1
|
Chang G, Shih HM, Pan CF, Wu CJ, Lin CJ. Effect of Low Protein Diet Supplemented with Ketoanalogs on Endothelial Function and Protein-Bound Uremic Toxins in Patients with Chronic Kidney Disease. Biomedicines 2023; 11:biomedicines11051312. [PMID: 37238983 DOI: 10.3390/biomedicines11051312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Studies have demonstrated that a low-protein diet supplemented with ketoanalogs (KAs) could significantly retard progression of renal function in patients with chronic kidney disease (CKD) stages 3-5. However, its effects on endothelial function and serum levels of protein-bound uremic toxins remain elusive. Therefore, this study explored whether a low-protein diet (LPD) supplemented with KAs affects kidney function, endothelial function, and serum uremic toxin levels in a CKD-based cohort. In this retrospective cohort, we enrolled 22 stable CKD stage 3b-4 patients on LPD (0.6-0.8 g/day). Patients were categorized into control (LPD only) and study groups (LPD + KAs 6 tab/day). Serum biochemistry, total/free indoxyl sulfate (TIS/FIS), total/free p-cresyl sulfate (TPCS/FPCS), and flow-mediated dilation (FMD) were measured before and after 6 months of KA supplementation. Before the trial, there were no significant differences in kidney function, FMD, or uremic toxin levels between the control and study groups. When compared with the control group, the paired t-test showed a significant decrease in TIS and FIS (all p < 0.05) and a significant increase in FMD, eGFR, and bicarbonate (all p < 0.05). In multivariate regression analysis, an increase in FMD (p < 0.001) and a decrease in FPCS (p = 0.012) and TIS (p < 0.001) remained persistent findings when adjusted for age, systolic blood pressure (SBP), sodium, albumin, and diastolic blood pressure (DBP). LPD supplemented with KAs significantly preserves kidney function and provides additional benefits on endothelial function and protein-bound uremic toxins in patients with CKD.
Collapse
Affiliation(s)
- George Chang
- Division of Nephrology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan
| | - Hong-Mou Shih
- Division of Nephrology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100001, Taiwan
| | - Chi-Feng Pan
- Division of Nephrology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan
| | - Chih-Jen Wu
- Division of Nephrology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei 220001, Taiwan
| | - Cheng-Jui Lin
- Division of Nephrology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei 220001, Taiwan
- Department of Medicine, Mackay Junior College of Medicine, Nursing and Management, Taipei 100001, Taiwan
| |
Collapse
|
2
|
Saini R, Singh S. Inducible nitric oxide synthase: An asset to neutrophils. J Leukoc Biol 2018; 105:49-61. [DOI: 10.1002/jlb.4ru0418-161r] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/25/2018] [Accepted: 08/26/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Rashmi Saini
- Department of ZoologyGargi CollegeUniversity of Delhi Delhi 11049 India
| | - Sarika Singh
- Toxicology & Experimental MedicineCSIR‐Central Drug Research Institute Lucknow 226031 India
| |
Collapse
|
3
|
Ahmad KA, Yuan Yuan D, Nawaz W, Ze H, Zhuo CX, Talal B, Taleb A, Mais E, Qilong D. Antioxidant therapy for management of oxidative stress induced hypertension. Free Radic Res 2017; 51:428-438. [PMID: 28427291 DOI: 10.1080/10715762.2017.1322205] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hypertension is considered as the most common risk factor for cardiovascular diseases, also is regarded as a leading cause of the mortality and morbidity worldwide. The mechanisms underlying the pathological process of hypertension are not completely explained. However, there is growing evidence that increased oxidative stress plays an important role in the pathophysiology of hypertension. Several preclinical studies and clinical trials have indicated that antioxidant therapy is important for management of hypertension, using antioxidants compounds such as alpha tocopherol (Vit E) and ascorbic acid (Vit C), polyphenols with others and some antihypertensive drugs that are now in clinical use (e.g. ACEIs, ARBs, novel B-blockers, dihydropyridine CCBs) which have antioxidative pleiotropic effects. The purpose of this review is to highlight the importance of antioxidant therapy for management of oxidative stress induced hypertension. Furthermore, we review the current knowledge in the oxidative stress and its significance in hypertension.
