group. The elevated corticosterone and T3 and T4 hormone levels in the HS group returned to the normal range in the Resv-Lipo NPsIII group. Additionally, the HS groups supplemented with Resv-Lipo NPs showed an improvement in serum and muscle antioxidant biomarkers. The upregulation of the muscle and intestinal antioxidant-related genes (SOD, CAT, GSH-PX, NR-f2, and HO-1) and the muscle-building genes (myostatin, MyoD, and mTOR) was observed with increasing the level of Resv-Lipo NPs. Heat stress upregulated heat shock proteins (HSP) 70 and 90 gene expression, which was restored to normal levels in HS+Resv-Lipo NPsIII. Moreover, the expression of sirtuin 1, 3, and 7 (SIRT1, SIRT3, and SIRT7) genes was increased (p < 0.05) in the liver of the HS groups that received Resv-Lipo NPs in a dose-dependent manner. Notably, the upregulation of proinflammatory cytokines in the HS group was restored in the HS groups that received Resv-Lipo NPs. Supplementation with Resv-Lipo NPs can mitigate the harmful impact of HS and consequently improve the performance of broiler chickens.
Collapse
Affiliation(s)
- Asmaa T. Y. Kishawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- *Correspondence: Doaa Ibrahim
| | - Elshimaa M. Roushdy
- Department of Animal Wealth Development, Animal Breeding, and Production, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amira Moustafa
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Fatma Eldemery
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Elham M. Hussein
- Physics Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Fardos A. M. Hassan
- Department of Animal Wealth Development, Veterinary Economics, and Farm Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Sara T. Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Tharwat Elabbasy
- Department of Public Health, College of Public Health and Health Informatics, Ha'il University, Ha'il, Saudi Arabia
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Raheela Kanwal
- Department of Physical Therapy, College of Applied Medical Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Walid M. Kamel
- Department of Public Health, College of Public Health and Health Informatics, University of Hail, Ha'il, Saudi Arabia
| | - Mohamed R. Atteya
- Department of Physical Therapy, College of Applied Medical Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Asmaa W. Zaglool
- Department of Animal Wealth Development, Genetic, and Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
Uthaiah CA, Beeraka NM, Rajalakshmi R, Ramya CM, Madhunapantula SV. Role of Neural Stem Cells and Vitamin D Receptor (VDR)-Mediated Cellular Signaling in the Mitigation of Neurological Diseases. Mol Neurobiol 2022; 59:4065-4105. [PMID: 35476289 DOI: 10.1007/s12035-022-02837-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/09/2022] [Indexed: 12/19/2022]
Abstract
Specific stem cell-based therapies for treating Alzheimer's disease, Parkinson's disease, and schizophrenia are gaining importance in recent years. Accumulating data is providing further support by demonstrating the efficacy of neural stem cells in enhancing the neurogenesis in the aging brain. In addition to stem cells, recent studies have shown the efficacy of supplementing vitamin D in promoting neurogenesis and neuronal survival. Studies have also demonstrated the presence of mutational variants and single-nucleotide polymorphisms of the vitamin D receptor (VDR) in neurological disorders; however, implications of these mutations in the pathophysiology and response to drug treatment are yet to be explored. Hence, in this article, we have reviewed recent reports pertaining to the role of neural stem cells and VDR-mediated cellular signaling cascades that are involved in enhancing the neurogenesis through Wnt/β-catenin and Sonic Hedgehog pathways. This review benefits neurobiologists and pharmaceutical industry experts to develop stem cell-based and vitamin D-based therapies to better treat the patients suffering from neurological diseases.
Collapse
Affiliation(s)
- Chinnappa A Uthaiah
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR, DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - Narasimha M Beeraka
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR, DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - R Rajalakshmi
- Department of Physiology, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - C M Ramya
- Department of Physiology, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - SubbaRao V Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR, DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India.
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India.
| |
Collapse
|
3
|
Drug Delivery Systems for Vitamin D Supplementation and Therapy. Pharmaceutics 2019; 11:pharmaceutics11070347. [PMID: 31323777 PMCID: PMC6680748 DOI: 10.3390/pharmaceutics11070347] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023] Open
Abstract
Vitamin D (VD) is a fat-soluble prohormone well known for its role in regulating calcium and phosphate metabolism. It has been clinically used for many years to prevent rickets in children, osteomalacia, and osteoporosis in adults. VD insufficiency is a common medical condition, and many supplements are available in the market in order to increase serum 25-hydroxy VD levels to recommended amounts. Over the course of the last decades, it has become increasingly clear that calcitriol, an active form of VD, regulates multiple cellular processes with effects on normal and malignant cell growth and differentiation, and on the immune and cardiovascular function. Increasing evidence supports the role of the VD system in cancer prevention and therapy. Due to many pleiotropic and beneficial effects in extra-skeletal disorders, VD has gained potential and become an interesting active for encapsulation into drug delivery systems. The purpose of this review is to present the diversity of drug delivery systems that have been reported for VD or VD derivatives in an orderly manner across the following categories: Oral administration, application on the skin, cancer prevention/therapy, and other diseases or routes of administration.
