1
|
Liao WH, Suendermann C, Steuer AE, Pacheco Lopez G, Odermatt A, Faresse N, Henneberg M, Langhans W. Aldosterone deficiency in mice burdens respiration and accentuates diet-induced hyperinsulinemia and obesity. JCI Insight 2018; 3:99015. [PMID: 30046010 DOI: 10.1172/jci.insight.99015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/08/2018] [Indexed: 12/20/2022] Open
Abstract
Aldosterone synthase inhibitors (ASIs) should alleviate obesity-related cardiovascular and renal problems resulting partly from aldosterone excess, but their clinical use may have limitations. To improve knowledge for the use of ASIs, we investigated physiology in aldosterone synthase-knockout (ASKO) mice. On regular chow diet (CD), ASKO mice ate more and weighed less than WT mice, largely because they hyperventilated to eliminate acid as CO2. Replacing CD with high-fat diet (HFD) lessened the respiratory burden in ASKO mice, as did 12- to 15-hour fasting. The latter eliminated the genotype differences in respiratory workload and energy expenditure (EE). Thus, aldosterone deficiency burdened the organism more when the animals ate carbohydrate-rich chow than when they ate a HFD. Chronic HFD exposure further promoted hyperinsulinemia in ASKO mice that contributed to visceral fat accumulation accompanied by reduced lipolysis, thermogenic reprogramming, and the absence of weight-gain-related EE increases. Intracerebroventricular aldosterone supplementation in ASKO mice attenuated the HFD-induced hyperinsulinemia, but did not affect EE, suggesting that the presence of aldosterone increased the body's energetic efficiency, thus counteracting the EE-increasing effect of low insulin. ASIs may therefore cause acid-overload-induced respiratory burden and promote obesity. Their use in patients with preexisting renal and cardiopulmonary diseases might be contraindicated.
Collapse
Affiliation(s)
- Wan-Hui Liao
- Physiology and Behavior Laboratory, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.,Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,National Center of Competence in Research "Kidney.CH", Switzerland
| | | | - Andrea Eva Steuer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Gustavo Pacheco Lopez
- Physiology and Behavior Laboratory, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.,Department of Health Sciences, Division of Biological and Health Sciences, Metropolitan Autonomous University (UAM), Lerma, Mexico
| | - Alex Odermatt
- National Center of Competence in Research "Kidney.CH", Switzerland.,Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Nourdine Faresse
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,National Center of Competence in Research "Kidney.CH", Switzerland
| | - Maciej Henneberg
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland.,Biological Anthropology and Comparative Anatomy Unit, University of Adelaide, Australia
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
2
|
Ufnal M, Skrzypecki J. Blood borne hormones in a cross-talk between peripheral and brain mechanisms regulating blood pressure, the role of circumventricular organs. Neuropeptides 2014; 48:65-73. [PMID: 24485840 DOI: 10.1016/j.npep.2014.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 01/08/2014] [Accepted: 01/10/2014] [Indexed: 12/11/2022]
Abstract
Accumulating evidence suggests that blood borne hormones modulate brain mechanisms regulating blood pressure. This appears to be mediated by the circumventricular organs which are located in the walls of the brain ventricular system and lack the blood-brain barrier. Recent evidence shows that neurons of the circumventricular organs express receptors for the majority of cardiovascular hormones. Intracerebroventricular infusions of hormones and their antagonists is one approach to evaluate the influence of blood borne hormones on the neural mechanisms regulating arterial blood pressure. Interestingly, there is no clear correlation between peripheral and central effects of cardiovascular hormones. For example, angiotensin II increases blood pressure acting peripherally and centrally, whereas peripherally acting pressor catecholamines decrease blood pressure when infused intracerebroventricularly. The physiological role of such dual hemodynamic responses has not yet been clarified. In the paper we review studies on hemodynamic effects of catecholamines, neuropeptide Y, angiotensin II, aldosterone, natriuretic peptides, endothelins, histamine and bradykinin in the context of their role in a cross-talk between peripheral and brain mechanisms involved in the regulation of arterial blood pressure.