Collapse
Affiliation(s)
- Khalil Ali Ahmad
- a Department of Pharmacology, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| | - Dai Yuan Yuan
- a Department of Pharmacology, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| | - Waqas Nawaz
- b School of Basic Medicine and Clinical Pharmacy , China Pharmaceutical University , Nanjing , China
| | - Hong Ze
- a Department of Pharmacology, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| | - Chen Xue Zhuo
- a Department of Pharmacology, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| | - Bashar Talal
- c Department of Pharmacy Practice, JSS College of Pharmacy , JSS University , Mysuru , India
| | - Abdoh Taleb
- a Department of Pharmacology, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| | - Enos Mais
- d Department of Pharmacognosy, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| | - Ding Qilong
- a Department of Pharmacology, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
4
|
Hydrogen Sulfide Improves Endothelial Dysfunction via Downregulating BMP4/COX-2 Pathway in Rats with Hypertension. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8128957. [PMID: 27642495 PMCID: PMC5011526 DOI: 10.1155/2016/8128957] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/26/2016] [Indexed: 11/23/2022]
Abstract
Aims. We object to elucidate that protective effect of H2S on endothelium is mediated by downregulating BMP4 (bone morphogenetic protein 4)/cyclooxygenase- (COX-) 2 pathway in rats with hypertension. Methods and Results. The hypertensive rat model induced by two-kidney one-clip (2K1C) model was used. Exogenous NaHS administration (56 μmol/kg/day, intraperitoneally once a day) reduced mean arterial pressure (MAP) of 2K1C rats from 199.9 ± 3.312 mmHg to 159.4 ± 5.434 mmHg, while NaHS did not affect the blood pressure in the Sham rats and ameliorated endothelium-dependent contractions (EDCs) of renal artery in 2K1C rats. 2K1C reduced CSE level twofold, decreased plasma levels of H2S about 6-fold, increased BMP4, Nox2, and Nox4 levels 2-fold and increased markers of oxidative stress MDA and nitrotyrosine 1.5-fold, upregulated the expression of phosphorylation-p38 MAPK 2-fold, and increased protein levels of COX-2 1.5-fold, which were abolished by NaHS treatment. Conclusions. Our results demonstrate that H2S prevents activation of BMP4/COX-2 pathway in hypertension, which may be involved in the ameliorative effect of H2S on endothelial impairment. These results throw light on endothelial protective effect of H2S and provide new target for prevention and therapy of hypertension.
Collapse
|
5
|
Chan SL, Baumbach GL. Nox2 deficiency prevents hypertension-induced vascular dysfunction and hypertrophy in cerebral arterioles. Int J Hypertens 2013; 2013:793630. [PMID: 23573415 PMCID: PMC3612447 DOI: 10.1155/2013/793630] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 02/16/2013] [Indexed: 11/17/2022] Open
Abstract
Oxidative stress is involved in many hypertension-related vascular diseases in the brain, including stroke and dementia. Thus, we examined the role of genetic deficiency of NADPH oxidase subunit Nox2 in the function and structure of cerebral arterioles during hypertension. Arterial pressure was increased in right-sided cerebral arterioles with transverse aortic banding for 4 weeks in 8-week-old wild-type (WT) and Nox2-deficient (-/y) mice. Mice were given N(G)-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg) or vehicle to drink. We measured the reactivity in cerebral arterioles through open cranial window in anesthetized mice and wall cross-sectional area and superoxide levels ex vivo. Aortic constriction increased systolic and pulse pressures in right-sided carotid arteries in all groups of mice. Ethidium fluorescence showed increased superoxide in right-sided cerebral arterioles in WT, but not in Nox2-/y mice. Dilation to acetylcholine, but not sodium nitroprusside, was reduced, and cross-sectional areas were increased in the right-sided arterioles in WT, but were unchanged in Nox2-/y mice. L-NAME reduced dilation to acetylcholine but did not result in hypertrophy in right-sided arterioles of Nox2-/y mice. In conclusion, hypertension-induced superoxide production derived from Nox2-containing NADPH oxidase promotes hypertrophy and causes endothelial dysfunction in cerebral arterioles, possibly involving interaction with nitric oxide.
Collapse
Affiliation(s)
- Siu-Lung Chan
- Department of Pathology, University of Iowa Carver College of Medicine, 5231D RCP, 200 Hawkins Drive, Iowa City, IA 52242, USA
- Department of Neurological Sciences, University of Vermont, 149 Beaumont Avenue, HSRF 416, Burlington, VT 05405, USA
| | - Gary L. Baumbach
- Department of Pathology, University of Iowa Carver College of Medicine, 5231D RCP, 200 Hawkins Drive, Iowa City, IA 52242, USA
| |
Collapse
|
6
|
Abstract
Hypertension is one of the common diseases in the elderly. The prevalence of hypertension markedly increases with advancing age. Both aging and hypertension have a critical role in cardiovascular and cerebrovascular complications. Although aging and hypertension, either independently or collectively, impair endothelial function, aging and hypertension may have similar cascades for the pathogenesis and development of endothelial dysfunction. Nitric oxide (NO) has an important role in regulation of vascular tone. Decrease in NO bioavailability by endothelial dysfunction would lead to elevation of blood pressure. An imbalance of reduced production of NO or increased production of reactive oxygen species, mainly superoxide, may promote endothelial dysfunction. One possible mechanism by which the prevalence of hypertension is increased in relation to aging may be advancing endothelial dysfunction associated with aging through an increase in oxidative stress. In addition, endothelial cell senescence is also involved in aging-related endothelial dysfunction. In this review, we focus on recent findings and interactions between endothelial function, oxidative stress and hypertension in aging.