Collapse
|
4
|
Dalmoro A, Bochicchio S, Lamberti G, Bertoncin P, Janssens B, Barba AA. Micronutrients encapsulation in enhanced nanoliposomal carriers by a novel preparative technology. RSC Adv 2019; 9:19800-19812. [PMID: 35519406 PMCID: PMC9065329 DOI: 10.1039/c9ra03022k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/14/2019] [Indexed: 12/20/2022] Open
Abstract
Micronutrients administration by fortification of staple and complementary foods is a followed strategy to fight malnutrition and micronutrient deficiencies and related pathologies. There is a great industrial interest in preparation of formulations for joint administration of vitamin D3 and vitamin K2 for providing bone support, promoting heart health and helping boost immunity. To respond to this topic, in this work, uncoated nanoliposomes loaded with vitamin D3 and K2 were successfully prepared, by using a novel, high-yield and semi continuous technique based on simil-microfluidic principles. By the same technique, to promote and to enhance mucoadhesiveness and stability of the produced liposomal structures, chitosan was tested as covering material. By this way polymer–lipid hybrid nanoparticles, encapsulating vitamin D3 and vitamin K2, with improved features in terms of stability, loading and mucoadhesiveness were produced for potential nutraceutical and pharmaceutical applications. Micronutrients administration by liposomal vectors is a growing strategy in fortification processes of staple and complementary foods to fight malnutrition and micronutrient deficiencies and related pathologies.![]()
Collapse
Affiliation(s)
- Annalisa Dalmoro
- Eng4Life Srl
- Spin-off Accademico
- Italy
- Dipartimento di Farmacia
- Università degli Studi di Salerno
| | | | - Gaetano Lamberti
- Eng4Life Srl
- Spin-off Accademico
- Italy
- Dipartimento di Ingegneria Industriale
- Università degli Studi di Salerno
| | - Paolo Bertoncin
- Dipartimento di Scienze della Vita – Centro Microscopia Elettronica
- Università degli Studi di Trieste
- 34127 Trieste
- Italy
| | | | - Anna Angela Barba
- Eng4Life Srl
- Spin-off Accademico
- Italy
- Dipartimento di Farmacia
- Università degli Studi di Salerno
| |
Collapse
|
5
|
Abstract
There has been renewed interest in vitamin D since numerous recent studies have suggested that besides its well-established roles in bone metabolism and immunity, vitamin D status is inversely associated with the incidence of several diseases, e.g., cancers, cardio-vascular diseases, and neurodegenerative diseases. Surprisingly, there is very little data on factors that affect absorption of this fat-soluble vitamin, although it is acknowledged that dietary vitamin D could help to fight against the subdeficient vitamin D status that is common in several populations. This review describes the state of the art concerning the fate of vitamin D in the human upper gastrointestinal tract and on the factors assumed to affect its absorption efficiency. The main conclusions are: (i) ergocalciferol (vitamin D2), the form mostly used in supplements and fortified foods, is apparently absorbed with similar efficiency to cholecalciferol (vitamin D3, the main dietary form), (ii) 25-hydroxyvitamin D (25OHD), the metabolite produced in the liver, and which can be found in foods, is better absorbed than the nonhydroxy vitamin D forms cholecalciferol and ergocalciferol, (iii) the amount of fat with which vitamin D is ingested does not seem to significantly modify the bioavailability of vitamin D3, (iv) the food matrix has apparently little effect on vitamin D bioavailability, (v) sucrose polyesters (Olestra) and tetrahydrolipstatin (orlistat) probably diminish vitamin D absorption, and (vi) there is apparently no effect of aging on vitamin D absorption efficiency. We also find that there is insufficient, or even no data on the following factors suspected of affecting vitamin D bioavailability: (i) effect of type and amount of dietary fiber, (ii) effect of vitamin D status, and (iii) effect of genetic variation in proteins involved in its intestinal absorption. In conclusion, further studies are needed to improve our knowledge of factors affecting vitamin D absorption efficiency. Clinical studies with labeled vitamin D, e.g., deuterated or (13)C, are needed to accurately and definitively assess the effect of various factors on its bioavailability.
