1
|
Řezáčová L, Vaněčková I, Hojná S, Vavřínová A, Valovič P, Rauchová H, Behuliak M, Zicha J. Both central sympathoexcitation and peripheral angiotensin II-dependent vasoconstriction contribute to hypertension development in immature heterozygous Ren-2 transgenic rats. Hypertens Res 2021; 45:414-423. [PMID: 34621032 DOI: 10.1038/s41440-021-00775-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/13/2021] [Accepted: 09/10/2021] [Indexed: 11/09/2022]
Abstract
Recently, we demonstrated that chronic blockade of the renin-angiotensin system (RAS) lowered the blood pressure (BP) of adult Ren-2 transgenic rats (TGR) mainly through the attenuation of central sympathoexcitation. However, the participation of central and peripheral mechanisms in the development of high BP in immature TGR remains unclear. In the present study, 6-week-old heterozygous TGR males were chronically treated with intracerebroventricular (ICV) or intraperitoneal (IP) infusions of the AT1 receptor inhibitor losartan (1 or 2 mg/kg/day) for 4 weeks. The influence of these treatments on sympathetic- and angiotensin II-dependent BP components (BP response to pentolinium or captopril, respectively) as well as on BP response to exogenous angiotensin II were determined to evaluate the participation of central and peripheral RAS in hypertension development. Chronic IP losartan administration (1 or 2 mg/kg/day) lowered the BP of immature TGR by reducing both sympathetic and angiotensin II-dependent BP components. The central action of IP-administered losartan was indicated by a reduced BP response to acute ICV angiotensin II injection. Chronic ICV administration of a lower losartan dose (1 mg/kg/day) reduced only the sympathetic BP component, whereas a higher ICV administered dose (2 mg/kg/day) was required to influence the angiotensin II-dependent BP component. Accordingly, chronic ICV losartan administration of 2 mg/kg/day (but not 1 mg/kg/day) attenuated the BP response to acute intravenous angiotensin II application. In conclusion, central sympathoexcitation seems to play an important role in hypertension development in immature TGR. Central sympathoexcitation is highly susceptible to inhibition by low doses of RAS-blocking agents, whereas higher doses also affect peripheral angiotensin II-dependent vasoconstriction.
Collapse
Affiliation(s)
- Lenka Řezáčová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Ivana Vaněčková
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| | - Silvie Hojná
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Anna Vavřínová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Pavol Valovič
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Rauchová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Behuliak
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Josef Zicha
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Lerman LO, Kurtz TW, Touyz RM, Ellison DH, Chade AR, Crowley SD, Mattson DL, Mullins JJ, Osborn J, Eirin A, Reckelhoff JF, Iadecola C, Coffman TM. Animal Models of Hypertension: A Scientific Statement From the American Heart Association. Hypertension 2019; 73:e87-e120. [PMID: 30866654 DOI: 10.1161/hyp.0000000000000090] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypertension is the most common chronic disease in the world, yet the precise cause of elevated blood pressure often cannot be determined. Animal models have been useful for unraveling the pathogenesis of hypertension and for testing novel therapeutic strategies. The utility of animal models for improving the understanding of the pathogenesis, prevention, and treatment of hypertension and its comorbidities depends on their validity for representing human forms of hypertension, including responses to therapy, and on the quality of studies in those models (such as reproducibility and experimental design). Important unmet needs in this field include the development of models that mimic the discrete hypertensive syndromes that now populate the clinic, resolution of ongoing controversies in the pathogenesis of hypertension, and the development of new avenues for preventing and treating hypertension and its complications. Animal models may indeed be useful for addressing these unmet needs.
