1
|
English Jr. RS, Ruiz S. Use of Botulinum Toxin for Androgenic Alopecia: A Systematic Review. Skin Appendage Disord 2022; 8:93-100. [PMID: 35415183 PMCID: PMC8928186 DOI: 10.1159/000518574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/19/2021] [Indexed: 09/02/2023] Open
Abstract
In this systematic review, we summarize the efficacy and safety of intradermal and intramuscular botulinum toxin injections for androgenic alopecia (AGA). Using PubMed, we conducted a literature search up to February 2021 using the following keyword combinations: "botulinum toxin" or "botox" and "androgenetic alopecia," "hair loss," or "alopecia." Five clinical studies met our inclusion criteria: 4 prospective cohorts and 1 randomized clinical trial (RCT). Study durations ranged from 24 to 60 weeks. No studies included control groups or compared botulinum toxin injections against approved treatments. A total of 165 participants were identified - all of whom were males with AGA. Of the 4 studies measuring response rates (i.e., subjects with >0% hair changes), response rates ranged from 75 to 79.1%. Within studies measuring hair count changes from intramuscular injections, changes ranged from 18 to 20.9%. No serious adverse events were reported. Studies on botulinum toxin injections have produced favorable outcomes for AGA subjects. However, results should be interpreted with caution due to the absence of control groups, small numbers of participants, and relatively low Jadad quality scores. Large RCTs are recommended to confirm efficacy and safety, explore the effects of botulinum toxin on females with pattern hair loss, and establish best practices for intradermal and intramuscular injection methodologies.
Collapse
|
2
|
Mu Z, Wang J, Wang W, Lv W, Chen Y, Wang F, Zhao Y, Dong B, Wang Y, Wang Z. Blood glucose fluctuations detected by continuous glucose monitoring system in gout patients with normal glucose tolerance and the effect of urate-lowering therapy. Int J Rheum Dis 2020; 23:1145-1151. [PMID: 32483927 DOI: 10.1111/1756-185x.13862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/27/2022]
Abstract
AIM The aim of this study was to investigate whether there are blood glucose fluctuations in gout patients with hyperuricemia and normal glucose tolerance, and the effect of urate-lowering therapy on blood glucose fluctuations. METHODS Thirty patients with newly diagnosed gout, hyperuricemia and normal glucose tolerance were enrolled in our study. Continuous glucose monitoring system (CGMS) was used to detect the blood glucose fluctuations of these gout patients. Changes in blood glucose fluctuations after allopurinol therapy were also evaluated. RESULTS Compared with the reference values of blood glucose fluctuation parameters in China, gout patients had greater glycemic fluctuations including higher mean amplitude of glucose excursions (MAGE) (4.65 vs 1.94 mmol/L, P < .001), higher largest amplitude of blood glucose excursions (LAGE) (4.99 vs 3.72 mmol/L, P < .001) and higher standard deviations of blood glucose (SDBG) (1.36 vs 0.79 mmol/L, P < .001). MAGE was significantly correlated with uric acid (β = .007, P = .024) and HOMA-insulin resistance (IR) (β = .508, P = .03). Allopurinol treatment significantly reduced MAGE (4.16 vs 4.65 mmol/L, P < .001), SDBG (0.99 vs 1.36 mmol/L, P < .001) and HOMA-IR (2.26 vs 3.01, P < .001) in gout patients. CONCLUSION Blood glucose fluctuation increased even in the stage of normal glucose tolerance among gout patients. Blood glucose fluctuations in gout patients were associated with the level of serum uric acid and allopurinol could decrease blood glucose fluctuation as well as IR.
Collapse
Affiliation(s)
- Zepeng Mu
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Wang
- Department of Cancer Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenshan Lv
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ying Chen
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fang Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuhang Zhao
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bingzi Dong
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yangang Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhongchao Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Avolio A, Kim MO, Adji A, Gangoda S, Avadhanam B, Tan I, Butlin M. Cerebral Haemodynamics: Effects of Systemic Arterial Pulsatile Function and Hypertension. Curr Hypertens Rep 2018; 20:20. [PMID: 29556793 DOI: 10.1007/s11906-018-0822-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Concepts of pulsatile arterial haemodynamics, including relationships between oscillatory blood pressure and flow in systemic arteries, arterial stiffness and wave propagation phenomena have provided basic understanding of underlying haemodynamic mechanisms associated with elevated arterial blood pressure as a major factor of cardiovascular risk, particularly the deleterious effects of isolated systolic hypertension in the elderly. This topical review assesses the effects of pulsatility of blood pressure and flow in the systemic arteries on the brain. The review builds on the emerging notion of the "pulsating brain", taking into account the high throughput of blood flow in the cerebral circulation in the presence of mechanisms involved in ensuring efficient and regulated cerebral perfusion. RECENT FINDINGS Recent studies have provided evidence of the relevance of pulsatility and hypertension in the following areas: (i) pressure and flow pulsatility and regulation of cerebral blood flow, (ii) cerebral and systemic haemodynamics, hypertension and brain pathologies (cognitive impairment, dementia, Alzheimer's disease), (iii) stroke and cerebral small vessel disease, (iv) cerebral haemodynamics and noninvasive estimation of cerebral vascular impedance, (v) cerebral and systemic pulsatile haemodynamics and intracranial pressure, (iv) response of brain endothelial cells to cyclic mechanical stretch and increase in amyloid burden. Studies to date, producing increasing epidemiological, clinical and experimental evidence, suggest a potentially significant role of systemic haemodynamic pulsatility on structure and function of the brain.
Collapse
Affiliation(s)
- Alberto Avolio
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Mi Ok Kim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Audrey Adji
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,St. Vincent's Clinic, Victor Chang Cardiac Research Institute, University of New South Wales, Sydney, Australia
| | - Sumudu Gangoda
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Bhargava Avadhanam
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Isabella Tan
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Mark Butlin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
4
|
Martin FA, McLoughlin A, Rochfort KD, Davenport C, Murphy RP, Cummins PM. Regulation of thrombomodulin expression and release in human aortic endothelial cells by cyclic strain. PLoS One 2014; 9:e108254. [PMID: 25238231 PMCID: PMC4169621 DOI: 10.1371/journal.pone.0108254] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/19/2014] [Indexed: 01/10/2023] Open
Abstract
Background and Objectives Thrombomodulin (TM), an integral membrane glycoprotein expressed on the lumenal surface of vascular endothelial cells, promotes anti-coagulant and anti-inflammatory properties. Release of functional TM from the endothelium surface into plasma has also been reported. Much is still unknown however about how endothelial TM is regulated by physiologic hemodynamic forces (and particularly cyclic strain) intrinsic to endothelial-mediated vascular homeostasis. Methods This study employed human aortic endothelial cells (HAECs) to investigate the effects of equibiaxial cyclic strain (7.5%, 60 cycles/min, 24 hrs), and to a lesser extent, laminar shear stress (10 dynes/cm2, 24 hrs), on TM expression and release. Time-, dose- and frequency-dependency studies were performed. Results Our initial studies demonstrated that cyclic strain strongly downregulated TM expression in a p38- and receptor tyrosine kinase-dependent manner. This was in contrast to the upregulatory effect of shear stress. Moreover, both forces significantly upregulated TM release over a 48 hr period. With continuing focus on the cyclic strain-induced TM release, we noted both dose (0–7.5%) and frequency (0.5–2.0 Hz) dependency, with no attenuation of strain-induced TM release observed following inhibition of MAP kinases (p38, ERK-1/2), receptor tyrosine kinase, or eNOS. The concerted impact of cyclic strain and inflammatory mediators on TM release from HAECs was also investigated. In this respect, both TNFα (100 ng/ml) and ox-LDL (10–50 µg/ml) appeared to potentiate strain-induced TM release. Finally, inhibition of neither MMPs (GM6001) nor rhomboids (3,4-dichloroisocoumarin) had any effect on strain-induced TM release. However, significantly elevated levels (2.1 fold) of TM were observed in isolated microparticle fractions following 7.5% strain for 24 hrs. Conclusions A preliminary in vitro investigation into the effects of cyclic strain on TM in HAECs is presented. Physiologic cyclic strain was observed to downregulate TM expression, whilst upregulating in a time-, dose- and frequency-dependent manner the release of TM.
