1
|
Guo M, Lv M, Shao Y, Zhang W, Zhao X, Li C. Bax functions as coelomocyte apoptosis regulator in the sea cucumber Apostichopus japonicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 102:103490. [PMID: 31494220 DOI: 10.1016/j.dci.2019.103490] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Bcl-2-associated X (Bax) belongs to the Bcl-2 protein family and its pro-apoptotic function has been confirmed in many vertebrate species. However, the functional role of Bax in apoptosis in invertebrates is limited. Here, a Bax homologue (AjBax) in Apostichopus japonicas was cloned and characterized, and its pro-apoptotic function explored. In healthy sea cucumbers, AjBax was expressed in coelomocyte with the highest levels. AjBax mRNA and protein levels were significantly induced in coelomocytes post Vibrio splendidus challenge in vivo and LPS-exposed in vitro. Moreover, siRNA-mediated AjBax knockdown in coelomocyte significantly decreased AjBax mRNA and protein levels as well as the apoptosis levels of coelomocyte. Furthermore, AjBax protein levels and coelomocyte apoptosis levels could be partially recovered to their original levels after supplementation with recombinant AjBax. Our results support that AjBax has a similar function to Bax proteins in vertebrates and that it may serve as a pro-apoptotic regulator in sea cucumbers.
Collapse
Affiliation(s)
- Ming Guo
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Miao Lv
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Yina Shao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Weiwei Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Xuelin Zhao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
2
|
Nolan RA, Muir R, Runner K, Haddad EK, Gaskill PJ. Role of Macrophage Dopamine Receptors in Mediating Cytokine Production: Implications for Neuroinflammation in the Context of HIV-Associated Neurocognitive Disorders. J Neuroimmune Pharmacol 2018; 14:134-156. [PMID: 30519866 DOI: 10.1007/s11481-018-9825-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
Despite the success of combination anti-retroviral therapy (cART), around 50% of HIV-infected individuals still display a variety of neuropathological and neurocognitive sequelae known as NeuroHIV. Current research suggests these effects are mediated by long-term changes in CNS function in response to chronic infection and inflammation, and not solely due to active viral replication. In the post-cART era, drug abuse is a major risk-factor for the development of NeuroHIV, and increases extracellular dopamine in the CNS. Our lab has previously shown that dopamine can increase HIV infection of primary human macrophages and increase the production of inflammatory cytokines, suggesting that elevated dopamine could enhance the development of HIV-associated neuropathology. However, the precise mechanism(s) by which elevated dopamine could exacerbate NeuroHIV, particularly in chronically-infected, virally suppressed individuals remain unclear. To determine the connection between dopaminergic alterations and HIV-associated neuroinflammation, we have examined the impact of dopamine exposure on macrophages from healthy and virally suppressed, chronically infected HIV patients. Our data show that dopamine treatment of human macrophages isolated from healthy and cART-treated donors promotes production of inflammatory mediators including IL-1β, IL-6, IL-18, CCL2, CXCL8, CXCL9, and CXCL10. Furthermore, in healthy individuals, dopamine-mediated modulation of specific cytokines is correlated with macrophage expression of dopamine-receptor transcripts, particularly DRD5, the most highly-expressed dopamine-receptor subtype. Overall, these data will provide more understanding of the role of dopamine in the development of NeuroHIV, and may suggest new molecules or pathways that can be useful as therapeutic targets during HIV infection.
Collapse
Affiliation(s)
- R A Nolan
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - R Muir
- Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - K Runner
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - E K Haddad
- Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
3
|
Talhada D, Rabenstein M, Ruscher K. The role of dopaminergic immune cell signalling in poststroke inflammation. Ther Adv Neurol Disord 2018; 11:1756286418774225. [PMID: 29774058 PMCID: PMC5952273 DOI: 10.1177/1756286418774225] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/06/2018] [Indexed: 01/08/2023] Open
Abstract
Upon ischaemic stroke, brain-resident and peripheral immune cells accumulate in the central nervous system (CNS). Interestingly, these cells express pattern specific to neurotransmitter receptors and, therefore, seem to be susceptible to neurotransmitter stimulation, potentially modulating their properties and functions. One of the principal neurotransmitters in the CNS, dopamine, is involved in the regulation of processes of brain development, motor control and higher brain functions. It is constantly released in the brain and there is experimental and clinical evidence that dopaminergic signalling is involved in recovery of lost neurological function after stroke. Independent studies have revealed specific but different patterns of dopamine receptor subtypes on different populations of immune cells. Those patterns are dependent on the activation status of cells. Generally, exposure to dopamine or dopamine receptor agonists decreases detrimental actions of immune cells. In contrast, a reduction of dopaminergic inputs perpetuates a pro-inflammatory state associated with increased release of pro-inflammatory molecules. In addition, subsets of immune cells have been identified to synthesize and release dopamine, suggesting autoregulatory mechanisms. Evidence supports that inflammatory processes activated following ischaemic stroke are modulated by dopaminergic signalling.