Collapse
|
3
|
Hayden MR, Habibi J, Joginpally T, Karuparthi PR, Sowers JR. Ultrastructure Study of Transgenic Ren2 Rat Aorta - Part 1: Endothelium and Intima. Cardiorenal Med 2012; 2:66-82. [PMID: 22493605 PMCID: PMC3318941 DOI: 10.1159/000335565] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 12/05/2011] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND: The renin-angiotensin-aldosterone system plays an important role in the development and progression of hypertension and accelerated atherosclerosis (atheroscleropathy) associated with the cardiorenal metabolic syndrome and type 2 diabetes mellitus. Additionally, the renin-angiotensin-aldosterone system plays an important role in vascular-endothelial-intimal cellular and extracellular remodeling. METHODS: Thoracic aortas of young male transgenic heterozygous (mRen2)27 (Ren2) rats were utilized for this ultrastructural study. This lean model of hypertension, insulin resistance and oxidative stress harbors the mouse renin gene with increased local tissue (aortic) levels of angiotensin II and angiotensin type 1 receptors and elevated plasma aldosterone levels. RESULTS: The ultrastructural observations included marked endothelial cell retraction, separation, terminal nuclear lifting, adjacent duplication, apoptosis and a suggestion of endothelial progenitor cell attachment. The endothelium demonstrated increased caveolae, microparticles, depletion of Weibel-Palade bodies, loss of cell-cell and basal adhesion hemidesmosome-like structures, platelet adhesion and genesis of subendothelial neointima. CONCLUSION: These observational ultrastructural studies of the transgenic Ren2 vasculature provide an in-depth evaluation of early abnormal remodeling changes within conduit-elastic arteries under conditions of increased local levels of angiotensin II, oxidative stress, insulin resistance and hypertension.
Collapse
Affiliation(s)
- Melvin R. Hayden
- Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Department of Endocrinology Diabetes and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Diabetes and Cardiovascular Disease Center, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
| | - Javad Habibi
- Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Department of Endocrinology Diabetes and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Diabetes and Cardiovascular Disease Center, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Harry S. Truman VA Medical Center, Columbia, Mo., USA
| | - Tejaswini Joginpally
- Diabetes and Cardiovascular Disease Center, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
| | - Poorna R. Karuparthi
- Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Department of Cardiovascular Disease, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
| | - James R. Sowers
- Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Department of Endocrinology Diabetes and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Department of Medical Physiology and Pharmacology, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Diabetes and Cardiovascular Disease Center, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
- Harry S. Truman VA Medical Center, Columbia, Mo., USA
| |
Collapse
|
4
|
Waelti ER, Barton M. Rapid Endocytosis of Copper-Zinc Superoxide Dismutase into Human Endothelial Cells: Role for Its Vascular Activity. Pharmacology 2006; 78:198-201. [PMID: 17077646 DOI: 10.1159/000096598] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 09/12/2006] [Indexed: 11/19/2022]
Abstract
Cytosolic CuZn-SOD (SOD1) is a dimeric, carbohydrate-free enzyme with a molecular weight of about 32 kDa and also circulates in human blood plasma. Due to its molecular mass it has been believed that the enzyme cannot penetrate the cell membrane. Here we report that rapid endocytosis of FITC-CuZn-SOD into human endothelial cells occurs within 5 min. Moreover, relaxation of rat aortic rings in response to CuZn-SOD is associated with a lag time of 45-60 s and only observed in the presence of intact endothelial cells. The results indicate acute and rapid endothelial cell endocytosis of CuZn-SOD, possibly via activation of a receptor-mediated pathway. Intracellular uptake via endocytosis may contribute to the vascular effects of CuZn-SOD, including vasodilation, and is likely to play a role in regulation of vascular tone and diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Ernst R Waelti
- Department of Medicine, Internal Medicine I, Medical Policlinic, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
5
|
Lemos VS, Côrtes SF, Silva DMR, Campagnole-Santos MJ, Santos RAS. Angiotensin-(1-7) is involved in the endothelium-dependent modulation of phenylephrine-induced contraction in the aorta of mRen-2 transgenic rats. Br J Pharmacol 2002; 135:1743-8. [PMID: 11934815 PMCID: PMC1573295 DOI: 10.1038/sj.bjp.0704630] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The contribution of the local vascular production of angiotensin-(1-7) [Ang-(1-7)] to the control of alpha-adrenergic-induced contractions in the aorta of Sprague-Dawley (SD) and TGR(mRen-2)27 [mRen-2] rats was studied. 2. In mRen-2 rats, contractile responses to phenylephrine were diminished as compared to control SD rats in endothelium containing but not in endothelium-denuded vessels. L-NAME increased contractile responses to phenylephrine in mRen-2 rats and, after nitric oxide synthase blockade, responses to phenylephrine became comparable in both strains. 3. Inhibition of angiotensin-converting enzyme (ACE) by captopril potentiated contractile responses in mRen-2 rats and diminished contractile responses in SD rats, both effects being dependent on the presence of a functional endothelium. The effect of captopril in mRen-2 rats was abolished in vessels pre-incubated with Ang-(1-7). 4. Blockade of Ang-(1-7) and bradykinin (BK) receptors by A-779 and HOE 140 respectively, increased phenylephrine-induced contraction in mRen-2, but not in SD rats. This effect was seen only in endothelium-containing vessels. 5. Angiotensin II AT(1) and AT(2) receptor blockade by CV 11974 and PD 123319 did not affect the contractile responses to phenylephrine in aortas of transgenic animals but diminished the response in SD rats. This effect was only seen in the presence of a functional endothelium. 6. It is concluded that the decreased contractile responses to phenylephrine in aortas of mRen-2 rats was dependent on an intact endothelium, the local release and action of Ang-(1-7) and bradykinin.