Collapse
Affiliation(s)
- Fiona A. Martin
- School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Alisha McLoughlin
- School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Keith D. Rochfort
- School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Colin Davenport
- School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Ronan P. Murphy
- School of Health & Human Performance, Dublin City University, Glasnevin, Dublin, Ireland
- Centre for Preventive Medicine, Dublin City University, Glasnevin, Dublin, Ireland
| | - Philip M. Cummins
- School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
- Centre for Preventive Medicine, Dublin City University, Glasnevin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
5
|
Spescha RD, Glanzmann M, Simic B, Witassek F, Keller S, Akhmedov A, Tanner FC, Lüscher TF, Camici GG. Adaptor protein p66(Shc) mediates hypertension-associated, cyclic stretch-dependent, endothelial damage. Hypertension 2014; 64:347-53. [PMID: 24842918 DOI: 10.1161/hypertensionaha.113.02129] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Increased cyclic stretch to the vessel wall, as observed in hypertension, leads to endothelial dysfunction through increased free radical production and reduced nitric oxide bioavailability. Genetic deletion of the adaptor protein p66(Shc) protects mice against age-related and hyperglycemia-induced endothelial dysfunction, as well as atherosclerosis and stroke. Furthermore, p66(Shc) mediates vascular dysfunction in hypertensive mice. However, the direct role of p66(Shc) in mediating mechanical force-induced free radical production is unknown; thus, we studied the effect of cyclic stretch on p66(Shc) activation in primary human aortic endothelial cells and aortic endothelial cells isolated from normotensive and hypertensive rats. Exposure of human aortic endothelial cells to cyclic stretch led to a stretch- and time-dependent p66(Shc) phosphorylation at Ser36 downstream of integrin α5β1 and c-Jun N-terminal kinase. In parallel, nicotinamide adenine dinucleotide phosphate oxidase activation, as well as production of reactive oxygen species, increased, whereas nitric oxide bioavailability decreased. Silencing of p66(Shc) blunted stretch-increased superoxide anion production and nicotinamide adenine dinucleotide phosphate oxidase activation and restored nitric oxide bioavailability. In line with the above, activation of p66(Shc) increased in isolated aortic endothelial cells of spontaneously hypertensive rats compared with normotensive ones. Pathological stretch by activating integrin α5β1 and c-Jun N-terminal kinase phosphorylates p66(Shc) at Ser36, augments reactive oxygen species production via nicotinamide adenine dinucleotide phosphate oxidase, and in turn reduces nitric oxide bioavailability. This novel molecular pathway may be relevant for endothelial dysfunction and vascular disease in hypertension.
Collapse
Affiliation(s)
- Remo D Spescha
- From the Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland (R.D.S., M.G., B.S., F.W., S.K., A.A., F.C.T., T.F.L., G.G.C.); Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland (R.D.S., M.G., B.S., S.K., A.A., F.C.T., T.F.L., G.G.C.); and Cardiology, Cardiovascular Center, University Hospital Zurich, Zurich, Switzerland (F.C.T., T.F.L.)
| | - Martina Glanzmann
- From the Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland (R.D.S., M.G., B.S., F.W., S.K., A.A., F.C.T., T.F.L., G.G.C.); Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland (R.D.S., M.G., B.S., S.K., A.A., F.C.T., T.F.L., G.G.C.); and Cardiology, Cardiovascular Center, University Hospital Zurich, Zurich, Switzerland (F.C.T., T.F.L.)
| | - Branko Simic
- From the Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland (R.D.S., M.G., B.S., F.W., S.K., A.A., F.C.T., T.F.L., G.G.C.); Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland (R.D.S., M.G., B.S., S.K., A.A., F.C.T., T.F.L., G.G.C.); and Cardiology, Cardiovascular Center, University Hospital Zurich, Zurich, Switzerland (F.C.T., T.F.L.)
| | - Fabienne Witassek
- From the Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland (R.D.S., M.G., B.S., F.W., S.K., A.A., F.C.T., T.F.L., G.G.C.); Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland (R.D.S., M.G., B.S., S.K., A.A., F.C.T., T.F.L., G.G.C.); and Cardiology, Cardiovascular Center, University Hospital Zurich, Zurich, Switzerland (F.C.T., T.F.L.)
| | - Stephan Keller
- From the Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland (R.D.S., M.G., B.S., F.W., S.K., A.A., F.C.T., T.F.L., G.G.C.); Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland (R.D.S., M.G., B.S., S.K., A.A., F.C.T., T.F.L., G.G.C.); and Cardiology, Cardiovascular Center, University Hospital Zurich, Zurich, Switzerland (F.C.T., T.F.L.)
| | - Alexander Akhmedov
- From the Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland (R.D.S., M.G., B.S., F.W., S.K., A.A., F.C.T., T.F.L., G.G.C.); Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland (R.D.S., M.G., B.S., S.K., A.A., F.C.T., T.F.L., G.G.C.); and Cardiology, Cardiovascular Center, University Hospital Zurich, Zurich, Switzerland (F.C.T., T.F.L.)
| | - Felix C Tanner
- From the Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland (R.D.S., M.G., B.S., F.W., S.K., A.A., F.C.T., T.F.L., G.G.C.); Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland (R.D.S., M.G., B.S., S.K., A.A., F.C.T., T.F.L., G.G.C.); and Cardiology, Cardiovascular Center, University Hospital Zurich, Zurich, Switzerland (F.C.T., T.F.L.)
| | - Thomas F Lüscher
- From the Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland (R.D.S., M.G., B.S., F.W., S.K., A.A., F.C.T., T.F.L., G.G.C.); Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland (R.D.S., M.G., B.S., S.K., A.A., F.C.T., T.F.L., G.G.C.); and Cardiology, Cardiovascular Center, University Hospital Zurich, Zurich, Switzerland (F.C.T., T.F.L.)
| | - Giovanni G Camici
- From the Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland (R.D.S., M.G., B.S., F.W., S.K., A.A., F.C.T., T.F.L., G.G.C.); Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland (R.D.S., M.G., B.S., S.K., A.A., F.C.T., T.F.L., G.G.C.); and Cardiology, Cardiovascular Center, University Hospital Zurich, Zurich, Switzerland (F.C.T., T.F.L.).
| |
Collapse
|
6
|
Brandes RP, Weissmann N, Schröder K. Nox family NADPH oxidases in mechano-transduction: mechanisms and consequences. Antioxid Redox Signal 2014; 20:887-98. [PMID: 23682993 PMCID: PMC3924808 DOI: 10.1089/ars.2013.5414] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE The majority of cells in a multi-cellular organism are continuously exposed to ever-changing physical forces. Mechano-transduction links these events to appropriate reactions of the cells involving stimulation of signaling cascades, reorganization of the cytoskeleton and alteration of gene expression. RECENT ADVANCES Mechano-transduction alters the cellular redox balance and the formation of reactive oxygen species (ROS). Nicotine amide adenine dinucleotide reduced form (NADPH) oxidases of the Nox family are prominent ROS generators and thus, contribute to this stress-induced ROS formation. CRITICAL ISSUES Different types and patterns of mechano-stress lead to Nox-dependent ROS formation and Nox-mediated ROS formation contributes to cellular responses and adaptation to physical forces. Thereby, Nox enzymes can mediate vascular protection during physiological mechano-stress. Despite this, over-activation and induction of Nox enzymes and a subsequent substantial increase in ROS formation also promotes oxidative stress in pathological situations like disturbed blood flow or extensive stretch. FUTURE DIRECTIONS Individual protein targets of Nox-mediated redox-signaling will be identified to better understand the specificity of Nox-dependent ROS signaling in mechano-transduction. Nox-inhibitors will be tested to reduce cellular activation in response to mechano-stimuli.