Collapse
Affiliation(s)
- Daniela Talhada
- LUBIN Lab – Lund Brain Injury Laboratory for Neurosurgical Research, Department of Clinical Sciences, Lund University, Lund, Sweden CICS-UBI-Health Sciences Research Centre, Faculdade de Ciências da Saúde, Av. Infante D. Henrique, Universidade da Beira Interior, Portugal
| | - Monika Rabenstein
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Karsten Ruscher
- Lund Brain Injury Laboratory for Neurosurgical Research, Wallenberg Neuroscience Center, Lund University, BMC A13, S-22184 Lund, Sweden
| |
Collapse
|
4
|
Sutera FM, Giannola LI, Murgia D, De Caro V. Assessment of in vivo organ-uptake and in silico prediction of CYP mediated metabolism of DA-Phen, a new dopaminergic agent. Comput Biol Chem 2017; 71:63-69. [PMID: 28985485 DOI: 10.1016/j.compbiolchem.2017.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 08/01/2017] [Accepted: 09/25/2017] [Indexed: 11/27/2022]
Abstract
The drug development process strives to predict metabolic fate of a drug candidate, together with its uptake in major organs, whether they act as target, deposit or metabolism sites, to the aim of establish a relationship between the pharmacodynamics and the pharmacokinetics and highlight the potential toxicity of the drug candidate. The present study was aimed at evaluating the in vivo uptake of 2-Amino-N-[2-(3,4-dihydroxy-phenyl)-ethyl]-3-phenyl-propionamide (DA-Phen) - a new dopaminergic neurotransmission modulator, in target and non-target organs of animal subjects and integrating these data with SMARTCyp results, an in silico method that predicts the sites of cytochrome P450-mediated metabolism of drug-like molecules. Wistar rats, subjected to two different behavioural studies in which DA-Phen was intraperitoneally administrated at a dose equal to 0.03mmol/kg, were sacrificed after the experimental protocols and their major organs were analysed to quantify the drug uptake. The data obtained were integrated with in silico prediction of potential metabolites of DA-Phen using the SmartCYP predictive tool. DA-Phen reached quantitatively the Central Nervous System and the results showed that the amide bond of the DA-Phen is scarcely hydrolysed as it was found intact in analyzed organs. As a consequence, it is possible to assume that DA-Phen acts as dopaminergic modulator per se and not as a Dopamine prodrug, thus avoiding peripheral release and toxic side effects due to the endogenous neurotransmitter. Furthermore the identification of potential metabolites related to biotransformation of the drug candidate leads to a more careful evaluation of the appropriate route of administration for future intended therapeutic aims and potential translation into clinical studies.
Collapse
Affiliation(s)
- Flavia Maria Sutera
- SiSaf Ltd, Innovation Centre, Northern Ireland Science Park, Queen's Island, Belfast, BT3 9DT, UK
| | - Libero Italo Giannola
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Denise Murgia
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Viviana De Caro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| |
Collapse
|
5
|
Levite M, Marino F, Cosentino M. Dopamine, T cells and multiple sclerosis (MS). J Neural Transm (Vienna) 2017; 124:525-542. [DOI: 10.1007/s00702-016-1640-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/31/2016] [Indexed: 01/11/2023]
|
6
|
Levite M. Dopamine and T cells: dopamine receptors and potent effects on T cells, dopamine production in T cells, and abnormalities in the dopaminergic system in T cells in autoimmune, neurological and psychiatric diseases. Acta Physiol (Oxf) 2016; 216:42-89. [PMID: 25728499 DOI: 10.1111/apha.12476] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/07/2014] [Accepted: 02/23/2015] [Indexed: 12/12/2022]
Abstract
