Gasic GP, Arenas CP, Gasic TB, Gasic GJ. Coagulation factors X, Xa, and protein S as potent mitogens of cultured aortic smooth muscle cells.
Proc Natl Acad Sci U S A 1992;
89:2317-20. [PMID:
1532256 PMCID:
PMC48648 DOI:
10.1073/pnas.89.6.2317]
[Citation(s) in RCA: 135] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Smooth muscle cells (SMCs) in the rat carotid artery leave the quiescent state and proliferate after balloon catheter injury. The precise signals responsible for this SMC mitogenesis need to be elucidated. Although platelet-derived growth factor (PDGF), a potent SMC mitogen, is released from activated platelets, damaged endothelium, and macrophages, it cannot be solely responsible for this proliferation. In search of other SMC growth factors, we have examined several proteins of the coagulation cascade. At nanomolar concentrations, factors X, Xa, and protein S promote cultured rat aortic SMC mitosis. In contrast, factor IX is only weakly mitogenic, whereas factor VII and protein C fail to stimulate SMC division. Protein S, the most mitogenic of these coagulation cascade factors, stimulates DNA synthesis in cultured SMCs with a time course similar to that of PDGF-AA and without the delay observed for transforming growth factor beta. Antistasin and tick anticoagulant peptide, two specific factor Xa inhibitors, inhibit SMC mitogenesis due to Xa and protein S. Coagulation factors that possess mitogenic activity may contribute to intimal SMC proliferation after vascular injury as a result of angioplasty or vascular compromise during atherogenesis.
Collapse