Collapse
Affiliation(s)
- Ralf P Brandes
- 1 Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt , Frankfurt am Main, Germany
| | | | | |
Collapse
|
7
|
Abstract
Increased endothelial permeability and reduction of alveolar liquid clearance capacity are two leading pathogenic mechanisms of pulmonary edema, which is a major complication of acute lung injury, severe pneumonia, and acute respiratory distress syndrome, the pathologies characterized by unacceptably high rates of morbidity and mortality. Besides the success in protective ventilation strategies, no efficient pharmacological approaches exist to treat this devastating condition. Understanding of fundamental mechanisms involved in regulation of endothelial permeability is essential for development of barrier protective therapeutic strategies. Ongoing studies characterized specific barrier protective mechanisms and identified intracellular targets directly involved in regulation of endothelial permeability. Growing evidence suggests that, although each protective agonist triggers a unique pattern of signaling pathways, selected common mechanisms contributing to endothelial barrier protection may be shared by different barrier protective agents. Therefore, understanding of basic barrier protective mechanisms in pulmonary endothelium is essential for selection of optimal treatment of pulmonary edema of different etiology. This article focuses on mechanisms of lung vascular permeability, reviews major intracellular signaling cascades involved in endothelial monolayer barrier preservation and summarizes a current knowledge regarding recently identified compounds which either reduce pulmonary endothelial barrier disruption and hyperpermeability, or reverse preexisting lung vascular barrier compromise induced by pathologic insults.
Collapse
Affiliation(s)
- Konstantin G Birukov
- Lung Injury Center, Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, Illinois, USA.
| | | | | |
Collapse
|
8
|
Pinaud F, Loufrani L, Toutain B, Lambert D, Vandekerckhove L, Henrion D, Baufreton C. In vitro protection of vascular function from oxidative stress and inflammation by pulsatility in resistance arteries. J Thorac Cardiovasc Surg 2011; 142:1254-62. [DOI: 10.1016/j.jtcvs.2011.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 04/23/2011] [Accepted: 07/11/2011] [Indexed: 11/30/2022]
|
9
|
Hsu JH, Oishi P, Wiseman DA, Hou Y, Chikovani O, Datar S, Sajti E, Johengen MJ, Harmon C, Black SM, Fineman JR. Nitric oxide alterations following acute ductal constriction in the fetal lamb: a role for superoxide. Am J Physiol Lung Cell Mol Physiol 2010; 298:L880-7. [PMID: 20363848 DOI: 10.1152/ajplung.00384.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute partial compression of the fetal ductus arteriosus (DA) results in an initial abrupt increase in pulmonary blood flow (PBF), which is followed by a significant reduction in PBF to baseline values over the ensuing 2-4 h. We have previously demonstrated that this potent vasoconstricting response is due, in part, to an endothelin-1 (ET-1)-mediated decrease in nitric oxide synthase (NOS) activity. In addition, in vitro data demonstrate that ET-1 increases superoxide levels in pulmonary arterial smooth muscle cells and that oxidative stress alters NOS activity. Therefore, the objectives of this study were to determine the potential role of superoxide in the alterations of hemodynamics and NOS activity following acute ductal constriction in the late-gestation fetal lamb. Eighteen anesthetized near-term fetal lambs were instrumented, and a lung biopsy was performed. After a 48-h recovery, acute constriction of the DA was performed by inflating a vascular occluder. Polyethylene glycol-superoxide dismutase (PEG-SOD; 1,000-1,500 units/kg, n = 7) or PEG-alone (vehicle control group, n = 5) was injected into the pulmonary artery before ductal constriction. Six animals had a sham operation. In PEG-alone-treated lambs, acute ductal constriction rapidly decreased pulmonary vascular resistance (PVR) by 88%. However, by 4 h, PVR returned to preconstriction baseline. This vasoconstriction was associated with an increase in lung superoxide levels (82%), a decrease in total NOS activity (50%), and an increase in P-eNOS-Thr495 (52%) (P < 0.05). PEG-SOD prevented the increase of superoxide after ductal constriction, attenuated the vasoconstriction, preserved NOS activity, and increased P-eNOS Ser1177 (307%, P < 0.05). Sham procedure induced no changes. These data suggest that an acute decrease in NOS activity that is mediated, in part, by increased superoxide levels, and alterations in the phosphorylation status of the endothelial NOS isoform, underlie the pulmonary vascular response to acute ductal constriction.
Collapse
Affiliation(s)
- Jong-Hau Hsu
- Department of Pediatrics, University of California, San Francisco, California 94143-0106, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Cheng CP, Choi G, Herfkens RJ, Taylor CA. The effect of aging on deformations of the superficial femoral artery resulting from hip and knee flexion: potential clinical implications. J Vasc Interv Radiol 2009; 21:195-202. [PMID: 20022767 DOI: 10.1016/j.jvir.2009.08.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 07/03/2009] [Accepted: 08/26/2009] [Indexed: 10/20/2022] Open
Abstract
PURPOSE Vessel deformations have been implicated in endoluminal device fractures, and therefore better understanding of these deformations could be valuable for device regulation, evaluation, and design. The purpose of this study is to describe geometric changes of the superficial femoral artery (SFA) resulting from hip and knee flexion in older subjects. MATERIALS AND METHODS The SFAs of seven healthy subjects aged 50-70 years were imaged with magnetic resonance angiography with the legs straight and with hip and knee flexion. From geometric models constructed from these images, axial, twisting, and bending deformations were quantified. RESULTS There was greater shortening in the bottom third of the SFA than in the top two thirds (top, 5.9% +/- 3.0%; middle, 6.7% +/- 2.1%; bottom, 8.1% +/- 2.0% [mean +/- SD]; P < .05), significant twist in all sections (top, 1.3 degrees /cm +/- 0.8; middle, 1.8 degrees /cm +/- 1.1; bottom, 2.1 degrees /cm +/- 1.3), and greater curvature increase in the bottom third than in the top two thirds (top, 0.15 cm(-1) +/- 0.06; middle, 0.09 cm(-1) +/- 0.07; bottom, 0.41 cm(-1) +/- 0.22; P < .001). CONCLUSIONS The SFA tends to deform more in the bottom third than in the other sections, likely because of less musculoskeletal constraint distal to the adductor canal and vicinity of knee flexion. The SFAs of these older subjects curve off axis with normal joint flexion, probably resulting from known loss of arterial elasticity with age. This slackening of the vessel enables a method for noninvasive quantification of in vivo SFA strain, which may be valuable for treatment planning and device design. In addition, the spatially resolved arterial deformations quantified in this study may be useful for commercial and regulatory device evaluation.