Dopamine, a principal neurotransmitter, deserves upgrading to 'NeuroImmunotransmitter' thanks to its multiple, direct and powerful effects on most/all immune cells. Dopamine by itself is a potent activator of resting effector T cells (Teffs), via two independent ways: direct Teffs activation, and indirect Teffs activation by suppression of regulatory T cells (Tregs). The review covers the following findings: (i) T cells express functional dopamine receptors (DRs) D1R-D5R, but their level and function are dynamic and context-sensitive, (ii) DR membranal protein levels do not necessarily correlate with DR mRNA levels, (iii) different T cell types/subtypes have different DR levels and composition and different responses to dopamine, (iv) autoimmune and pro-inflammatory T cells and T cell leukaemia/lymphoma also express functional DRs, (v) dopamine (~10(-8) M) activates resting/naive Teffs (CD8(+) >>>CD4(+) ), (vi) dopamine affects Th1/Th2/Th17 differentiation, (vii) dopamine inhibits already activated Teffs (i.e. T cells that have been already activated by either antigen, mitogen, anti-CD3 antibodies cytokines or other molecules), (viii) dopamine inhibits activated Tregs in an autocrine/paracrine manner. Thus, dopamine 'suppresses the suppressors' and releases the inhibition they exert on Teffs, (ix) dopamine affects intracellular signalling molecules and cascades in T cells (e.g. ERK, Lck, Fyn, NF-κB, KLF2), (x) T cells produce dopamine (Tregs>>>Teffs), can release dopamine, mainly after activation (by antigen, mitogen, anti-CD3 antibodies, PKC activators or other), uptake extracellular dopamine, and most probably need dopamine, (xi) dopamine is important for antigen-specific interactions between T cells and dendritic cells, (xii) in few autoimmune diseases (e.g. multiple sclerosis/SLE/rheumatoid arthritis), and neurological/psychiatric diseases (e.g. Parkinson disease, Alzheimer's disease, Schizophrenia and Tourette), patient's T cells seem to have abnormal DRs expression and/or responses to dopamine or production of dopamine, (xiii) drugs that affect the dopaminergic system have potent effects on T cells (e.g. dopamine=Intropin, L-dopa, bromocriptine, haloperidol, quinpirole, reserpine, pergolide, ecopipam, pimozide, amantadine, tetrabenazine, nomifensine, butaclamol). Dopamine-induced activation of resting Teffs and suppression of Tregs seem beneficial for health and may also be used for immunotherapy of cancer and infectious diseases. Independently, suppression of DRs in autoimmune and pro-inflammatory T cells, and also in cancerous T cells, may be advantageous. The review is relevant to Immunologists, Neurologists, Neuroimmunologists, Hematologists, Psychiatrists, Psychologists and Pharmacologists.
Collapse
Affiliation(s)
- M. Levite
- School of Pharmacy; Faculty of Medicine; The Hebrew University; Jerusalem Israel
- Institute of Gene Therapy; Hadassah Hebrew University Hospital; Jerusalem Israel
- School of Behavioral Sciences; Academic College of Tel-Aviv-Yaffo; Tel Aviv Israel
| |
Collapse
|
7
|
Ugrumov MV, Saifetyarova JY, Lavrentieva AV, Sapronova AY. Developing brain as an endocrine organ: secretion of dopamine. Mol Cell Endocrinol 2012; 348:78-86. [PMID: 21827827 DOI: 10.1016/j.mce.2011.07.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 07/08/2011] [Accepted: 07/19/2011] [Indexed: 11/18/2022]
Abstract
This study was aimed to test our hypothesis that the developing brain operates as an endocrine organ before the establishment of the blood-brain barrier (BBB), in rats up to the first postnatal week. Dopamine (DA) was selected as a marker of the brain endocrine activity. The hypothesis was supported by the observations in rats of: (i) the physiological concentration of DA in peripheral blood of fetuses and neonates, before the BBB establishment, and its drop by prepubertal period, after the BBB development; (ii) a drop of the DA concentration in the brain for 54% and in blood for 74% on the 3rd postnatal day after the intraventricular administration of 50 μg of α-methyl-p-tyrosine, an inhibitor of DA synthesis, with no changes in the DA metabolism in peripheral DA-producing organs. Thus, the developing brain is a principal source of circulating DA which is capable of providing an endocrine regulation of peripheral organs and the brain.
