1
|
Farooqui N, Mohan A, Isik B, Goksu BB, Thaler R, Zhu XY, Krier JD, Saadiq IM, Ferguson CM, Jordan KL, Tang H, Textor SC, Hickson LTJ, van Wijnen AJ, Eirin A, Lerman LO, Herrmann SM. Effect of Hypoxia Preconditioning on the Regenerative Capacity of Adipose Tissue Derived Mesenchymal Stem Cells in a Model of Renal Artery Stenosis. Stem Cells 2023; 41:50-63. [PMID: 36250949 PMCID: PMC9887092 DOI: 10.1093/stmcls/sxac073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/26/2022] [Indexed: 02/02/2023]
Abstract
Atherosclerotic renal artery stenosis (ARAS) is associated with irreversible parenchymal renal disease and regenerative stem cell therapies may improve renal outcomes. Hypoxia preconditioning (HPC) may improve the regenerative functions of adipose tissue-derived mesenchymal stem cells (AMSC) by affecting DNA 5-hydroxymethylcytosine (5hmC) marks in angiogenic genes. Here, we investigated using a porcine ARAS model, whether growth of ARAS AMSCs in hypoxia (Hx) versus normoxia (Nx) would enhance renal tissue repair, and comprehensively analyze how HPC modifies DNA hydroxymethylation compared to untreated ARAS and healthy/normal pigs (n=5 each). ARAS pigs exhibited elevated serum cholesterol, serum creatinine and renal artery stenosis, with a concomitant decrease in renal blood flow (RBF) and increased blood pressure (BP) compared to healthy pigs. Renal artery injection of either autologous Nx or Hx AMSCs improved diastolic BP, reduced kidney tissue fibrosis, and inflammation (CD3+ T-cells) in ARAS pigs. In addition, renal medullary hypoxia significantly lowered with Nx but not Hx AMSC treatment. Mechanistically, levels of epigenetic 5hmC marks (which reflect gene activation) estimated using DNA immunoprecipitation technique were elevated in profibrotic and inflammatory genes in ARAS compared with normal AMSCs. HPC significantly reduced 5hmC levels in cholesterol biosynthesis and oxidative stress response pathways in ARAS AMSCs. Thus, autologous AMSCs improve key renovascular parameters and inflammation in ARAS pigs, with HPC mitigating pathological molecular effects on inflammatory and profibrotic genes which may play a role in augmenting regenerative capacity of AMSCs.
Collapse
Affiliation(s)
- Naba Farooqui
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Arjunmohan Mohan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Busra Isik
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Busra B Goksu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Xiang Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - James D Krier
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Ishran M Saadiq
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | | - Kyra L Jordan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Stephen C Textor
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - La Tonya J Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sandra M Herrmann
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
2
|
Wang HS, Yi MY, Wu X, Liu Q, Deng YH, Wu T, Wang L, Kang YX, Luo XQ, Yan P, Wang M, Duan SB. Effects of mesenchymal stem cells in renovascular disease of preclinical and clinical studies: a systematic review and meta-analysis. Sci Rep 2022; 12:18080. [PMID: 36302933 PMCID: PMC9613984 DOI: 10.1038/s41598-022-23059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/25/2022] [Indexed: 01/24/2023] Open
Abstract
Renal artery stenosis (RAS) causes severe renovascular hypertension, worsening kidney function, and increased cardiovascular morbidity. According to recent studies, mesenchymal stem cells (MSCs) administration is a promising therapy for the improvement of RAS outcomes. The meta-analysis aims to evaluate the therapeutic effects of MSC therapy on RAS. We performed a search in MEDLINE, Web of Science, Embase, and Cochrane Library from inception to 5, October 2022. We included 16 preclinical and 3 clinical studies in this meta-analysis. In preclinical studies, the pooled results indicated that animals treated with MSCs had lower levels of systolic blood pressure (SBP) (SMD = - 1.019, 95% CI - 1.434 to - 0.604, I2 = 37.2%, P = 0.000), serum creatinine (Scr) (SMD = - 1.112, 95% CI - 1.932 to - 0.293, I2 = 72.0%, P = 0.008), and plasma renin activity (PRA) (SMD = - 0.477, 95% CI - 0.913 to 0.042, I2 = 43.4%, P = 0.032). The studies also revealed increased levels of renal blood flow (RBF) in stenotic kidney (STK) (SMD = 0.774, 95% CI - 0.351 to 1.197, I2 = 0%, P = 0.000) and the glomerular filtration rate (GFR) of STK (SMD = 1.825, 95% CI 0.963 to 2.688, I2 = 72.6%, P = 0.000). In clinical studies, the cortical perfusion and fractional hypoxia of the contralateral kidney (CLK) were alleviated by MSC therapy. Taken together, this meta-analysis revealed that MSCs therapy might be a promising treatment for RAS. However, due to the discrepancy between preclinical studies and early clinical trials outcomes, MSC therapy couldn't be recommended in clinical care for the moment, more high-quality randomized controlled clinical trials are needed to validate our conclusions and standardize MSCs protocols.