Collapse
Affiliation(s)
- Christopher P Cheng
- Department of Surgery, Stanford University, Clark Center, Room E350, Stanford, CA 94305-5431, USA.
| | | | | | | |
Collapse
|
11
|
Wagner AH, Kautz O, Fricke K, Zerr-Fouineau M, Demicheva E, Güldenzoph B, Bermejo JL, Korff T, Hecker M. Upregulation of glutathione peroxidase offsets stretch-induced proatherogenic gene expression in human endothelial cells. Arterioscler Thromb Vasc Biol 2009; 29:1894-901. [PMID: 19729606 DOI: 10.1161/atvbaha.109.194738] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Localization of atherosclerotic plaques typically correlates with areas of biomechanical strain where shear stress is decreased while stretch, thought to promote atherogenesis through enhanced oxidative stress, is increased. METHODS AND RESULTS In human cultured endothelial cells, nitric oxide synthase expression was exclusively shear stress-dependent whereas expression of glutathione peroxidase-1 (GPx-1), but not that of Cu(2+)/Zn(2+)-superoxide dismutase or Mn(2+)-superoxide dismutase, was upregulated solely in response to cyclic stretch. GPx-1 expression was also enhanced in isolated mouse arteries perfused at high pressure. Combined pharmacological and decoy oligodeoxynucleotide blockade revealed that activation of p38 MAP kinase followed by nuclear translocation of CCAAT/enhancer binding protein plays a pivotal role in stretch-induced GPx-1 expression in human endothelial cells. Antisense oligodeoxynucleotide knockdown of GPx-1 reinforced both their capacity to generate hydrogen peroxide and the transient stretch-induced expression of CD40, monocyte chemoatractant protein-1, and vascular cell adhesion molecule-1. Consequently, THP-1 monocyte adhesion to the GPx-1-depleted cells was augmented. CONCLUSIONS Stretch-induced proatherosclerotic gene expression in human endothelial cells seems to be hydrogen peroxide-mediated. The concomitant rise in GPx-1 expression, but not that of other antioxidant enzymes, may comprise an adaptive mechanism through which the cells maintain their antiatherosclerotic properties in spite of a decreased bioavailability of nitric oxide.
Collapse
Affiliation(s)
- Andreas H Wagner
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kuang W, Tan J, Duan Y, Duan J, Wang W, Jin F, Jin Z, Yuan X, Liu Y. Cyclic stretch induced miR-146a upregulation delays C2C12 myogenic differentiation through inhibition of Numb. Biochem Biophys Res Commun 2009; 378:259-63. [DOI: 10.1016/j.bbrc.2008.11.041] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 11/10/2008] [Indexed: 10/21/2022]
|
13
|
Abstract
Superoxide (O(2)(-)) is an important regulator of kidney function. We have recently shown that luminal flow stimulates O(2)(-) production in the thick ascending limb (TAL), attributable in part to mechanical factors. Stretch, pressure and shear stress all change when flow increases in the TAL. We hypothesized that stretch rather than shear stress or pressure per se stimulates O(2)(-) production by TALs. We measured O(2)(-) production in isolated perfused rat TALs using fluorescence microscopy and dihydroethidium. Tubules were perfused with a Na-free solution to eliminate the confounding effect of Na transport. Flow induced an increase in O(2)(-) production from 29+/-4 to 90+/-8 AU/s (P<0.002; n=5). The response to flow is rapidly reversible. O(2)(-) production by TALs perfused at 10 nL/min decreased from 113+/-6 to 25+/-10 AU/s (P<0.003; n=4) 15 minutes after flow was stopped. Increasing pressure and stretch in the absence of shear stress caused a significant increase in O(2)(-) production (40+/-6 to 118+/-17 AU/s; P<0.02; n=5). In contrast, eliminating shear stress had no effect (107+/-9 versus 108+/-10 AU/s; n=5). Increasing stretch by 27+/-2% in the presence of flow while reducing pressure stimulated O(2)(-) production from 66+/-7 to 84+/-9 AU/s (29+/-8%; P<0.02; n=5). Tempol inhibited this increase (n=5). We conclude that increasing stretch rather than pressure or shear stress accounts for the mechanical aspect of flow-induced O(2)(-) production in the TAL. Stretch of the TAL during hypertension, diabetes, and salt loading may contribute to renal damage.
Collapse
Affiliation(s)
- Jeffrey L Garvin
- Hypertension and Vascular Research Division, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA.
| | | |
Collapse
|
14
|
Cyclic Stretch Controls the Expression of CD40 in Endothelial Cells by Changing Their Transforming Growth Factor–β1 Response. Circulation 2007; 116:2288-97. [DOI: 10.1161/circulationaha.107.730309] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background—
CD40 is a costimulatory molecule that acts as a central mediator of various immune responses, including those involved in the progression of atherosclerosis. Correspondent to its function, CD40 is present not only on many immune cells, such as antigen-presenting cells and T cells, but also on nonimmune cells, such as endothelial cells.
Methods and Results—
Ex vivo analyses in mice revealed that CD40 is strongly expressed in distinct venous and capillary but not arterial endothelial cell populations. Therefore, we analyzed to what extent determinants of an arterial environment control CD40 expression in these cells. In vitro studies indicated that the presence of smooth muscle cells or exposure to cyclic stretch significantly downregulates CD40 expression in human endothelial cells. Interestingly, endothelial cells cocultured with smooth muscle cells upregulated CD40 expression in response to cyclic stretch through a transforming growth factor–β1/activin-receptor–like kinase-1 (Alk-1)–dependent mechanism. To corroborate that this mechanism also operates in arteries in vivo, we analyzed the expression of Alk-1 and CD40 at atherosclerosis-prone sites of the mouse aorta that also appear to be exposed to increased stretch. In wild-type mice, both Alk-1 and CD40 revealed a comparably heterogeneous expression pattern along the aortic arch that matched those sites in low-density lipoprotein–receptor–deficient mice where atherosclerotic lesions develop.
Conclusions—
Cyclic stretch thus increases the abundance of CD40 in endothelial cells through transforming growth factor–β1/Alk-1 signaling. This mechanism in turn may be responsible for the heterogeneous expression of CD40 at arterial bifurcations or curvatures and would support a site-specific proinflammatory response that is typical for the early phase of atherosclerosis.
Collapse
|
15
|
Hong NJ, Garvin JL. Flow increases superoxide production by NADPH oxidase via activation of Na-K-2Cl cotransport and mechanical stress in thick ascending limbs. Am J Physiol Renal Physiol 2007; 292:F993-8. [PMID: 17132867 DOI: 10.1152/ajprenal.00383.2006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Superoxide (O2−) regulates renal function and is implicated in hypertension. O2−production increases in response to increased ion delivery in thick ascending limbs (TALs) and macula densa and mechanical strain in other cell types. Tubular flow in the kidney acutely varies causing changes in ion delivery and mechanical stress. We hypothesized that increasing luminal flow stimulates O2−production by NADPH oxidase in TALs via activation of Na-K-2Cl cotransport. We measured intracellular O2−in isolated rat TALs using dihydroethidium in the presence and absence of luminal flow and inhibitors of NADPH oxidase, Na-K-2Cl cotransport, and Na/H exchange. In the absence of flow, the rate of O2−production was 5.8 ± 1.4 AU/s. After flow was initiated, it increased to 29.7 ± 4.3 AU/s ( P < 0.001). O2−production was linearly related to flow. Tempol alone and apocynin alone blocked the flow-induced increase in O2−production (3.5 ± 1.7 vs. 4.5 ± 2.8 AU/s and 8.2 ± 2.1 vs. 10.6 ± 2.8 AU/s, respectively). Furosemide decreased flow-induced O2−production by 55% (37.3 ± 5.2 to 16.8 ± 2.8 AU/s; P < 0.002); however, dimethylamiloride had no effect. Finally, we examined whether changes in mechanical forces are involved in flow-induced O2−production by using a Na-free solution to perfuse TALs. In the absence of NaCl, luminal flow enhanced O2−production (1.5 ± 0.5 to 13.5 ± 1.1 AU/s; P < 0.001), ∼50% less stimulation than when flow was increased in the presence of luminal NaCl. We conclude that flow stimulates O2−production in TALs via activation of NADPH oxidase and that NaCl absorption due to Na-K-2Cl cotransport and flow-associated mechanical factors contribute equally to this process.