Collapse
Affiliation(s)
- Michael V Ugrumov
- Laboratory of Hormonal Regulations, Institute of Developmental Biology RAS, 26 Vavilov Str., Moscow 119334, Russia.
| | | | | | | |
Collapse
|
8
|
Saifetyarova JJ, Degtyareva EA, Sapronova AY, Ugrumov MV. Endocrine function of dopaminergic neurons in the neonatal rat brain. NEUROCHEM J+ 2011. [DOI: 10.1134/s1819712411030068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Drzyzga L, Obuchowicz E, Marcinowska A, Herman ZS. Cytokines in schizophrenia and the effects of antipsychotic drugs. Brain Behav Immun 2006; 20:532-45. [PMID: 16580814 DOI: 10.1016/j.bbi.2006.02.002] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 02/17/2006] [Indexed: 01/13/2023] Open
Abstract
Growing evidence suggests that the immune, endocrine, and nervous systems interact with each other through cytokines, hormones, and neurotransmitters. The activation of the cytokine systems may be involved in the neuropathological changes occurring in the central nervous system (CNS) of schizophrenic patients. Numerous studies report that treatment with antipsychotic drugs affects the cytokine network. Hence, it is plausible that the influence of antipsychotics on the cytokine systems may be responsible for their clinical efficacy in schizophrenia. This article reviews current data on the cytokine-modulating potential of antipsychotic drugs. First, basic information on the cytokine networks with special reference to their role in the CNS as well as an up-to-date knowledge of the cytokine alterations in schizophrenia is outlined. Second, the hitherto published studies on the influence of antipsychotics on the cytokine system are reviewed. Third, the possible mechanisms underlying antipsychotics' potential to influence the cytokine networks and the most relevant aspects of this activity are discussed. Finally, limitations of the presented studies and prospects of future research are delineated.
Collapse
Affiliation(s)
- Lukasz Drzyzga
- Silesian University School of Medicine, Department of Clinical Pharmacology, Medyków 18, 40-752 Katowice, Poland
| | | | | | | |
Collapse
|
10
|
Baglole CJ, Davison JS, Meddings JB. Epithelial distribution of neural receptors in the guinea pig small intestine. Can J Physiol Pharmacol 2005; 83:389-95. [PMID: 15897920 DOI: 10.1139/y05-024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neural and paracrine agents, such as dopamine, epinephrine, and histamine, affect intestinal epithelial function, but it is unclear if these agents act on receptors directly at the enterocyte level. The cellular localization and villus-crypt distribution of adrenergic, dopamine, and histamine receptors within the intestinal epithelium is obscure and needs to be identified. Single cell populations of villus or crypt epithelial cells were isolated from the jejunum of adult guinea pigs. Enterocytes were separated from intraepithelial lymphocytes by flow cytometry and specific binding was determined using fluorescent probes. α1-adrenergic receptors were located on villus and crypt intraepithelial lymphocytes and enterocytes. β-adrenergic receptors were found on villus and crypt enterocytes. Dopamine receptors were found on all cell types examined, whereas histamine receptors were not detected (<10% for each cell population). These studies demonstrated that (1) receptors for epinephrine and dopamine exist on epithelial cells of the guinea pig jejunum, (2) β-adrenergic receptors are found primarily on villus and crypt enterocytes and (3) intraepithelial lymphocytes contain α1-adrenergic, but have few β-adrenergic, receptors. The presence of neural receptors suggests that these agents are acting, at least in part, at the enterocyte or intraepithelial lymphocyte levels to modulate intestinal and immune function.Key words: enterocyte, receptor, intestine, epithelium.
Collapse
Affiliation(s)
- Carolyn J Baglole
- Gastrointestinal Research Group, University of Calgary, AB T2N 4N1, Canada
| | | | | |
Collapse
|
11
|
Kipnis J, Cardon M, Avidan H, Lewitus GM, Mordechay S, Rolls A, Shani Y, Schwartz M. Dopamine, through the extracellular signal-regulated kinase pathway, downregulates CD4+CD25+ regulatory T-cell activity: implications for neurodegeneration. J Neurosci 2005; 24:6133-43. [PMID: 15240805 PMCID: PMC6729670 DOI: 10.1523/jneurosci.0600-04.2004] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fighting off neuronal degeneration requires a well controlled T-cell response against self-antigens residing in sites of the CNS damage. The ability to evoke this response is normally suppressed by naturally occurring CD4+CD25+ regulatory T-cells (Treg). No physiological compound that controls Treg activity has yet been identified. Here, we show that dopamine, acting via type 1 dopamine receptors (found here to be preferentially expressed by Treg), reduces the suppressive activity and the adhesive and migratory abilities of Treg. Treg activity was correlated with activation of the ERK1/2 (extracellular signal-regulated kinase 1/2) signaling pathway. Systemic injection of dopamine or an agonist of its type 1 receptors significantly enhanced, via a T-cell-dependent mechanism, protection against neuronal death after CNS mechanical and biochemical injury. These findings shed light on the physiological mechanisms controlling Treg and might open the way to novel therapeutic strategies for downregulating Treg activity (e.g., in neuronal degeneration) or for strengthening it (in autoimmune diseases).