Collapse
Affiliation(s)
- Hong-Shen Wang
- grid.452708.c0000 0004 1803 0208Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, 139 Renmin Road, Changsha, 410011 Hunan China
| | - Ming-Yu Yi
- grid.431010.7Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan China
| | - Xi Wu
- grid.452708.c0000 0004 1803 0208Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, 139 Renmin Road, Changsha, 410011 Hunan China
| | - Qian Liu
- grid.452708.c0000 0004 1803 0208Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, 139 Renmin Road, Changsha, 410011 Hunan China
| | - Ying-Hao Deng
- grid.452708.c0000 0004 1803 0208Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, 139 Renmin Road, Changsha, 410011 Hunan China
| | - Ting Wu
- grid.452708.c0000 0004 1803 0208Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, 139 Renmin Road, Changsha, 410011 Hunan China
| | - Lin Wang
- grid.452708.c0000 0004 1803 0208Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, 139 Renmin Road, Changsha, 410011 Hunan China
| | - Yi-Xin Kang
- grid.452708.c0000 0004 1803 0208Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, 139 Renmin Road, Changsha, 410011 Hunan China
| | - Xiao-Qin Luo
- grid.452708.c0000 0004 1803 0208Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, 139 Renmin Road, Changsha, 410011 Hunan China
| | - Ping Yan
- grid.452708.c0000 0004 1803 0208Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, 139 Renmin Road, Changsha, 410011 Hunan China
| | - Mei Wang
- grid.452708.c0000 0004 1803 0208Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, 139 Renmin Road, Changsha, 410011 Hunan China
| | - Shao-Bin Duan
- grid.452708.c0000 0004 1803 0208Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, 139 Renmin Road, Changsha, 410011 Hunan China
| |
Collapse
|
3
|
Li Y, Ricardo SD, Samuel CS. Enhancing the Therapeutic Potential of Mesenchymal Stromal Cell-Based Therapies with an Anti-Fibrotic Agent for the Treatment of Chronic Kidney Disease. Int J Mol Sci 2022; 23:ijms23116035. [PMID: 35682717 PMCID: PMC9181689 DOI: 10.3390/ijms23116035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 01/02/2023] Open
Abstract
Chronic kidney disease (CKD) affects 1 in 10 members of the general population, placing these patients at an increasingly high risk of kidney failure. Despite the significant burden of CKD on various healthcare systems, there are no effective cures that reverse or even halt its progression. In recent years, human bone-marrow-derived mesenchymal stromal cells (BM-MSCs) have been recognised as a novel therapy for CKDs, owing to their well-established immunomodulatory and tissue-reparative properties in preclinical settings, and their promising safety profile that has been demonstrated in patients with CKDs from several clinical trials. However, renal fibrosis (scarring), a hallmark of CKD, has been shown to impair the viability and functionality of BM-MSCs post-transplantation. This has suggested that BM-MSCs might require a pre-treatment or adjunct therapy that can enhance the viability and therapeutic efficacy of these stromal cells in chronic disease settings. To address this, recent studies that have combined BM-MSCs with the anti-fibrotic drug serelaxin (RLX), have demonstrated the enhanced therapeutic potential of this combination therapy in normotensive and hypertensive preclinical models of CKD. In this review, a critical appraisal of the preclinical data available on the anti-fibrotic and renoprotective actions of BM-MSCs or RLX alone and when combined, as a treatment option for normotensive vs. hypertensive CKD, is discussed.