Collapse
Affiliation(s)
- P Borel
- a INSERM, UMR1062, Nutrition, Obesity and Risk of Thrombosis , Marseille , France
| | | | | |
Collapse
|
6
|
Abstract
Vitamin D plays key roles in bone, infectious, inflammatory and metabolic diseases. As most people get inadequate sun exposure for sufficient vitamin D status, they need adequate intake of dietary vitamin D. Many studies see optimizing vitamin D status as a public health priority. It is thus vital to gain deeper insight into vitamin D intestinal absorption. It was long assumed that vitamin D intestinal absorption is a passive process, but new data from our laboratory showed that it is actually far more complex than previously thought. This review describes the fate of vitamin D in the human upper gastrointestinal lumen during digestion and focuses on the proteins involved in the intestinal membrane and cellular transport of vitamin D across the enterocyte. Although recent data significantly improve our understanding of vitamin D intestinal absorption, further studies are still needed to increase our knowledge of the molecular mechanisms underlying this phenomenon.
Collapse
Affiliation(s)
- Emmanuelle Reboul
- INRA, UMR 1260, "Nutrition, Obesity and Risk of Thrombosis", F-13385, Marseille, France.
| |
Collapse
|
7
|
Kaur G, Garg T, Rath G, Goyal AK. Archaeosomes: an excellent carrier for drug and cell delivery. Drug Deliv 2015; 23:2497-2512. [DOI: 10.3109/10717544.2015.1019653] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Gurmeet Kaur
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Tarun Garg
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Goutam Rath
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Amit K. Goyal
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
8
|
Theodoropoulos D, Rova A, Smith JR, Barbu E, Calabrese G, Vizirianakis IS, Tsibouklis J, Fatouros DG. Towards boron neutron capture therapy: The formulation and preliminary in vitro evaluation of liposomal vehicles for the therapeutic delivery of the dequalinium salt of bis-nido-carborane. Bioorg Med Chem Lett 2013; 23:6161-6. [DOI: 10.1016/j.bmcl.2013.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 10/26/2022]
|
9
|
Reboul E. Absorption of vitamin A and carotenoids by the enterocyte: focus on transport proteins. Nutrients 2013; 5:3563-81. [PMID: 24036530 PMCID: PMC3798921 DOI: 10.3390/nu5093563] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/19/2013] [Accepted: 08/26/2013] [Indexed: 12/15/2022] Open
Abstract
Vitamin A deficiency is a public health problem in most developing countries, especially in children and pregnant women. It is thus a priority in health policy to improve preformed vitamin A and/or provitamin A carotenoid status in these individuals. A more accurate understanding of the molecular mechanisms of intestinal vitamin A absorption is a key step in this direction. It was long thought that β-carotene (the main provitamin A carotenoid in human diet), and thus all carotenoids, were absorbed by a passive diffusion process, and that preformed vitamin A (retinol) absorption occurred via an unidentified energy-dependent transporter. The discovery of proteins able to facilitate carotenoid uptake and secretion by the enterocyte during the past decade has challenged established assumptions, and the elucidation of the mechanisms of retinol intestinal absorption is in progress. After an overview of vitamin A and carotenoid fate during gastro-duodenal digestion, our focus will be directed to the putative or identified proteins participating in the intestinal membrane and cellular transport of vitamin A and carotenoids across the enterocyte (i.e., Scavenger Receptors or Cellular Retinol Binding Proteins, among others). Further progress in the identification of the proteins involved in intestinal transport of vitamin A and carotenoids across the enterocyte is of major importance for optimizing their bioavailability.
Collapse
Affiliation(s)
- Emmanuelle Reboul
- INRA, UMR1260, Nutrition, Obesity and Risk of Thrombosis, Marseille F-13385, France.
| |
Collapse
|
10
|
Borel P, Preveraud D, Desmarchelier C. Bioavailability of vitamin E in humans: an update. Nutr Rev 2013; 71:319-31. [PMID: 23731443 DOI: 10.1111/nure.12026] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vitamin E is essential for human health and may play a role in the prevention of some degenerative diseases. Its bioavailability, however, is wide ranging and is affected by numerous factors. Recent findings showing that the intestinal absorption of vitamin E involves proteins have raised new relevant questions about factors that can affect bioavailability. It is, therefore, opportune to present a current overview of this topic. This review begins by exploring what is known, as well as what is unknown, about the metabolization of vitamin E in the human upper gastrointestinal tract and then presents a methodical evaluation of factors assumed to affect vitamin E bioavailability. Three main conclusions can be drawn. First, the proteins ABCA1, NPC1L1, and SR-BI are implicated in the absorption of vitamin E. Second, the efficiency of vitamin E absorption is widely variable, though not accurately known (i.e., between 10% and 79%), and is affected by several dietary factors (e.g., food matrix, fat, and fat-soluble micronutrients). Finally, numerous unanswered questions remain about the metabolization of vitamin E in the intestinal lumen and about the factors affecting the efficiency of vitamin E absorption.