Collapse
Affiliation(s)
- Nancy J Hong
- Division of Hypertension and Vascular Research, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | | |
Collapse
|
16
|
Shi F, Chiu YJ, Cho Y, Bullard TA, Sokabe M, Fujiwara K. Down-regulation of ERK but not MEK phosphorylation in cultured endothelial cells by repeated changes in cyclic stretch. Cardiovasc Res 2006; 73:813-22. [PMID: 17289004 PMCID: PMC2621446 DOI: 10.1016/j.cardiores.2006.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 12/06/2006] [Accepted: 12/19/2006] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Effects of cyclic stretch on endothelial cells are studied usually by exposing cells cultured under stretch-free conditions to some levels of cyclic stretch, but in vivo these cells experience both increase and decrease in stretch. Experiments were designed to study how endothelial cells maintained under certain levels of cyclic stretch responded to shifts in stretch frequencies and amplitudes. METHODS Confluent endothelial cells cultured on flexible silicone membranes with or without pre-stretching for 2-12 h were exposed to various levels of stretch amplitude or frequency and assayed for extracellular signal-regulated kinase 1/2 (ERK) phosphorylation. RESULTS When endothelial cells without pre-stretching were cyclically stretched, ERK phosphorylation increased, peaking approximately 15 min and slowly decreased. In contrast, when pre-stretched cells were exposed to either higher or lower stretch condition, ERK phosphorylation transiently decreased within 5 min, indicating that some mechanism which down-regulated ERK phosphorylation was activated. Because phosphorylation of ERK kinase (MEK) was not inhibited in these cells, this mechanism targeted ERK directly, not the upstream kinases of the Ras-Raf-MEK-ERK cascade. Furthermore, this ERK down-regulation in pre-stretched cells was not induced by agonists, was inhibited by Na(3)VO(4) but not okadaic acid, and was detected in the cytosolic fraction. Repeated shifts in stretch conditions induced continuous down-regulation of ERK but not MEK phosphorylation. CONCLUSIONS Endothelial cells are capable of down-regulating ERK phosphorylation in a cyclic stretch- and tyrosine phosphatase-dependent manner. Frequent changes in stretch conditions constitutively activated this ability, which could play some role in regulating ERK activity in endothelial cells in vivo.
Collapse
Affiliation(s)
- Feng Shi
- Cardiovascular Research Institute, University of Rochester, 601 Elmwood Avenue, Box 679, Rochester, NY 14642 USA
| | - Yi-Jen Chiu
- Cardiovascular Research Institute, University of Rochester, 601 Elmwood Avenue, Box 679, Rochester, NY 14642 USA
| | - Youngsun Cho
- Cardiovascular Research Institute, University of Rochester, 601 Elmwood Avenue, Box 679, Rochester, NY 14642 USA
| | - Tara A. Bullard
- Cardiovascular Research Institute, University of Rochester, 601 Elmwood Avenue, Box 679, Rochester, NY 14642 USA
| | - Masahiro Sokabe
- Department of Physiology, Graduate School of Medicine, Nagoya University and ICORP/SORST, Cell Mechanosignaling, Japan Science and Technology Corporation, 65 Tsurumai, Nagoya 466-8550 Japan
| | - Keigi Fujiwara
- Cardiovascular Research Institute, University of Rochester, 601 Elmwood Avenue, Box 679, Rochester, NY 14642 USA
- Address correspondence to Keigi Fujiwara, Cardiovascular Research Institute, University of Rochester, 601 Elmwood Avenue, Box 679, Rochester, NY 14642, Tel. 585 273-5714; Fax. 585 273-1497; E-mail:
| |
Collapse
|
17
|
Cummins PM, von Offenberg Sweeney N, Killeen MT, Birney YA, Redmond EM, Cahill PA. Cyclic strain-mediated matrix metalloproteinase regulation within the vascular endothelium: a force to be reckoned with. Am J Physiol Heart Circ Physiol 2006; 292:H28-42. [PMID: 16951049 DOI: 10.1152/ajpheart.00304.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The vascular endothelium is a dynamic cellular interface between the vessel wall and the bloodstream, where it regulates the physiological effects of humoral and biomechanical stimuli on vessel tone and remodeling. With respect to the latter hemodynamic stimulus, the endothelium is chronically exposed to mechanical forces in the form of cyclic circumferential strain, resulting from the pulsatile nature of blood flow, and shear stress. Both forces can profoundly modulate endothelial cell (EC) metabolism and function and, under normal physiological conditions, impart an atheroprotective effect that disfavors pathological remodeling of the vessel wall. Moreover, disruption of normal hemodynamic loading can be either causative of or contributory to vascular diseases such as atherosclerosis. EC-matrix interactions are a critical determinant of how the vascular endothelium responds to these forces and unquestionably utilizes matrix metalloproteinases (MMPs), enzymes capable of degrading basement membrane and interstitial matrix molecules, to facilitate force-mediated changes in vascular cell fate. In view of the growing importance of blood flow patterns and mechanotransduction to vascular health and pathophysiology, and considering the potential value of MMPs as therapeutic targets, a timely review of our collective understanding of MMP mechanoregulation and its impact on the vascular endothelium is warranted. More specifically, this review primarily summarizes our current knowledge of how cyclic strain regulates MMP expression and activation within the vascular endothelium and subsequently endeavors to address the direct and indirect consequences of this on vascular EC fate. Possible relevance of these phenomena to vascular endothelial dysfunction and pathological remodeling are also addressed.
Collapse
Affiliation(s)
- Philip M Cummins
- Vascular Health Research Centre, Faculty of Science and Health, Dublin City Univ., Dublin, Ireland.
| | | | | | | | | | | |
Collapse
|
18
|
Schmelter M, Ateghang B, Helmig S, Wartenberg M, Sauer H. Embryonic stem cells utilize reactive oxygen species as transducers of mechanical strain-induced cardiovascular differentiation. FASEB J 2006; 20:1182-4. [PMID: 16636108 DOI: 10.1096/fj.05-4723fje] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Growing stem cells are subjected to mechanical forces, which may initiate differentiation programs. Mechanical strain stimulated cardiovascular differentiation of mouse embryonic stem (ES) cells as evaluated by quantification of contracting cardiac foci and capillary areas, respectively. Mechanical strain rapidly elevated intracellular reactive oxygen species (ROS). After 24 h up-regulation of NADPH oxidase subunits p22-phox, p47-phox, p67-phox, and Nox-4 as well as Nox-1 and Nox-4 mRNA was observed. In parallel, mechanical strain increased hypoxia-inducible factor-1alpha (HIF-1alpha) and vascular endothelial growth factor (VEGF) mRNA and protein as well as MEF2C and GATA-4 mRNA, which are involved in cardiovascular development. Furthermore, phosphorylation of extracellular-regulated kinase 1,2 (ERK1,2), p38, and c-jun N-terminal kinase (c-Jun NH2-terminal kinase (JNK)) was observed. Stimulation of cardiovascular commitment, HIF-1alpha, VEGF, and MEF2C expression as well as MAPK activation were abolished by free radical scavengers, whereas GATA-4 expression was increased. Cardiomyogenesis was inhibited by the p38 inhibitor SB203580, the ERK1,2 inhibitor UO126, and the JNK inhibitor SP600125. Vasculogenesis/angiogenesis was blunted following inhibition of ERK1,2 and JNK, whereas p38 inhibition was ineffective. Our data outline a role of ROS as mechanotransducing molecules in mechanical strain-stimulated cardiovascular differentiation of ES cells, and point toward a microenvironment of elevated ROS required for signaling cascades initiating cardiovascular differentiation programs.