Collapse
Affiliation(s)
- Marcin Ufnal
- Department of Experimental and Clinical Physiology, Medical University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warsaw, Poland.
| | - Janusz Skrzypecki
- Department of Experimental and Clinical Physiology, Medical University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warsaw, Poland
| |
Collapse
|
3
|
Sodium surfeit and potassium deficit: Keys to the pathogenesis of hypertension. ACTA ACUST UNITED AC 2014; 8:203-13. [DOI: 10.1016/j.jash.2013.09.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/20/2013] [Accepted: 09/22/2013] [Indexed: 12/26/2022]
|
4
|
Zárate Méndez LH, Valenzuela Montero A. Sodium-potassium balance in the regulation of high blood pressure. Medwave 2012. [DOI: 10.5867/medwave.2012.02.5301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
5
|
Takahashi H, Yoshika M, Komiyama Y, Nishimura M. The central mechanism underlying hypertension: a review of the roles of sodium ions, epithelial sodium channels, the renin-angiotensin-aldosterone system, oxidative stress and endogenous digitalis in the brain. Hypertens Res 2011; 34:1147-60. [PMID: 21814209 PMCID: PMC3324327 DOI: 10.1038/hr.2011.105] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/08/2011] [Accepted: 05/15/2011] [Indexed: 02/07/2023]
Abstract
The central nervous system has a key role in regulating the circulatory system by modulating the sympathetic and parasympathetic nervous systems, pituitary hormone release, and the baroreceptor reflex. Digoxin- and ouabain-like immunoreactive materials were found >20 years ago in the hypothalamic nuclei. These factors appeared to localize to the paraventricular and supraoptic nuclei and the nerve fibers at the circumventricular organs and supposed to affect electrolyte balance and blood pressure. The turnover rate of these materials increases with increasing sodium intake. As intracerebroventricular injection of ouabain increases blood pressure via sympathetic activation, an endogenous digitalis-like factor (EDLF) was thought to regulate cardiovascular system-related functions in the brain, particularly after sodium loading. Experiments conducted mainly in rats revealed that the mechanism of action of ouabain in the brain involves sodium ions, epithelial sodium channels (ENaCs) and the renin-angiotensin-aldosterone system (RAAS), all of which are affected by sodium loading. Rats fed a high-sodium diet develop elevated sodium levels in their cerebrospinal fluid, which activates ENaCs. Activated ENaCs and/or increased intracellular sodium in neurons activate the RAAS; this releases EDLF in the brain, activating the sympathetic nervous system. The RAAS promotes oxidative stress in the brain, further activating the RAAS and augmenting sympathetic outflow. Angiotensin II and aldosterone of peripheral origin act in the brain to activate this cascade, increasing sympathetic outflow and leading to hypertension. Thus, the brain Na(+)-ENaC-RAAS-EDLF axis activates sympathetic outflow and has a crucial role in essential and secondary hypertension. This report provides an overview of the central mechanism underlying hypertension and discusses the use of antihypertensive agents.
Collapse
Affiliation(s)
- Hakuo Takahashi
- Department of Clinical Sciences and Laboratory Medicine, Kansai Medical University, Hirakata City, Osaka, Japan.
| | | | | | | |
Collapse
|
6
|
Abstract
Pharmacological and physiological phenomena suggest that cells somewhere inside the central nervous system are responsive to aldosterone. Here, we present the fundamental physiological limitations for aldosterone action in the brain, including its limited blood-brain barrier penetration and its substantial competition from glucocorticoids. Recently, a small group of neurons with unusual sensitivity to circulating aldosterone were identified in the nucleus of the solitary tract. We review the discovery and characterization of these neurons, which express the enzyme 11beta-hydroxysteroid dehydrogenase type 2, and consider alternative proposals regarding sites and mechanisms for mineralocorticoid action within the brain.