Collapse
Affiliation(s)
- Patrick Borel
- Institut National de la Santé et de la Recherche Médicale INSERM, Unité Mixte de Recherche UMR 1062, Nutrition, Obesity and Risk of Thrombosis, Marseilles, France.
| | | | | |
Collapse
|
11
|
Srisuk P, Thongnopnua P, Raktanonchai U, Kanokpanont S. Physico-chemical characteristics of methotrexate-entrapped oleic acid-containing deformable liposomes for in vitro transepidermal delivery targeting psoriasis treatment. Int J Pharm 2012; 427:426-34. [PMID: 22310459 DOI: 10.1016/j.ijpharm.2012.01.045] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/29/2011] [Accepted: 01/22/2012] [Indexed: 11/17/2022]
Abstract
This study aimed to investigate the physico-chemical characteristics and in vitro permeability of methotrexate (MTX)-entrapped deformable liposomes prepared from phosphatidylcholine (PC) and oleic acid (OA), comparing with those of MTX-entrapped conventional liposomes prepared from PC and cholesterol (CH). Two formulations of MTX-entrapped PC2:CH1 and PC9:CH1 liposomes and one formulation of MTX-entrapped PC2.5:OA1 liposomes were prepared. The size, size distribution, zeta potential, thermal properties, entrapment efficiency, stability, and in vitro permeability across a porcine skin of the MTX-entrapped liposomes were evaluated. All liposome formulations showed a narrow size distribution with the size range of 80-140 nm which is appropriate for the skin permeability. The percentage of MTX loading, entrapment efficiency and the stability of MTX-entrapped PC2:CH1 and PC9:CH1 liposomes were slightly higher than those of MTX-entrapped PC2.5:OA1 liposomes. However, the MTX-entrapped PC2.5:OA1 liposomes enhanced the skin permeability characterized by the higher concentration and flux of MTX diffused across or accumulated in the epidermis and dermis layers of porcine skin. The enhanced permeability of MTX-entrapped PC2.5:OA1 liposomes was explained by 2 mechanisms: (1) the deformable and elasticity characteristics of OA-containing liposomes and (2) a property as a skin penetration enhancer of OA. This suggested that the PC2.5:OA1 deformable liposome was one of promising candidates to enhance the permeability of MTX for the treatment of psoriasis.
Collapse
Affiliation(s)
- Pathomthat Srisuk
- Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Khon Kaen University, 123 Mitraparb Road, Muang District, Khon Kaen 40002, Thailand
| | | | | | | |
Collapse
|
12
|
Proteins involved in uptake, intracellular transport and basolateral secretion of fat-soluble vitamins and carotenoids by mammalian enterocytes. Prog Lipid Res 2011; 50:388-402. [DOI: 10.1016/j.plipres.2011.07.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/24/2011] [Accepted: 06/30/2011] [Indexed: 12/31/2022]
|
13
|
Londoño-Londoño J, Lima VRD, Jaramillo C, Creczynski-pasa T. Hesperidin and hesperetin membrane interaction: Understanding the role of 7-O-glycoside moiety in flavonoids. Arch Biochem Biophys 2010; 499:6-16. [DOI: 10.1016/j.abb.2010.04.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 04/16/2010] [Accepted: 04/30/2010] [Indexed: 10/19/2022]
|
14
|
Hurst S, Loi CM, Brodfuehrer J, El-Kattan A. Impact of physiological, physicochemical and biopharmaceutical factors in absorption and metabolism mechanisms on the drug oral bioavailability of rats and humans. Expert Opin Drug Metab Toxicol 2007. [DOI: 10.1517/17425255.3.4.469] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
15
|
Taha E, Ghorab D, Zaghloul AA. Bioavailability assessment of vitamin A self-nanoemulsified drug delivery systems in rats: a comparative study. Med Princ Pract 2007; 16:355-9. [PMID: 17709923 DOI: 10.1159/000104808] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2006] [Accepted: 10/11/2006] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES To assess and compare the bioavailability of three different oral dosage forms of vitamin A in rats. The formulations included vitamin A self-nanoemulsified drug delivery (SNEDD) optimized formulation-filled capsule (F1), vitamin A SNEDD optimized formulation compressed tablet (F2) and vitamin A oily solution-filled capsules without any additives (control, F3). MATERIALS AND METHODS Bioavailability was assessed after a single oral dose of the three formulations using three groups of rats, each group comprising 6 rats. Blood samples were collected at baseline and over the next 8 h. Plasma was separated and extracted to obtain the drug, which was measured by HPLC. Statistical data analysis was performed using the Student t test and ANOVA with p < 0.05 as the minimal level of significance. RESULTS From the pharmacokinetic parameters, both F1 and F2 showed improved bioavailability compared to F3. The values of AUC +/- SD were 3,080.7 +/- 190.2, 2,137.1 +/- 130.5 and 1,485.2 +/- 80.1 ng x h/ml for F1, F2 and F3, respectively. The Tmax was 1 h in case of F1 and F2 as compared to 1.5 h for F3. The Cmax +/- SD was 799.5 +/- 48.5, 656.2 +/- 64.4 and 425.8 +/- 33.1 for F1, F2 and F3, respectively. The increase in AUC, Cmax and Tmax was significant (p < 0.05). The bioavailability calculated from the AUC for F1 and F2 relative to F3 was 207.4 and 143.8%, respectively. The bioavailability increased almost twofold and 1.4 times for F1 and F2, respectively. CONCLUSIONS The study showed that the newly developed vitamin A SNEDD formulations increased the rate and extent of drug absorption compared to the oily drug solution. The present investigation demonstrated that vitamin A SNEDD optimized formulations, either as filled capsules or as compressed tablets, were superior to its oily solution with regard to their biopharmaceutical characteristics.
Collapse
Affiliation(s)
- Ehab Taha
- College of Clinical Pharmacy, King Faisal University, Al-Hasaa, Saudi Arabia
| | | | | |
Collapse
|
16
|
Taha EI, Al-Saidan S, Samy AM, Khan MA. Preparation and in vitro characterization of self-nanoemulsified drug delivery system (SNEDDS) of all-trans-retinol acetate. Int J Pharm 2004; 285:109-19. [PMID: 15488684 DOI: 10.1016/j.ijpharm.2004.03.034] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Revised: 03/18/2004] [Accepted: 03/18/2004] [Indexed: 11/19/2022]
Abstract
PURPOSE To prepare a self-nanoemulsified drug delivery system (SNEDDS) of all-trans-retinol acetate, with enhanced dissolution and better chance of oral absorption. METHOD All-trans-retinol acetate SNEDDS was prepared using different concentrations of soybean oil (solvent) Cremophor EL (surfactant) and Capmul MCM-C8 (co-surfactant). Particle size and turbidity of the SNEDDS were determined after adding water to the oily solution. Dissolution profile of SNEDDS filled in hydroxyl propyl methyl cellulose (HPMC) capsules was determined by using water in USP apparatus 2. Ternary phase diagrams were constructed to identify the self-nanoemulsified region. The SNEDDS were evaluated by the visual observation, turbidity in nephrometric turbidity units (NTU), mean particle size (microm) and Fourier transformed-infrared spectroscopy (FT-IR). SNEDDS were thermally characterized using differential scanning calorimetry (DSC) to ensure the compatibility of the SNEDDS ingredient. RESULTS From the data obtained in this work, it was clear that surfactant to co-surfactant ratio has the main impact on the physical characteristics of the emulsion formed. The optimum surfactant to co-surfactant ratio was found to be 2:1 (37.5-50% for Cremophor EL, and 18.75-25% for Capmul MCM-C8). With this ratio, the resultant nanoemulsions obtained have a particle size range of 0.103-0.051 microm, turbidity range of 18.12-2.18 NTU and t30 values (cumulative% all-trans-retinol acetate dissolved in 30 min) of 90.42-99.5. Also the thermograms obtained from DSC experiments showed that there is no incompatibility or interaction between the SNEDDS ingredients (soybean oil, Cremophor EL, and Capmul MCM-C8) and all-trans-retinol acetate. CONCLUSION The present study revealed that the self-nanoemulsified drug delivery system of all-trans-retinol acetate increased its dissolution rate and has the potential to enhance its bioavailability without interaction or incompatibility between the ingredients.