Collapse
Affiliation(s)
- Maike Schmelter
- Department of Physiology Justus-Liebig-University Giessen, Aulweg 129 Giessen 35392, Germany
| | | | | | | | | |
Collapse
|
19
|
Amma H, Naruse K, Ishiguro N, Sokabe M. Involvement of reactive oxygen species in cyclic stretch-induced NF-kappaB activation in human fibroblast cells. Br J Pharmacol 2006; 145:364-73. [PMID: 15778740 PMCID: PMC1576145 DOI: 10.1038/sj.bjp.0706182] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1 Uniaxial cyclic stretch leads to an upregulation of cyclooxygenase (COX)-2 through increases in the intracellular Ca(2+) concentration via the stretch-activated (SA) channel and following nuclear factor kappa B (NF-kappaB) activation in human fibroblasts. However, the signaling mechanism as to how the elevated Ca(2+) activates NF-kappaB is unknown. In this study, we examined the involvement of reactive oxygen species (ROS) as an intermediate signal, which links the elevated Ca(2+) with NF-kappaB activation. 2 4-Hydroxy-2-nonenal (HNE) was produced and modified IkappaB peaking at 2 min. The phosphorylation of IkappaB peaked at 8 min. HNE modification and IkappaB phosphorylation, NF-kappaB translocation to the nucleus, and following COX-2 production were inhibited by extracellular Ca(2+) removal or Gd(3+) application, as well as by the antioxidants. The stretch-induced Ca(2+) increase was inhibited by extracellular Ca(2+) removal, or Gd(3+) application. 3 IkappaB kinase (IKK) activity peaked at 4 min, which was inhibited by extracellular Ca(2+) removal, Gd(3+) or the antioxidants. IKK was also HNE-modified and, similarly to IkappaB, peaked at 2 min. IKK under static conditions was activated by exogenously applied HNE at a relatively low dose (1 microM), while it was inhibited at higher concentrations, suggesting that HNE could be one of the candidate signals in the stretch-induced NF-kappaB activation. 4 The present study suggests that the NF-kappaB activation by cyclic stretch is mediated by the following signal cascade: SA channel activation --> intracellular Ca(2+) increase --> production of ROS --> activation of IKK --> phosphorylation of IkappaB --> NF-kappaB translocation to the nucleus.
Collapse
Affiliation(s)
- Hideki Amma
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Keiji Naruse
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Cell Mechanosensing Project, ICORP, JST, Nagoya 466-8550, Japan
| | - Naoki Ishiguro
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Masahiro Sokabe
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Cell Mechanosensing Project, ICORP, JST, Nagoya 466-8550, Japan
- Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
- Author for correspondence:
| |
Collapse
|
20
|
Von Offenberg Sweeney N, Cummins PM, Cotter EJ, Fitzpatrick PA, Birney YA, Redmond EM, Cahill PA. Cyclic strain-mediated regulation of vascular endothelial cell migration and tube formation. Biochem Biophys Res Commun 2005; 329:573-82. [PMID: 15737624 DOI: 10.1016/j.bbrc.2005.02.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Indexed: 11/20/2022]
Abstract
UNLABELLED Hemodynamic forces exerted by blood flow (cyclic strain, shear stress) affect the initiation and progression of angiogenesis; however, the precise signaling mechanism(s) involved are unknown. In this study, we examine the role of cyclic strain in regulating bovine aortic endothelial cell (BAEC) migration and tube formation, indices of angiogenesis. Considering their well-documented mechanosensitivity, functional inter-dependence, and involvement in angiogenesis, we hypothesized roles for matrix metalloproteinases (MMP-2/9), RGD-dependent integrins, and urokinase plasminogen activator (uPA) in this process. BAECs were exposed to equibiaxial cyclic strain (5% strain, 1Hz for 24h) before their migration and tube formation was assessed by transwell migration and collagen gel tube formation assays, respectively. In response to strain, both migration and tube formation were increased by 1.83+/-0.1- and 1.84+/-0.1-fold, respectively. Pertussis toxin, a Gi-protein inhibitor, decreased strain-induced migration by 45.7+/-32% and tube formation by 69.8+/-13%, whilst protein tyrosine kinase (PTK) inhibition with genistein had no effect. siRNA-directed attenuation of endothelial MMP-9 (but not MMP-2) expression/activity decreased strain-induced migration and tube formation by 98.6+/-41% and 40.7+/-31%, respectively. Finally, integrin blockade with cRGD peptide and siRNA-directed attenuation of uPA expression reduced strain-induced tube formation by 85.7+/-15% and 84.7+/-31%, respectively, whilst having no effect on migration. CONCLUSIONS Cyclic strain promotes BAEC migration and tube formation in a Gi-protein-dependent PTK-independent manner. Moreover, we demonstrate for the first time a putative role for MMP-9 in both strain-induced events, whilst RGD-dependent integrins and uPA appear only to be involved in strain-induced tube formation.
Collapse
|
21
|
Frye SR, Yee A, Eskin SG, Guerra R, Cong X, McIntire LV. cDNA microarray analysis of endothelial cells subjected to cyclic mechanical strain: importance of motion control. Physiol Genomics 2005; 21:124-30. [PMID: 15632272 DOI: 10.1152/physiolgenomics.00029.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microarrays were utilized to determine gene expression of vascular endothelial cells (ECs) subjected to mechanical stretch for insight into the role of strain in vascular pathophysiology. Over 4,000 genes were screened for expression changes resulting from cyclic strain (10%, 1 Hz) of human umbilical vein ECs for 6 and 24 h. Comparison of t-statistics and adjusted P values identified genes having significantly different expression between strained and static cells but not between strained and motion control. Relative to static, 6 h of cyclic stretch upregulated two genes and downregulated two genes, whereas 24 h of cyclic stretch upregulated eight genes but downregulated no genes. However, incorporating the motion control revealed that fluid agitation over the cells, rather than strain, is the primary regulator of differential expression. Furthermore, no gene exceeded a threefold change when comparing cyclic strain to either static or motion control. Quantitative real-time polymerase chain reaction confirmed the dominance of fluid agitation in gene regulation with the exception of heat shock protein 10 at 24 h and plasminogen activator inhibitor 1 at 6 h. Taken together, the small number of differentially expressed genes and their low fold expression levels indicate that cyclic strain is a weak inducer of gene regulation in ECs. However, many of the differentially expressed genes possess antioxidant properties, suggesting that oxidative mechanisms direct EC adaptation to cyclic stretch.