Collapse
MESH Headings
- Analysis of Variance
- Angiotensin I/pharmacology
- Angiotensin I/physiology
- Angiotensin Receptor Antagonists
- Animals
- Animals, Genetically Modified
- Antihypertensive Agents/pharmacology
- Aorta/drug effects
- Aorta/physiology
- Bradykinin Receptor Antagonists
- Captopril/pharmacology
- Drug Interactions
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- In Vitro Techniques
- Male
- Mice
- Peptide Fragments/pharmacology
- Peptide Fragments/physiology
- Phenylephrine/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Adrenergic, alpha/physiology
- Receptors, Angiotensin/physiology
- Receptors, Bradykinin/physiology
- Vasoconstriction/drug effects
- Vasoconstriction/physiology
Collapse
Affiliation(s)
- Virgínia S Lemos
- Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | | | | | | | | |
Collapse
|
6
|
Stanke-Labesque F, Hardy G, Vergnaud S, Devillier P, Peoc'h M, Randon J, Bricca G, Caron F, Cracowski JL, Bessard G. Involvement of cysteinyl leukotrienes in angiotensin II-induced contraction in isolated aortas from transgenic (mRen-2)27 rats. J Hypertens 2002; 20:263-72. [PMID: 11821711 DOI: 10.1097/00004872-200202000-00016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES We have previously reported that 5-lipoxygenase-derived products, and particularly the cysteinyl leukotrienes (CysLTs), were involved in angiotensin II (Ang II)-induced contractions in isolated aortas from spontaneously hypertensive rats. DESIGN The aim of this study was to assess the role of CysLTs in the vascular response to Ang II in an Ang II-dependent model of hypertension, the (mRen-2)27 transgenic rats (TGs). METHODS Intact aortic rings from TG and normotensive Sprague-Dawley rats (SDs) were suspended in organ chambers for isometric tension development in response to Ang II. In addition, the release of CysLTs in response to Ang II (0.3 micromol/l) was measured by enzyme immunoassay. RESULTS In isolated aortas from TG rats, pretreatment with the 5-lipoxygenase inhibitor (AA861, 10 micromol/l) or the CysLT1 receptor antagonist (MK571, 1 micromol/l) significantly (P < 0.05) reduced Ang II-induced contractions by 52 and 42%, respectively. In addition, Ang II induced a 2.6-fold increase in CysLT release (pg/mg dry weight tissue: 58.3 +/- 17.9 (Ang II, n = 7) versus 22.5 +/- 5.9 (basal, n = 7) P < 0.05), which was inhibited by the AT1 receptor antagonist losartan (1 micromol/l). In contrast, in aortas from SD rats, pretreatment with AA861 or MK571 did not alter Ang II-induced contraction and CysLT production remained unchanged after exposure to Ang II. CONCLUSION These data suggest that CysLTs are involved in the contractile responses to Ang II in isolated aortas from TG but not from SD rats.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Animals, Genetically Modified/physiology
- Aorta/drug effects
- Aorta/physiology
- Arachidonate 5-Lipoxygenase/immunology
- Benzoquinones/pharmacology
- Blood Pressure/physiology
- Blotting, Western
- Body Weight/physiology
- Dose-Response Relationship, Drug
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/immunology
- Leukotriene Antagonists
- Lipoxygenase Inhibitors/pharmacology
- Membrane Proteins
- Models, Animal
- Models, Cardiovascular
- Muscle Contraction/drug effects
- Muscle Contraction/physiology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/immunology
- Muscle, Smooth, Vascular/physiology
- Rats
- Rats, Inbred SHR/genetics
- Rats, Sprague-Dawley/genetics
- Receptors, Leukotriene/biosynthesis
- Vascular Patency/drug effects
- Vascular Patency/physiology
- Vasoconstrictor Agents/pharmacology
Collapse
|
7
|
Witte K, Hasenberg T, Rueff T, Hauptfleisch S, Schilling L, Lemmer B. Day-night variation in the in vitro contractility of aorta and mesenteric and renal arteries in transgenic hypertensive rats. Chronobiol Int 2001; 18:665-81. [PMID: 11587089 DOI: 10.1081/cbi-100106080] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