Collapse
Affiliation(s)
- Ehab I Taha
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, 1300 Coulter, Suite 400, Amarillo, TX 79106, USA
| | | | | | | |
Collapse
|
17
|
Frkanec R, Travas D, Krstanović M, Spoljar BH, Ljevaković D, Vranesić B, Frkanec L, Tomasić J. Entrapment of peptidoglycans and adamantyltripeptides into liposomes: an HPLC assay for determination of encapsulation efficiency. J Liposome Res 2004; 13:279-94. [PMID: 14670233 DOI: 10.1081/lpr-120026452] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The encapsulation of different immunomodulating peptides, the peptidoglycan monomer, its semisynthetic derivatives (Adamant-1-yl)-acetyl-peptidoglycan monomer and Boc-Tyr-peptidoglycan monomer, respectively, and of two diastereoisomers of adamantyltripeptides into the large negatively charged multilamellar liposomes was investigated. The reproducible quantitative method using HPLC was established for the determination of the entrapped compounds. It was shown that the tested compounds could be efficiently incorporated into liposomes using either the film or modified film method. The results confirmed that the peptidoglycans with lipophilic substituents and particularly the adamantyltripeptides were incorporated into liposomes with higher efficiency than the peptidoglycan monomer using either of the described methods. Liposome preparations were stable at 4 degrees C up to seven days as shown by minimal leaking of the entrapped material.
Collapse
Affiliation(s)
- Ruza Frkanec
- Research and Development, Institute of Immunology, Inc., Zagreb, Croatia.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Fatouros DG, Antimisiaris SG. Effect of Amphiphilic Drugs on the Stability and Zeta-Potential of Their Liposome Formulations: A Study with Prednisolone, Diazepam, and Griseofulvin. J Colloid Interface Sci 2002; 251:271-7. [PMID: 16290730 DOI: 10.1006/jcis.2002.8432] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2001] [Accepted: 04/17/2002] [Indexed: 11/22/2022]
Abstract
Multilamellar liposomes consisting of phosphatidylcholine and incorporating prednisolone (PZ), diazepam (DZ), or griseofulvin (GF) were prepared and characterized. Liposome size, surface charge, and stability (in buffer and serum proteins) were measured for drug-incorporating liposomes and empty liposomes for comparison. The results reveal that for all drugs studied drug incorporation has a substantial effect on the vesicle zeta-potential and stability. Drug-incorporating liposomes have a negative surface charge, while their membrane integrity is significantly higher when compared with that of empty liposomes. Release of DZ from liposomes is induced by dilution. Summarizing, the results of this study demonstrate that the presence of PZ, DZ, or GF in liposome membranes has a significant effect on main vesicle properties and correlates well with those obtained previously for hydrochlorothiazide and chlorothiazide. Thereby, we may conclude that the previously demonstrated effects of the thiazides on liposome properties are not solely related to their structure.
Collapse
Affiliation(s)
- Dimitrios G Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, Rio, 26500, Greece
| | | |
Collapse
|
19
|
Fatouros DG, Antimisiaris SG. Physicochemical properties of liposomes incorporating hydrochlorothiazide and chlorothiazide. J Drug Target 2001; 9:61-74. [PMID: 11378524 DOI: 10.3109/10611860108995633] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In an attempt to study the effect of hydrophobic drugs on liposome properties, multilamellar liposomes (MLV) consisting of phosphatidylcholine (PC) and incorporating chlorothiazide (CT) or hydrochlorothiazide (HCT), were prepared and characterized. Liposome size, surface charge, stability (in buffer, plasma and sodium cholate) and calcium-induced aggregation were studied for drug-incorporating liposomes and empty liposomes for comparison. Results show that drug incorporation affects liposome size, z-potential and stability in presence of buffer and plasma proteins. Indeed, drug-incorporating liposomes are slightly larger and have a negative surface charge, which increases with the amount of drug incorporated in the lipid membrane. The membrane integrity of drug incorporating liposomes (in absence and presence of plasma proteins) is significantly higher when compared with that of empty liposomes (for both drugs studied). On the contrary, vesicle membrane integrity in presence of sodium cholate and calcium induced vesicle aggregation, are not affected by drug incorporation. Leakage of thiazides from liposomes was demonstrated to be induced by dilution. Low amounts of thiazides (around 10-15%) are released when lipid concentration is over 0.1 mM, while further dilution increased drug leakage exponentially. Concluding, results demonstrate that the presence of HCT or CT in liposome membranes has a significant effect on main vesicle properties, which are known to influence vesicle targeting ability. Thereby, it is very interesting to continue studies in this respect, especially with more lipophilic drugs.