Collapse
Affiliation(s)
- Stacie R Frye
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
22
|
Lehoux S, Esposito B, Merval R, Tedgui A. Differential Regulation of Vascular Focal Adhesion Kinase by Steady Stretch and Pulsatility. Circulation 2005; 111:643-9. [PMID: 15668343 DOI: 10.1161/01.cir.0000154548.16191.2f] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background—
In vivo tensile strain in arteries comprises 2 components: steady stretch and pulsatile stretch. However, little attention has been paid to the differential transduction of these stimuli in whole vessels.
Methods and Results—
Using rabbit aortas maintained in organ culture for 24 hours, we found that focal adhesion kinase (FAK) was strongly activated by high intraluminal pressure (150 mm Hg), as evidenced by increased phosphorylation (
P
<0.01) of tyrosine residues Tyr-397 (3.06±0.17-fold), Tyr-407 (3.71±0.65-fold), Tyr-861 (1.92±0.33-fold), and Tyr-925 (2.41±0.39-fold), compared with 80 mm Hg controls. Immunohistochemistry showed positive staining for these phosphotyrosines in the endothelium and innermost smooth muscle cell layers. Total FAK phosphorylation was reduced in vessels at 150 mm Hg by treatment with the Src family kinase inhibitor PP2 or with the integrin–extracellular matrix interaction–blocking RGD peptide, attaining 1.75±0.22-fold and 2.00±0.19-fold, respectively (
P
<0.05), compared with 3.07±0.38-fold (
P
<0.001) in untreated vessels. PP2 prevented phosphorylation of Tyr-407 and Tyr-925, whereas RGD peptide abolished phosphorylation of Tyr-397 and Tyr-407. PP2 and RGD peptide also inhibited high pressure–induced binding of FAK with the effector Grb2 and blocked activation of extracellular regulated kinase (ERK) 1/2 in vessels at 150 mm Hg. In contrast, 10% cyclic stretch in aortas did not induce significant FAK phosphorylation relative to nonpulsatile controls. Furthermore, although ERK1/2 was activated in vessels exposed to pulsatility, it was not blocked by PP2 or RGD peptide treatment.
Conclusions—
Our results demonstrate that (1) steady and cyclic modes of stretch are transduced differently in the aorta, the former implicating FAK, the latter not, and (2) Src and integrins are involved in steady pressure–induced FAK.
Collapse
Affiliation(s)
- Stéphanie Lehoux
- INSERM U541, Hôpital Lariboisière, 41, Boulevard de la Chapelle, 75010 Paris, France.
| | | | | | | |
Collapse
|
23
|
Strain WD, Chaturvedi N, Leggetter S, Nihoyannopoulos P, Rajkumar C, Bulpitt CJ, Shore AC. Ethnic differences in skin microvascular function and their relation to cardiac target-organ damage. J Hypertens 2005; 23:133-40. [PMID: 15643135 DOI: 10.1097/00004872-200501000-00023] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND People of Black African descent have increased risks of vascular target-organ damage not explained by greater blood pressures. OBJECTIVE To study ethnic differences in the microvasculature. DESIGN AND METHODS Flow (flux) in microcirculatory skin vessels was assessed using laser Doppler fluximetry in 181 Afro-Caribbean and European men and women aged 40-65 years from the general population in London, UK. Flux in response to maximal heating (maximal hyperaemic response) was measured and minimum vascular resistance calculated. Peak flux and time to peak after an ischaemic stimulus were also measured. Target-organ damage was assessed using echocardiographic interventricular septal thickness (IVST). RESULTS In men, maximum hyperaemic response was attenuated in Afro-Caribbeans [109 arbitrary units (au), 25th and 75th percentiles 101, 117] compared with Europeans [165 (155, 179) au; P = 0.008]. Minimum vascular resistance was greater in Afro-Caribbeans, significantly so in men [(1.22 (1.18, 1.28) au/mmHg compared with 0.80 (0.77, 0.83) au/mmHg; P = 0.006]. Peak ischaemic response was attenuated in Afro-Caribbean men and women compared with Europeans (35.6 au compared with 49.5 au; P < 0.001) and time to peak was prolonged (14.1 s compared with 12.5 s; P = 0.07). These ethnic differences could not be accounted for by standard cardiovascular risk factors. IVST was greater in Afro-Caribbeans than in Europeans. Minimum vascular resistance and peak response accounted for a small proportion of this ethnic difference, in addition to conventional factors. CONCLUSIONS Afro-Caribbeans have poorer microvascular structure and function, unexplained by conventional risk factors, which may contribute to greater rates of vascular target-organ damage.
Collapse
Affiliation(s)
- William D Strain
- International Centre for Circulatory Health, Faculty of Medicine, Imperial College London at St Mary's, London, UK.
| | | | | | | | | | | | | |
Collapse
|
24
|
Sasamoto A, Nagino M, Kobayashi S, Naruse K, Nimura Y, Sokabe M. Mechanotransduction by integrin is essential for IL-6 secretion from endothelial cells in response to uniaxial continuous stretch. Am J Physiol Cell Physiol 2004; 288:C1012-22. [PMID: 15613495 DOI: 10.1152/ajpcell.00314.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We previously reported that uniaxial continuous stretch in human umbilical vein endothelial cells (HUVECs) induced interleukin-6 (IL-6) secretion via IkappaB kinase (IKK)/nuclear factor-kappaB (NF-kappaB) activation. The aim of the present study was to clarify the upstream signaling mechanism responsible for this phenomenon. Stretch-induced IKK activation and IL-6 secretion were inhibited by application of alpha(5)beta(1) integrin-inhibitory peptide (GRGDNP), phosphatidylinositol 3-kinase inhibitor (LY-294002), phospholipase C-gamma inhibitor (U-73122), or protein kinase C inhibitor (H7). Although depletion of intra- or extracellular Ca(2+) pool using thapsigargin (TG) or EGTA, respectively, showed little effect, a TG-EGTA mixture significantly inhibited stretch-induced IKK activation and IL-6 secretion. An increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) upon continuous stretch was observed even in the presence of TG, EGTA, or GRGDNP, but not in a solution containing the TG-EGTA mixture, indicating that both integrin activation and [Ca(2+)](i) rise are crucial factors for stretch-induced IKK activation and after IL-6 secretion in HUVECs. Furthermore, while PKC activity was inhibited by the TG-EGTA mixture, GRGDNP, LY-294002, or U-73122, PLC-gamma activity was retarded by GRGDNP or LY-294002. These results indicate that continuous stretch-induced IL-6 secretion in HUVECs depends on outside-in signaling via integrins followed by a PI3-K-PLC-gamma-PKC-IKK-NF-kappaB signaling cascade. Another crucial factor, [Ca(2+)](i) increase, may at least be required to activate PKC needed for NF-kappaB activation.
Collapse
Affiliation(s)
- Akitoshi Sasamoto
- Department of Physiology, Nagoya Univ. Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Abstract
Blood vessels are permanently subjected to mechanical forces in the form of stretch, encompassing cyclic mechanical strain due to the pulsatile nature of blood flow, and shear stress. Alterations in stretch or shear stress invariably produce transformations in the vessel wall that will aim to accommodate the new conditions and to ultimately restore basal levels of tensile stress and shear stress. Vascular cells are equipped with numerous receptors that allow them to detect and respond to the mechanical forces generated by pressure and shear stress. The cytoskeleton and other structural components have an established role in mechanotransduction, being able to transmit and modulate tension within the cell via focal adhesion sites, integrins, cellular junctions and the extracellular matrix. Beyond the structural modifications incurred, mechanical forces can also initiate complex signal transduction cascades leading to functional changes within the cell. Many intracellular pathways, including the MAP kinase cascade, are activated by flow or stretch and initiate, via sequential phosphorylations, the activation of transcription factors and subsequent gene expression.