Collapse
Affiliation(s)
- Jonathan Kipnis
- Department of Neurobiology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Saurer TB, Carrigan KA, Ijames SG, Lysle DT. Morphine-induced alterations of immune status are blocked by the dopamine D2-like receptor agonist 7-OH-DPAT. J Neuroimmunol 2004; 148:54-62. [PMID: 14975586 DOI: 10.1016/j.jneuroim.2003.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Revised: 11/03/2003] [Accepted: 11/05/2003] [Indexed: 11/18/2022]
Abstract
Morphine administration produces profound effects on the immune system, including reductions in natural killer cell activity, mitogen-induced lymphocyte proliferation, and cytokine production. Although it has been established that the activation of central nervous system (CNS) micro-opioid receptors by morphine induces immunomodulation, little is known about the neural mechanisms underlying such processes. Interestingly, it has been shown that the dopamine (DA) D2-like receptor agonist 7-hydroxy-N,N-di-n-propyl-2-aminotetralin (7-OH-DPAT) blocks the effect of morphine on a number of behaviors that are mediated by central dopamine pathways. The present study examined whether dopamine is involved in the immunomodulatory effects of morphine. In separate experiments, 7-OH-DPAT was administered either systemically (subcutaneous, s.c.) or centrally (intracerebroventricularly, i.c.v.) prior to morphine treatment in male Lewis rats. The results demonstrate that both systemic and central administration of 7-OH-DPAT attenuate the suppressive effect of morphine on several measures of immune status. Overall, these findings provide the first evidence that CNS dopaminergic mechanisms are directly involved in morphine-induced immunomodulation.
Collapse
Affiliation(s)
- Timothy B Saurer
- Department of Psychology, Davie Hall, CB#3270, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3270, USA.
| | | | | | | |
Collapse
|
13
|
Nikkilä HV, Müller K, Ahokas A, Rimón R, Andersson LC. Increased frequency of activated lymphocytes in the cerebrospinal fluid of patients with acute schizophrenia. Schizophr Res 2001; 49:99-105. [PMID: 11343869 DOI: 10.1016/s0920-9964(99)00218-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We compared the cerebrospinal fluid (CSF) cytology of 30 acutely psychotic patients at the initial phase of their hospital treatment with that of 46 control individuals with no psychiatric disorder or central nervous system (CNS) disease. The cytological profile of May-Grünwald-Giemsa stained CSF cell slides of the patients was significantly different from that of the control population. The most striking finding was a significantly increased frequency of lymphoid cells showing morphological features of activation/stimulation and a decreased proportion of normal small lymphocytes. Many of the cells with aberrant morphology displayed structural details similar to those of the 'P cells' previously described in the blood of schizophrenic patients. The patients' CSF also contained elevated proportions of monocytes/macrophages, some of which were found in 'rosettes' with activated lymphocytes indicating an increased intercellular adhesion. Possible pathogenic mechanisms behind lymphocyte activation and macrophage dominance in the CSF of acutely ill psychotic patients are discussed.
Collapse
Affiliation(s)
- H V Nikkilä
- Department of Psychiatry, Helsinki University, Lapinlahdentie 1, 00180, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
14
|
Abstract
Dopamine is formed form L-tyrosine by tyrosine hydroxylase and aromatic L-amino acid decarboxylase. In addition to this pathway, however, the formation of catecholamines, including dopamine, from trace amines such as tyramine by hepatic microsomes has been demonstrated. In this study, we investigated the formation of dopamine from trace amines, using human hepatic microsomes and human cytochrome P450 (CYP) isoforms expressed in yeast. Among the 11 isoforms of human CYP expressed in yeast, CYP2D6 was the only isoform exhibiting strong ability to convert p-tyramine and m-tyramine to dopamine. In studies with human hepatic microsomes, the hydroxylation of tyramine to dopamine was inhibited by bufuralol, a typical substrate for CYP2D isoforms, and anti-CYP2D1 antiserum. This is the first report showing that CYP2D is capable of converting tyramine to dopamine. The Km values of CYP2D6, expressed in yeast, for p-tyramine and m-tyramine were 190.1 +/- 19.5 microM and 58.2 +/- 13.8 microM, respectively. Tyramine is an endogenous compound which exists in the brain as a trace amine but is also an exogenous compound which is found in foods such as cheese and wine. Our results suggest that dopamine is formed from endogenous and/or exogenous tyramine by this CYP2D isoform.
Collapse
Affiliation(s)
- T Hiroi
- Department of Chemical Biology, Osaka City University Medical School, Japan
| | | | | |
Collapse
|