Collapse
Affiliation(s)
- Joel C Geerling
- Dept. of Anatomy and Neurobiology-Box 8108, Washington Univ. School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
| | | |
Collapse
|
7
|
|
8
|
Wang H, Huang BS, Leenen FHH. Brain sodium channels and ouabainlike compounds mediate central aldosterone-induced hypertension. Am J Physiol Heart Circ Physiol 2003; 285:H2516-23. [PMID: 12933342 DOI: 10.1152/ajpheart.00299.2003] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Central nervous system (CNS) effects of mineralocorticoids participate in the development of salt-sensitive hypertension. In the brain, mineralocorticoids activate amiloride-sensitive sodium channels, and we hypothesized that this would lead to increased release of ouabainlike compounds (OLC) and thereby sympathetic hyperactivity and hypertension. In conscious Wistar rats, intracerebroventricular infusion of aldosterone at 300 or 900 ng/h in artificial cerebrospinal fluid (aCSF) with 0.145 M Na+ for 2 h did not change baseline mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA), or heart rate (HR). Intracerebroventricular infusion of aCSF containing 0.16 M Na+ (versus 0.145 M Na+ in regular aCSF) did not change MAP or RSNA, but significant increases in MAP, RSNA, and HR were observed after intracerebroventricular infusion of aldosterone at 300 ng/h for 2 h. Intracerebroventricular infusion of aCSF containing 0.3 M Na+ increased MAP, RSNA, and HR significantly more after intracerebroventricular infusion of aldosterone versus vehicle. After intracerebroventricular infusion of aldosterone, the MAP, RSNA, and HR responses to intracerebroventricular infusion of aCSF containing 0.16 M Na+ were blocked by blockade of brain OLC with intracerebroventricular infusion of Fab fragments or of brain sodium channels with intracerebroventricular benzamil. Chronic intracerebroventricular infusion of aldosterone at 25 ng/h in aCSF with 0.15 M Na+ for 2 wk increased MAP by 15-20 mmHg and increased hypothalamic OLC by 30% and pituitary OLC by 60%. Benzamil blocked all these responses to aldosterone. These findings indicate that in the brain, mineralocorticoids activate brain sodium channels, with small increases in CSF Na+ leading to increases in brain OLC, sympathetic outflow, and blood pressure.
Collapse
Affiliation(s)
- Hao Wang
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada K1Y 4W7
| | | | | |
Collapse
|
9
|
León LAS, McKinley MJ, McAllen RM, May CN. Aldosterone acts on the kidney, not the brain, to cause mineralocorticoid hypertension in sheep. J Hypertens 2002; 20:1203-8. [PMID: 12023692 DOI: 10.1097/00004872-200206000-00034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine the extent to which mineralocortioid hypertension depends on a direct action of aldosterone on the kidney or on the brain. METHODS Studies were performed in conscious sheep that were previously uninephrectomized, implanted with silastic cannulae in the renal artery of the remaining kidney, and had guide tubes implanted over the lateral cerebral ventricles. The effect of aldosterone, infused either intrarenally (i.r.; 2 microg/h) or intravenously (i.v.; 2 and 10 microg/h) for 10 days (n = 5), on arterial pressure and fluid and electrolyte balance was determined. The i.r. (2 microg/h) and i.v. (10 microg/h) doses were calculated to give similar intrarenal concentrations of aldosterone. In a further study, the effect of intracerebroventricular (i.c.v.) infusion of aldosterone (2 microg/h for 21 days) on arterial pressure was examined (n = 5). RESULTS Infusion of aldosterone caused a progressive increase in mean arterial pressure from 83 +/- 3 mmHg to a maximum of 100 +/- 4 mmHg (P < 0.001) with 2 microg/h i.r. and from 84 +/- 3 mmHg to a maximum of 104 +/- 4 mmHg (P < 0.001) with 10 microg/h i.v., both by day 7. With both infusions there were similar increases in plasma [Na+] and decreases in plasma [K+] and total protein concentration (P < 0.05) between days 3 and 5; these were maintained throughout the infusion. There were no significant changes with i.v. aldosterone (2 microg/h). Long-term i.c.v. infusion of aldosterone (2 microg/h for 21 days) caused no change in arterial pressure. CONCLUSIONS In conscious sheep the hypertensive response to aldosterone resulted from an action on the kidney, with no evidence for a direct action on the brain.
Collapse
Affiliation(s)
- Leopoldo A Sosa León
- Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
10
|
Abstract
The soluble mineralocorticoid receptor bound to an agonist acts as a transcription factor for several genes relevant to ion transport by kidney and colon epithelial cells and is a major regulator of electrolyte and fluid homeostasis. Mineralocorticoids, the most prominent of which is aldosterone, also influence the activity of nonepithelial target cells, including vascular smooth muscle cells, by altering intracellular ion transport and content. Evidence is summarized for mineralocorticoid modulation of neuronal activity in a center or centers within the brain, probably in the periventricular area of the anterior hypothalamus, where information on electrolyte, fluid, and cardiovascular status is received and integrated, resulting in alterations in central sympathetic efferent activity. These functions are distinct from central aldosterone effects on salt appetite and peripheral trophic effects on cardiovascular tissue. The isolated mineralocorticoid receptor binds several adrenal steroids, including aldosterone and the major glucocorticoids, with equal affinity. Ligand specificity for the mineralocorticoid receptor differs between tissues, including different organs in the brain. Specificity is conferred extrinsically by the 11-beta-hydroxysteroid dehydrogenase enzymes in transport epithelia, but mechanisms for mineralocorticoid ligand specificity have not been completely defined in the brain. The functional interaction between the mineralocorticoid receptor bound to different ligands and between the mineralocorticoid and glucocorticoid receptors is complex and as yet unresolved. Evidence is presented for the de novo synthesis of adrenal corticosteroids in the brain which may, by paracrine regulation of central control mechanisms, be relevant for certain clinical and experimental forms of hypertension characterized by low circulating levels of mineralocorticoids which respond to mineralocorticoid receptor antagonists.