Collapse
Affiliation(s)
- Yifang Li
- Cardiovascular Disease Program, Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia;
| | - Sharon D. Ricardo
- Development and Stem Cells Program, Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
- Correspondence: (S.D.R.); (C.S.S.)
| | - Chrishan S. Samuel
- Cardiovascular Disease Program, Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia;
- Development and Stem Cells Program, Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Correspondence: (S.D.R.); (C.S.S.)
| |
Collapse
|
4
|
Genistein alleviates renin-angiotensin system mediated vascular and kidney alterations in renovascular hypertensive rats. Biomed Pharmacother 2022; 146:112601. [PMID: 35062067 DOI: 10.1016/j.biopha.2021.112601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 12/13/2022] Open
Abstract
Genistein is a bioflavonoid mainly found in soybean. This study evaluated the effect of genistein on vascular dysfunction and kidney damage in two-kidney, one-clipped (2K1C) hypertensive rats. Male Sprague-Dawley-2K1C hypertensive rats were treated with genistein (40 or 80 mg/kg) or losartan 10 mg/kg (n = 8/group). Genistein reduced blood pressure, attenuated the increase in sympathetic nerve-mediated contractile response and endothelial dysfunction in the mesenteric vascular beds and aorta of 2K1C rats. Increases in the intensity of tyrosine hydroxylase (TH) in the mesentery and plasma norepinephrine (NE) were alleviated in the genistein-treated group. Genistein also improved renal dysfunction, hypertrophy of the non-clipped kidney (NCK) and atrophy of the clipped kidney (CK) in 2K1C rats. Upregulation of angiotensin II receptor type I (AT1R), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit 4 (Nox4) and Bcl2-associated X protein (BAX) and downregulation of B-cell lymphoma 2 (Bcl2) protein found in CK were restored by genistein. It also suppressed the overexpression of AT1R, transforming growth factor beta I (TGF-β1), smad2/3 and p-smad3 in NCK. Genistein reduced serum angiotensin converting enzyme (ACE) activity and plasma angiotensin II (Ang II) in 2K1C rats. Low levels of catalase activity as well as high levels of superoxide generation and malondialdehyde (MDA) in 2K1C rats were restored by genistein treatment. In conclusion, genistein suppressed renin-angiotensin system-mediated sympathetic activation and oxidative stress in 2K1C rats. It alleviated renal atrophy in CK via modulation of AT1R/NADPH oxidase/Bcl-2/BAX pathways and hypertrophy in NCK via AT1R/TGF-β1/smad-dependent signalling pathways.
Collapse
|
5
|
Lerman LO. Cell-based regenerative medicine for renovascular disease. Trends Mol Med 2021; 27:882-894. [PMID: 34183258 PMCID: PMC8403163 DOI: 10.1016/j.molmed.2021.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/22/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022]
Abstract
Renal artery stenosis (RAS) elicits the development of hypertension and post-stenotic kidney damage, which may become irresponsive to restoration of arterial patency. Rather than mere losses of blood flow or oxygen supply, irreversible intrarenal microvascular rarefaction, tubular injury, and interstitial fibrosis are now attributed to intrinsic pathways activated within the kidney, focusing attention on the kidney parenchyma as a therapeutic target. Several regenerative approaches involving the delivery of reparative cells or products have achieved kidney repair in experimental models of RAS and the delivery of mesenchymal stem/stromal cells (MSCs) has already been translated to human subjects with RAS with promising results. The ongoing development of innovative approaches in kidney disease awaits application, validation, and acceptance as routine clinical treatment to avert kidney damage in RAS.
Collapse
Affiliation(s)
- Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Zhao Y, Zhu XY, Song T, Zhang L, Eirin A, Conley S, Tang H, Saadiq I, Jordan K, Lerman A, Lerman LO. Mesenchymal stem cells protect renal tubular cells via TSG-6 regulating macrophage function and phenotype switching. Am J Physiol Renal Physiol 2021; 320:F454-F463. [PMID: 33554782 DOI: 10.1152/ajprenal.00426.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tumor necrosis factor (TNF)-α-induced gene/protein (TSG)-6 regulates the immunomodulatory properties of mesenchymal stem cells (MSCs), but its ability to protect the ischemic kidney is unknown. In a swine model of renal artery stenosis (RAS) and metabolic syndrome (MetS), we assessed the contribution of TSG-6 produced by MSCs to their immunomodulatory properties. Pigs were studied after 16 wk of diet-induced MetS and unilateral RAS and were either untreated or treated 4 wk earlier with intrarenal autologous adipose tissue-derived MSCs (n = 6 each). Lean, MetS, and RAS sham animals served as controls. We studied renal function in vivo (using computed tomography) and kidney histopathology and macrophage phenotype ex vivo. In