TGR(mREN2)27 (TGR) rats develop severe hypertension and an inverted circadian blood pressure profile with peak blood pressure in the day-time rest phase. The present study investigated the in vitro responsiveness of different arteries of TGR rats during day and night. Twelve-week-old TGR rats and normotensive Sprague-Dawley (SPRD) controls, synchronized to 12h light, 12h dark (LD 12:12) (light 07:00-19:00), were killed at 09:00 (during rest) and 21:00 (during activity), and endothelium-dependent relaxation by acetylcholine and vascular contraction by angiotensin II were studied by measuring isometric force in ring segments of abdominal aorta and mesenteric and renal arteries. In SPRD rats, consistent day-night variation was found, with greater responses to angiotensin II during the daytime rest span. In TGR rats, biological time-dependent differences were found in the renal vasculature, but not in the aorta and mesenteric artery. Relaxation of SPRD rat aorta and mesenteric artery by acetylcholine was greater at 09:00, whereas in TGR rats, day-night variation was absent (mesenteric artery) or inverted (aorta). In conclusion, based on the study of two time points, day-night variation in vascular contractility of aorta and mesenteric artery is blunted in TGR rats, whereas renal artery segments showed an unchanged day-night pattern compared to SPRD controls.
Collapse
Affiliation(s)
- K Witte
- Institute of Pharmacology and Toxicology, Faculty of Clinical Medicine Mannheim, University of Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
8
|
Mervaala EM, Cheng ZJ, Tikkanen I, Lapatto R, Nurminen K, Vapaatalo H, Müller DN, Fiebeler A, Ganten U, Ganten D, Luft FC. Endothelial dysfunction and xanthine oxidoreductase activity in rats with human renin and angiotensinogen genes. Hypertension 2001; 37:414-8. [PMID: 11230310 DOI: 10.1161/01.hyp.37.2.414] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We examined whether xanthine oxidoreductase (XOR), a hypoxia-inducible enzyme capable of generating reactive oxygen species, is involved in the onset of angiotensin (Ang) II-induced vascular dysfunction in double-transgenic rats (dTGR) harboring human renin and human angiotensinogen genes. In 7-week-old hypertensive dTGR, the endothelium-mediated relaxation of noradrenaline (NA)-precontracted renal arterial rings to acetylcholine (ACh) in vitro was markedly impaired compared with Sprague Dawley rats. Preincubation with superoxide dismutase (SOD) improved the endothelium-dependent vascular relaxation, indicating that in dTGR, endothelial dysfunction is associated with increased superoxide formation. Preincubation with the XOR inhibitor oxypurinol also improved endothelium-dependent vascular relaxation. The endothelium-independent relaxation to sodium nitroprusside was similar in both strains. In dTGR, serum 8-isoprostaglandin F(2alpha), a vasoconstrictor and antinatriuretic arachidonic acid metabolite produced by oxidative stress, was increased by 100%, and the activity of XOR in the kidney was increased by 40%. Urinary nitrate plus nitrite (NO(x)) excretion, a marker of total body NO generation, was decreased by 85%. Contractile responses of renal arteries to Ang II, endothelin-1 (ET-1), and NA were decreased in dTGR, suggesting hypertension-associated generalized changes in the vascular function rather than a receptor-specific desensitization. Valsartan (30 mg/kg PO for 3 weeks) normalized blood pressure, endothelial dysfunction, and the contractile responses to ET-1 and NA. Valsartan also normalized serum 8-isoprostaglandin F(2alpha) levels, renal XOR activity, and, to a degree, NO(x) excretion. Thus, overproduction of Ang II in dTGR induces pronounced endothelial dysfunction, whereas the sensitivity of vascular smooth muscle cells to nitric oxide is unaltered. Ang II-induced endothelial dysfunction is associated with increased oxidative stress and vascular xanthine oxidase activity.
Collapse
Affiliation(s)
- E M Mervaala
- Institute of Biomedicine, Department of Pharmacology and Toxicology, Department of Medical Chemistry, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|