Collapse
|
27
|
Zhang J, Li W, Sanders MA, Sumpio BE, Panja A, Basson MD. Regulation of the intestinal epithelial response to cyclic strain by extracellular matrix proteins. FASEB J 2003; 17:926-8. [PMID: 12626437 DOI: 10.1096/fj.02-0663fje] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Repetitive mechanical deformation may stimulate intestinal epithelial proliferation. Because the extracellular matrix modulates static intestinal epithelial biology, we examined whether matrix proteins influence intestinal epithelial responses to deformation. Human Caco-2BBE cells and nontransformed human enterocytes (HIPEC) were subjected to 10% average cyclic strain at 10 cycles/min on flexible membranes precoated with matrix proteins without or with plasma fibronectin or functional anti-integrin antibodies in the medium. Strain stimulated proliferation, focal adhesion kinase, extracellular signal-regulated protein kinase (ERK), p38, and Jun N-terminal kinase similarly on collagen I or IV, and more weakly on laminin, but had no effect on fibronectin. MEK blockade (PD98059) prevented strain-stimulated proliferation on collagen but did not affect proliferation on fibronectin. Adding tissue fibronectin to a collagen substrate or plasma fibronectin to the media suppressed strain s mitogenic and signal effects, but not those of epidermal growth factor. Functional antibodies to the alpha5 or alpha(v) integrin subunit blocked strain's effects on Caco-2 proliferation and ERK activation, although ligation of the alpha2 or alpha6 subunit did not. Repetitive strain also stimulated, and fibronectin inhibited, human intestinal primary epithelial cell proliferation. Repetitive deformation stimulates transformed and nontransformed human intestinal epithelial proliferation in a matrix-dependent manner. Tissue or plasma fibronectin may regulate the intestinal epithelial response to strain via integrins containing alpha5 or alpha(v).
Collapse
Affiliation(s)
- Jianhu Zhang
- Departments of Surgery, Wayne State University, USA
| | | | | | | | | | | |
Collapse
|
28
|
Touyz RM. Pressure-induced expression of vascular neuronal nitric oxide synthase: adaptive or maladaptive response in arteries? J Hypertens 2003; 21:863-5. [PMID: 12714856 DOI: 10.1097/00004872-200305000-00006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Ingber DE. Tensegrity II. How structural networks influence cellular information processing networks. J Cell Sci 2003; 116:1397-408. [PMID: 12640025 DOI: 10.1242/jcs.00360] [Citation(s) in RCA: 511] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The major challenge in biology today is biocomplexity: the need to explain how cell and tissue behaviors emerge from collective interactions within complex molecular networks. Part I of this two-part article, described a mechanical model of cell structure based on tensegrity architecture that explains how the mechanical behavior of the cell emerges from physical interactions among the different molecular filament systems that form the cytoskeleton. Recent work shows that the cytoskeleton also orients much of the cell's metabolic and signal transduction machinery and that mechanical distortion of cells and the cytoskeleton through cell surface integrin receptors can profoundly affect cell behavior. In particular, gradual variations in this single physical control parameter (cell shape distortion) can switch cells between distinct gene programs (e.g. growth, differentiation and apoptosis), and this process can be viewed as a biological phase transition. Part II of this article covers how combined use of tensegrity and solid-state mechanochemistry by cells may mediate mechanotransduction and facilitate integration of chemical and physical signals that are responsible for control of cell behavior. In addition, it examines how cell structural networks affect gene and protein signaling networks to produce characteristic phenotypes and cell fate transitions during tissue development.
Collapse
Affiliation(s)
- Donald E Ingber
- Department of Surgery, Children's Hospital and Harvard Medical School, Enders 1007, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
30
|
Elhadj S, Mousa SA, Forsten-Williams K. Chronic pulsatile shear stress impacts synthesis of proteoglycans by endothelial cells: effect on platelet aggregation and coagulation. J Cell Biochem 2002; 86:239-50. [PMID: 12111993 DOI: 10.1002/jcb.10226] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Endothelial-derived proteoglycans are important regulators of the coagulation-pathway in vivo and our primary objective of this study was to determine whether chronic shear stress affected the synthesis, release, and activity of proteoglycans from bovine aortic endothelial cells (BAEC). BAEC were cultured under shear and proteoglycans were purified from BAEC conditioned media and analyzed using both anionic exchange and size exclusion chromatography. The overall amount of proteoglycans produced per cell was significantly greater for the high shear-treated samples compared to the low shear-treated samples indicating that the shear magnitude did impact cell responsiveness. While overall size and composition of the proteoglycans and glycosaminoglycan (GAG) side chains were not altered by shear, the relative proportion of the high and low molecular weight species was inversely related to shear and differed significantly from that found under static tissue culture conditions. Moreover, a unique proteoglycan peak was identified from low shear stress (5 +/- 2 dynes/cm(2)) conditioned media when compared to high shear conditions (23 +/- 8 dynes/cm(2)) via anionic exchange chromatography, suggesting that subtle changes in the GAG structures may impact activity of these molecules. In order to characterize whether these changes impacted proteoglycan function, we studied the effects of shear specific proteoglycans on the inhibition of thrombin-induced human platelet aggregation as well as on platelet-fibrin clot dynamics. Proteoglycans from high shear-treated samples were less effective inhibitors of both platelet aggregation and blood coagulation inhibition than proteoglycans from low shear-treated samples and both were less effective than proteoglycans isolated from static tissue culture samples. However, due to changes in the overall proteoglycan synthesis and release rate, the high and low shear-treated sample had essentially identical effects on these activities, suggesting that the cells were able to compensate for stress-induced proteoglycan changes. Our data suggests that shear stress, by altering proteoglycan synthesis and fine structure, may play a role in maintaining vascular hemodynamics and hemostasis.
Collapse
Affiliation(s)
- Selim Elhadj
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg 24061, USA
| | | | | |
Collapse
|
31
|
Abstract
Great advances have been made in the identification of the soluble angiogenic factors, insoluble extracellular matrix (ECM) molecules, and receptor signaling pathways that mediate control of angiogenesis--the growth of blood capillaries. This review focuses on work that explores how endothelial cells integrate these chemical signals with mechanical cues from their local tissue microenvironment so as to produce functional capillary networks that exhibit specialized form as well as function. These studies have revealed that ECM governs whether an endothelial cell will switch between growth, differentiation, motility, or apoptosis programs in response to a soluble stimulus based on its ability to mechanically resist cell tractional forces and thereby produce cell and cytoskeletal distortion. Transmembrane integrin receptors play a key role in this mechanochemical transduction process because they both organize a cytoskeletal signaling complex within the focal adhesion and preferentially focus mechanical forces on this site. Molecular filaments within the internal cytoskeleton--microfilaments, microtubules, and intermediate filaments--also contribute to the cell's structural and functional response to mechanical stress through their role as discrete support elements within a tensegrity-stabilized cytoskeletal array. Importantly, a similar form of mechanical control also has been shown to be involved in the regulation of contractility in vascular smooth muscle cells and cardiac myocytes. Thus, the mechanism by which cells perform mechanochemical transduction and the implications of these findings for morphogenetic control are discussed in the wider context of vascular development and cardiovascular physiology.
Collapse
Affiliation(s)
- Donald E Ingber
- Vascular Biology Program, Departments of Pathology and Surgery, Harvard Medical School and Children's Hospital, Boston, Mass 02115, USA.
| |
Collapse
|