vitro, TSG-6 levels were also measured in conditioned media of human MSCs incubated with TNF-α and levels of the tubular injury marker lactate dehydrogenase in conditioned media after coculturing macrophages with injured human kidney 2 (HK-2) cells with or without TSG-6. The effects of TSG-6 on macrophage phenotype (M1/M2), adhesion, and migration were also determined. MetS + RAS showed increased M1 macrophages and renal vein TNF-α levels. After MSC delivery, renal vein TSG-6 increased and TNF-α decreased, the M1-to-M2 ratio decreased, renal function improved, and fibrosis was alleviated. In vitro, TNF-α increased TSG-6 secretion by human MSCs. TSG-6 decreased lactate dehydrogenase release from injured HK-2 cells, increased expression of macrophage M2 markers, and reduced M1 macrophage adhesion and migration. Therefore, TSG-6 released from MSCs may decrease renal tubular cell injury, which is associated with regulating macrophage function and phenotype. These observations suggest that TSG-6 is endowed with renoprotective properties.NEW & NOTEWORTHY Tumor necrosis factor-α-induced gene/protein (TSG)-6 regulates the immunomodulatory properties of MSCs, but its ability to protect the ischemic kidney is unknown. In pigs with renal artery stenosis, we show that MSC delivery increased renal vein TSG-6, decreased kidney inflammatory macrophages, and improved renal function. In vitro, TSG-6 decreased inflammatory macrophages and tubular cell injury. Therefore, TSG-6 released from MSCs may decrease renal tubular cell injury, which is associated with regulating macrophage function and phenotype.
Collapse
Affiliation(s)
- Yu Zhao
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota.,Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine, Nanjing, Jiangsu, China
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Turun Song
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Lei Zhang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota.,Institute of Urology, Zhong Da Hospital, Southeast University, School of Medicine, Nanjing, Jiangsu, China
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Sabena Conley
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Ishran Saadiq
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Kyra Jordan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
7
|
Comparison of the Effects of Mesenchymal Stem Cells with Their Extracellular Vesicles on the Treatment of Kidney Damage Induced by Chronic Renal Artery Stenosis. Stem Cells Int 2020; 2020:8814574. [PMID: 33101418 PMCID: PMC7568167 DOI: 10.1155/2020/8814574] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/08/2020] [Accepted: 08/23/2020] [Indexed: 12/18/2022] Open
Abstract
Background Chronic renal artery stenosis is considered one of the most common causes of renovascular hypertension (RH). Chronic hypoxia can lead to irreversible damage to renal tissue and to a progressive deterioration of renal function. We have previously shown that bone marrow-derived mesenchymal stem cells (BMSCs) improved renal parenchyma and function in a model of RH (2 kidneys, 1 clip model (2K-1C) in rats. Microvesicles (MVs) and exosomes (EXs) released by MSCs have been shown to induce effects similar to those induced by whole cells but with fewer side effects. In this study, we compared the effects of adipose-derived MSCs (ASCs) with those of the MVs and EXs released by ASCs on tissue inflammation and renal function in 2 K-1C rats. Results Flow cytometry analysis showed that even after 15 days, ASCs were still detected in both kidneys. The expression of a stem cell homing marker (SDF1-α) was increased in ASC-treated animals in both the stenotic and contralateral kidneys. Interestingly, SDF1-α expression was also increased in MV- and EX-treated animals. A hypoxia marker (HIF1-α) was upregulated in the stenotic kidney, and treatments with ASCs, MVs, and EXs were effective in reducing the expression of this marker. Stenotic animals showed a progressive increase in systolic blood pressure (SBP), while animals treated with ASCs, MVs, and EXs showed a stabilization of SBP, and this stabilization was similar among the different treatments. Stenotic animals developed significant proteinuria, which was reduced by ASCs and MVs but not by EXs. The increased expression of Col I and TGFβ in both kidneys was reduced by all the treatments, and these treatments also effectively increased the expression of the anti-inflammatory cytokine IL-10 in both kidneys; however, only ASCs were able to reduce the overexpression of the proinflammatory cytokine IL-1β in both kidneys of 2K-1C animals. Conclusion The results of this study demonstrated that the EVs released by ASCs produced beneficial results but with lower efficacy than whole cells. ASCs produced stronger effects in this model of renal chronic hypoxia, and the use of EVs instead of whole cells should be evaluated depending on the parameter to be corrected.