Collapse
Affiliation(s)
- D G Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, Rio 26500, Patras, Greece
| | | |
Collapse
|
20
|
Kallinteri P, Liao WY, Antimisiaris SG, Hwang KH. Characterization, stability and in-vivo distribution of asialofetuin glycopeptide incorporating DSPC/CHOL liposomes prepared by mild cholate incubation. J Drug Target 2001; 9:155-68. [PMID: 11697109 DOI: 10.3109/10611860108997925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, a small triantennary asialoglycopeptide of fetuin (A-F2) was used as a ligand to direct liposomes to hepatocytes. A-F2 was cleaved from asialofetuin, purified, conjugated with fatty acids and incorporated into pre-formed sonicated DSPC/Chol (2:1) liposomes. A mild cholate incubation method for incorporating the A-F2 ligand on pre-formed vesicles was used. In preliminary in vivo experiments 111In3+ encapsulated in A-F2/palmityl liposomes was seen to accumulate in the liver of mice significantly faster than when encapsulated in non-ligand bearing liposomes of the same lipid composition (studied before), justifying further investigation of this system. The presence of the A-F2/fatty acid conjugate in a functional form on the vesicle surface was confirmed by their reversible agglutination in the presence of Ricinus communis agglutinin (RCA120). Effects of ligand incorporation on the vesicle size distribution, z-potential, membrane integrity and stability were monitored. The results demonstrate that highest ligand incorporation was achieved when liposomes and ligand were co-incubated in the presence of 1 mM sodium cholate. Incorporation increased with the length of the fatty acid used for A-F2 conjugation. Ligand-bearing liposomes were demonstrated to be smaller in diameter (about 30%) with a more positive z-potential in comparison to control vesicles while ligand incorporation did not influence the liposome membrane integrity. The size of the ligand-incorporating vesicles was maintained after 24 hours of incubation in isotonic buffer, proving that the vesicles do not aggregate. Although the preliminary biodistribution results may suggest that ligand bearing liposomes are accumulating in the liver, further cell culture, in vivo distribution and especially liver fractionation studies are required in order to clarify the intrahepatic localization of these liposomes and the ability to target liver hepatocytes in vivo.
Collapse
Affiliation(s)
- P Kallinteri
- Department of Pharmacy, University of Patras, 26500 Patras, Greece
| | | | | | | |
Collapse
|
21
|
Patel GB, Sprott GD. Archaeobacterial ether lipid liposomes (archaeosomes) as novel vaccine and drug delivery systems. Crit Rev Biotechnol 2000; 19:317-57. [PMID: 10723627 DOI: 10.1080/0738-859991229170] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Liposomes are artificial, spherical, closed vesicles consisting of one or more lipid bilayer(s). Liposomes made from ester phospholipids have been studied extensively over the last 3 decades as artificial membrane models. Considerable interest has been generated for applications of liposomes in medicine, including their use as diagnostic reagents, as carrier vehicles in vaccine formulations, or as delivery systems for drugs, genes, or cancer imaging agents. The objective of this article is to review the properties and potential applications of novel liposomes made from the membrane lipids of Archaeobacteria (Archaea). These lipids are unique and distinct from those encountered in Eukarya and Bacteria. Polar glycerolipids make up the bulk of the membrane lipids, with the remaining neutral lipids being primarily squalenes and other hydrocarbons. The polar lipids consist of regularly branched, and usually fully saturated, phytanyl chains of 20, 25, or 40 carbon length, with the 20 and 40 being most common. The phytanyl chains are attached via ether bonds to the sn-2,3 carbons of the glycerol backbone(s). It has been shown only recently that total polar lipids of archaeobacteria, and purified lipid fractions therefrom, can form liposomes. We refer to liposomes made with any lipid composition that includes ether lipids characteristic of Archaeobacteria as archaeosomes to distinguish them from vesicles made from the conventional lipids obtained from eukaryotic or eubacterial sources or their synthetic analogs. In general, archaeosomes demonstrate relatively higher stabilities to oxidative stress, high temperature, alkaline pH, action of phospholipases, bile salts, and serum proteins. Some archaeosome formulations can be sterilized by autoclaving, without problems such as fusion or aggregation of the vesicles. The uptake of archaeosomes by phagocytic cells can be up to 50-fold greater than that of conventional liposome formulations. Studies in mice have indicated that systemic administration of several test antigens entrapped within certain archaeosome compositions give humoral immune responses that are comparable to those obtained with the potent but toxic Freund's adjuvant. Archaeosome compositions can be selected to give a prolonged, sustained immune response, and the generation of a memory response. Tissue distribution studies of archaeosomes administered via various systemic and peroral routes indicate potential for targeting to specific organs. All in vitro and in vivo studies performed to date indicate that archaeosomes are safe and do not invoke any noticeable toxicity in mice. The stability, tissue distribution profiles, and adjuvant activity of archaeosome formulations indicate that they may offer a superior alternative to the use of conventional liposomes, at least for some biotechnology applications.