Collapse
Affiliation(s)
- E P Gómez-Sánchez
- Department of Internal Medicine, University of Missouri-Columbia, USA.
| |
Collapse
|
11
|
Tresham JJ, Coghlan JP, May CN. Evidence against a central pressor mechanism for adrenocortical steroid hypertension in sheep. Clin Exp Hypertens 1996; 18:831-49. [PMID: 8842566 DOI: 10.3109/10641969609081783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The possibility that corticotropin (ACTH)-induced hypertension results from a direct central effect of the adrenocortical steroids released by ACTH was investigated in sheep. Using two approaches, steroid levels were increased in the brain while peripheral levels remained sub-pressor. The blood pressure response to intravenous infusion of a combination of 7 steroids (aldosterone, cortisol, deoxycorticosterone, corticosterone, 11-deoxycortisol, 17 alpha hydroxyprogesterone and 17 alpha 20 alpha dihydroxyprogesterone), which causes a similar pressor effect to ACTH, was compared with that caused by intracarotid infusion of the steroids at rates calculated to give concentrations in the brain equivalent to those achieved after intravenous infusion. We also examined the effects of infusing the combination of steroids directly into the central nervous system via the lateral cerebral ventricles. Intravenous infusion of the steroids increased mean arterial pressure (MAP) from a control average of 84.0 +/- 1.1mmHg to 98.2 +/- 2.2mmHg (p < 0.001) on day 5. There was no increase in MAP during intracarotid infusion, nor during intracerebroventricular infusion. These findings suggest that the adrenocortical steroids released by ACTH do not act directly on central steroid receptors to increase blood pressure.
Collapse
Affiliation(s)
- J J Tresham
- Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, Australia
| | | | | |
Collapse
|
12
|
Van den Berg DT, de Kloet ER, de Jong W. Central effects of mineralocorticoid antagonist RU-28318 on blood pressure of DOCA-salt hypertensive rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 267:E927-33. [PMID: 7810636 DOI: 10.1152/ajpendo.1994.267.6.e927] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The role of brain mineralocorticoid receptor (MR) sites in the pathogenesis of mineralocorticoid hypertension was studied after an intracerebroventricular injection of the MR antagonist RU-28318. Male Wistar rats received subcutaneously implanted deoxycorticosterone acetate (DOCA) pellets and were maintained on 0.9% saline as drinking solution. Under these conditions hypertension developed in approximately 5 wk as assessed in conscious rats by means of the tail-cuff technique. During the development of this hypertension (after 3 wk of DOCA-salt treatment) a single intracerebroventricular injection of the specific MR antagonist RU-28318 reduced systolic blood pressure (SBP) as measured with the tail-cuff method. A decrease in SBP was observed 2-24 h after this intracerebroventricular injection, with the lowest SBP values occurring at 8 h. In these animals (3 wk after DOCA implantation) continuous direct blood pressure recording via chronic cannulation revealed, on the day of the intracerebroventricular injection of RU-28318, a slight increase in arterial pressure during the light phase, followed by a decrease during the dark phase. In the established hypertensive rats (5 wk after DOCA RU-28318 on the arterial pressure or heart rate was detectable. It is concluded that central MR blockade during the development of the DOCA-salt hypertension reduces blood pressure within 24 h assessed with 1) the indirect method at certain time points after exposure to warming and stress and 2) the direct method during the dark phase of the diurnal cycle.
Collapse
Affiliation(s)
- D T Van den Berg
- Leiden/Amsterdam Center for Drug Research, Sylvius Laboratories, Leiden University, The Netherlands
| | | | | |
Collapse
|