Collapse
|
8
|
Varela VA, Oliveira-Sales EB, Maquigussa E, Borges FT, Gattai PP, Novaes ADS, Shimoura CG, Campos RR, Boim MA. Treatment with Mesenchymal Stem Cells Improves Renovascular Hypertension and Preserves the Ability of the Contralateral Kidney to Excrete Sodium. Kidney Blood Press Res 2019; 44:1404-1415. [PMID: 31671420 DOI: 10.1159/000503346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 09/13/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSC) improve renal function and renovascular hypertension in the 2-kidney 1-clip model (2K-1C). While MSC play an immunomodulatory role, induce neoangiogenesis, and reduce fibrosis, they do not correct sodium loss by the contra-lateral kidney. OBJECTIVES We investigated the tubular function of both stenotic and contralateral kidneys and the effect of MSC treatment by evaluating diuresis, natriuresis, and the expression of the main water and sodium transporters. METHOD Adult Wistar rats were allocated into four groups: control (CT), CT+MSC, 2K-1C, and 2K-1C+MSC. MSC (2 × 105) were infused through the tail vein 3 and 5 weeks after clipping. Systolic blood pressure (SBP) was monitored weekly by plethysmography. Six weeks after clipping, 24-hour urine and blood samples were collected for biochemical analysis. Gene expression of the Na/H exchanger-3, epithelial sodium channel, Na/K-ATPase, Na/K/2Cl cotransporter, and aquaporins 1 and 2 (AQP1 and AQP2) were analyzed by RT-PCR. Intrarenal distribution of AQP1 and AQP2 was analyzed by immunohistochemistry. RESULTS In hypertensive 2K-1C animals, MSC prevented additional increases in BP. AQP1, but not AQP2, was suppressed in the contralateral kidney, resulting in significant increase in urinary flow rate and sodium excretion. Gene expressions of sodium transporters were similar in both kidneys, suggesting that the high perfusing pressure in the contralateral kidney was responsible for increased natriuresis. Contralateral hypertensive kidney showed signs of renal deterioration with lower GFR in spite of normal RPF levels. CONCLUSIONS MSC treatment improved renal function and enhanced the ability of the contralateral kidney to excrete sodium through a tubular independent mechanism contributing to reduce SBP.
Collapse
Affiliation(s)
- Vanessa Araujo Varela
- Department of Medicine, Renal Division, Federal University of São Paulo, São Paulo, Brazil
| | | | - Edgar Maquigussa
- Department of Medicine, Renal Division, Federal University of São Paulo, São Paulo, Brazil
| | - Fernanda T Borges
- Department of Medicine, Renal Division, Federal University of São Paulo, São Paulo, Brazil
| | - Pedro P Gattai
- Department of Medicine, Renal Division, Federal University of São Paulo, São Paulo, Brazil
| | - Antonio da S Novaes
- Department of Medicine, Renal Division, Federal University of São Paulo, São Paulo, Brazil
| | - Caroline G Shimoura
- Department of Physiology, Cardiovascular Division, Federal University of São Paulo, São Paulo, Brazil
| | - Ruy R Campos
- Department of Physiology, Cardiovascular Division, Federal University of São Paulo, São Paulo, Brazil
| | - Mirian A Boim
- Department of Medicine, Renal Division, Federal University of São Paulo, São Paulo, Brazil,
| |
Collapse
|
9
|
Borges FT, Convento MB, Schor N. Bone marrow-derived mesenchymal stromal cell: what next? STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2018; 11:77-83. [PMID: 30510433 PMCID: PMC6231430 DOI: 10.2147/sccaa.s147804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bone marrow mesenchymal stromal cell (MSC) is a potential alternative in regenerative medicine and has great potential in many pathologic conditions including kidney disease. Although most of the studies demonstrate MSC efficiency, the regenerative potential may not be efficient in all diseases and patients. Stem cell feasibility is modified by donor characteristics as gender, age, diet, and health status, producing both positive and negative results. The conditioning of MSC can potentiate its effects and modify its culture medium (CM). In current practices, the cell-free treatment is gaining notable attention, while MSC-conditioned CM is being applied and studied in many experimental diseases, including, but not limited to, certain kidney diseases. This may be the next step for clinical trials. Studies in stem cell CM have focused mainly on extracellular vesicles, nucleic acids (mRNA and microRNA), lipids, and proteins presented in this CM. They mediate regenerative effects of MSC in a harmonic manner. In this review, we will analyze the regenerative potential of MSC and its CM as well as discuss some effective techniques for modifying its fractions and improving its therapeutic potential. CM fractions may be modified by hypoxic conditions, inflammation, lipid exposition, and protein growth factors. Other possible mechanisms of action of stem cells are also suggested. In the future, the MSC paracrine effect may be modified to more closely meet each patient’s needs.