Collapse
Affiliation(s)
- G B Patel
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada.
| | | |
Collapse
|
22
|
Kokkona M, Kallinteri P, Fatouros D, Antimisiaris SG. Stability of SUV liposomes in the presence of cholate salts and pancreatic lipases: effect of lipid composition. Eur J Pharm Sci 2000; 9:245-52. [PMID: 10594380 DOI: 10.1016/s0928-0987(99)00064-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effect of bile salts (sodium cholate and sodium taurocholate), and pancreatic lipases on the structural integrity of SUV liposomes of different lipid compositions was studied. Liposomal membrane integrity was judged by bile salt or pancreatin-induced release of vesicle encapsulated 5,6-carboxyfluorescein, and vesicle size distribution before and after incubations. Bile salt concentration was 10 mM, while a saturated solution of pancreatin (mixed with equal volume of liposomes) was utilized. Results agree with earlier studies, demonstrating the instability of liposomes composed of lipids with low transition temperatures (PC and DMPC) in presence of cholates. Addition of cholesterol (1:1 lipid:chol molar ratio) does not substantially increase the encapsulated molecule retention. Nevertheless, liposomes composed of lipids with high transition temperatures (DPPC, DSPC and SM), retain significantly higher amounts of encapsulated material, under all conditions studied. Furthermore, the vesicles formed by mixing cholesterol with these lipids will possibly be sufficiently stable in the gastrointestinal tract for long periods of time. Sizing results reveal that in most cases release of encapsulated molecules is mainly caused by their leakage through holes formed on the lipid bilayer. However, in stearylamine containing DPPC and DSPC vesicles, the cholate-induced drastic decrease in vesicle size suggests total liposome disruption as the possible mechanism of encapsulated material immediate release.
Collapse
Affiliation(s)
- M Kokkona
- Department of Pharmacy, School of Health Sciences, University of Patras, Rio 26500, Patras, Greece
| | | | | | | |
Collapse
|
23
|
Wu J, Liu P, Zhu JL, Maddukuri S, Zern MA. Increased liver uptake of liposomes and improved targeting efficacy by labeling with asialofetuin in rodents. Hepatology 1998; 27:772-8. [PMID: 9500706 DOI: 10.1002/hep.510270319] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To improve liposome-directed therapy of liver disease and gene delivery, it would be beneficial to selectively target hepatocytes. For this purpose, conventional liposomes (CL) were labeled with asialofetuin (AF), an asialoglycoprotein. The biodistribution of AF-labeled liposomes (AF-L) in mice and their incorporation into rat hepatocytes, and their potential use in acute liver injury, were investigated. AF-L displayed a quicker plasma clearance than CL, and 25.4%, 2.7%, and 1.2% of the injected dose remained in the plasma versus 47.0%, 26.1%, and 9.5% of CL, respectively at 2, 4, and 20 hours after the injection. Total liver uptake of AF-L (73%+/-3.9%) was markedly higher (P < .005) than CL (16.5%+/-1.8%) 4 hours after the injection. Liposomal radioactivity (cpm/mg) was greatly enhanced in the liver (11-fold) during the first 4 hours after the administration of 14C-AF-L, and was much higher than in 14C-CL-injected mice (1.5-fold). In vitro incubation of isolated rat hepatocytes with 14C-AF-L or intravenous injection of 14C-AF-L in rats resulted in higher hepatocyte-bound radioactivity compared with 14C-CL (P < .01-.005). AF-L-associated 1,1'-dilinoleyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) fluorescent signals were not only located in Kupffer cells, but also in hepatocytes, in which bile canaliculus networks were imaged. Intravenous administration of vitamin E (VE)-associated CL (VE-CL, 1 mg/mouse) significantly lowered alanine transaminase (ALT) levels in CCl4-treated mice (196+/-79 vs. 2,107+/-235 U/mL; P < .01). The ALT level in CCl4 + VE-AF-L group was decreased to 38+/-16 units/mL, which was significantly lower than the CC14 + VE-CL group (P < .05). In conclusion, labeling liposomes with AF led to a shortened liposome plasma half-life and greatly enhanced uptake of AF-L liposome by the liver. The enhanced uptake resulted from an increased incorporation of hepatocytes with AF-L liposomes. VE-associated AF liposomes further improved the protective effect of VE liposomes on CC14-induced acute liver injury in mice. Preferential hepatocyte incorporation of AF-L liposomes suggests a useful hepatocyte-targeting approach for drug delivery and gene transfection.
Collapse
Affiliation(s)
- J Wu
- Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107-5083, USA
| | | | | | | | | |
Collapse
|