Collapse
Affiliation(s)
- Fernanda T Borges
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, SP, Brazil, .,Interdisciplinary Postgraduate Program in Health Sciences, Universidade Cruzeiro do Sul, São Paulo, SP, Brazil,
| | - Marcia Bastos Convento
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, SP, Brazil,
| | - Nestor Schor
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, SP, Brazil,
| |
Collapse
|
10
|
Saad A, Dietz AB, Herrmann SMS, Hickson LJ, Glockner JF, McKusick MA, Misra S, Bjarnason H, Armstrong AS, Gastineau DA, Lerman LO, Textor SC. Autologous Mesenchymal Stem Cells Increase Cortical Perfusion in Renovascular Disease. J Am Soc Nephrol 2017; 28:2777-2785. [PMID: 28461553 DOI: 10.1681/asn.2017020151] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/24/2017] [Indexed: 01/12/2023] Open
Abstract
Atherosclerotic renovascular disease (RVD) reduces renal blood flow (RBF) and GFR and accelerates poststenotic kidney (STK) tissue injury. Preclinical studies indicate that mesenchymal stem cells (MSCs) can stimulate angiogenesis and modify immune function in experimental RVD. We assessed the safety and efficacy of adding intra-arterial autologous adipose-derived MSCs into STK to standardized medical treatment in human subjects without revascularization. The intervention group (n=14) received a single infusion of MSC (1.0 × 105 or 2.5 × 105 cells/kg; n=7 each) plus standardized medical treatment; the medical treatment only group (n=14) included subjects matched for age, kidney function, and stenosis severity. We measured cortical and medullary volumes, perfusion, and RBF using multidetector computed tomography. We assessed tissue oxygenation by blood oxygen level-dependent MRI and GFR by iothalamate clearance. MSC infusions were well tolerated. Three months after infusion, cortical perfusion and RBF rose in the STK (151.8-185.5 ml/min, P=0.01); contralateral kidney RBF increased (212.7-271.8 ml/min, P=0.01); and STK renal hypoxia (percentage of the whole kidney with R2*>30/s) decreased (12.1% [interquartile range, 3.3%-17.8%] to 6.8% [interquartile range, 1.8%-12.9%], P=0.04). No changes in RBF occurred in medical treatment only subjects. Single-kidney GFR remained stable after MSC but fell in the medical treatment only group (-3% versus -24%, P=0.04). This first-in-man dose-escalation study provides evidence of safety of intra-arterial infusion of autologous MSCs in patients with RVD. MSC infusion without main renal artery revascularization associated with increased renal tissue oxygenation and cortical blood flow.
Collapse
Affiliation(s)
- Ahmed Saad
- Divisions of *Nephrology and Hypertension and
| | | | | | | | | | | | - Sanjay Misra
- Interventional Radiology, Mayo Clinic, Rochester, Minnesota
| | | | | | | | | | | |
Collapse
|
11
|
Mohamed EM, Samak MA. Therapeutic potentials of mesenchymal stem cells on the renal cortex of experimentally induced hypertensive albino rats: Relevant role of Nrf2. Tissue Cell 2017; 49:358-367. [PMID: 28256256 DOI: 10.1016/j.tice.2017.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/27/2016] [Accepted: 01/11/2017] [Indexed: 02/07/2023]
Abstract
Bone marrow derived-mesenchymal stem cells (BM-MSCs) have brought great attention in regenerative medicine field, various experimental & clinical trials were held to investigate their therapeutic effects in different disorders. We designed a histological & immunohistochemical study to evaluate effectiveness of MSCs therapy in withhold of end-stage renal disease (ESRD) secondary to hypertension which has become a growing & striking public health problem. 30 adult male albino rats were utilized, 20 of them were exposed to experimental induction of hypertension, then divided equally to MSCs treated group (injected with 1×106 fluorescent labeled cell i.v./rat), while the second one was left without treatment. Renal specimens were subjected to histopathological, ultrastructural and immunohistochemical examination for Nrf2 in addition to biochemical estimation of serum urea & creatinine. Our results documented that BM-derived MSCs exerts considerable reversing effect of histopathologic and ultrastructural hypertensive nephropathy. Moreover, immunohistochemical results clearly pointed to relevant role of Nrf2 pathway in MSCs related renal therapeutic effects.
Collapse
Affiliation(s)
- Eman M Mohamed
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Egypt
| | - Mai A Samak
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Egypt.
| |
Collapse
|