Collapse
Affiliation(s)
- Yukihito Higashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan.
| | | | | |
Collapse
|
7
|
Chatterjee M, Saluja R, Tewari S, Barthwal MK, Goel SK, Dikshit M. Augmented nitric oxide generation in neutrophils: Oxidative and pro-inflammatory implications in hypertension. Free Radic Res 2009; 43:1195-204. [DOI: 10.3109/10715760903247256] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Abstract
The vascular endothelium is involved in the release of various vasodilators, including nitric oxide (NO), prostacyclin and endothelium-derived hyperpolarizing factor, as well as vasoconstrictors. NO plays an important role in the regulation of vascular tone, inhibition of platelet aggregation, and suppression of smooth muscle cell proliferation. Endothelial dysfunction is the initial step in the pathogenesis of atherosclerosis. Cardiovascular diseases are associated with endothelial dysfunction. It is well known that the grade of endothelial function is a predictor of cardiovascular outcomes. Oxidative stress plays an important role in the pathogenesis and development of cardiovascular diseases. Several mechanisms contribute to impairment of endothelial function. An imbalance of reduced production of NO or increased production of reactive oxygen species, mainly superoxide, may promote endothelial dysfunction. One mechanism by which endothelium-dependent vasodilation is impaired is an increase in oxidative stress that inactivates NO. This review focuses on recent findings and interaction between endothelial function and oxidative stress in cardiovascular diseases.
Collapse
Affiliation(s)
- Yukihito Higashi
- Department of Cardiovascular Physiology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | | | | | | |
Collapse
|
9
|
Santhanam AVR, Viswanathan S, Dikshit M. Activation of protein kinase B/Akt and endothelial nitric oxide synthase mediates agmatine-induced endothelium-dependent relaxation. Eur J Pharmacol 2007; 572:189-96. [PMID: 17640632 DOI: 10.1016/j.ejphar.2007.06.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2007] [Revised: 06/11/2007] [Accepted: 06/12/2007] [Indexed: 12/16/2022]
Abstract
The ability of agmatine, formed from L-arginine by the enzyme arginine decarboxylase (ADC), to modulate vasomotor function in rat aorta was investigated in the present study. Agmatine-mediated modulation of vasomotor tone was studied in organ chambers, protein expression quantified by Western blot analysis and cyclic guanosine 5'-monophosphate (cGMP) levels measured by radioimmunoassay. Agmatine (10(-10) to 10(-3) M) produced concentration-dependent relaxations (82+/-5%) in phenylephrine-contracted endothelium intact rat aorta. Relaxations to agmatine were diminished on denudation of endothelium and nitric oxide synthase (NOS) inhibition by L-Nomega-nitro arginine or soluble guanylate cyclase inhibition by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (P<0.001) abolished agmatine-mediated relaxations, while relaxations were insensitive to inducible NOS inhibition by 1400W. Agmatine-treated aorta demonstrated increased protein expression of phosphorylated S473-Akt and phosphorylated S1177-endothelial nitric oxide synthase (eNOS), and elevated the levels of cyclic GMP (P<0.01). Agmatine-mediated potentiation of relaxations and elevation of cGMP levels was sensitive to phosphatidylinositol 3'-kinase inhibitor, wortmannin. Relaxations to agmatine were also affected by pre-treatment with tetraethylammonium (P<0.01) or apamin (P<0.05), and were not affected by charybdotoxin. Relaxations to agmatine were partially affected by pre-treatment of aortic rings with barium chloride (P<0.05), and glybenclamide (P<0.05). Results obtained suggest that agmatine activates protein kinase B/Akt to phosphorylate eNOS and elevate cyclic GMP levels to produce vasodilatation of aorta. Agmatine-mediated relaxations in rat aorta seems to be mediated mainly by endothelial NO-mediated activation of small conductance Ca2+-activated K+ channels, and partly by ATP-sensitive and inward rectifying K+ channels.
Collapse
Affiliation(s)
- Anantha Vijay R Santhanam
- Department of Anesthesiology, and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.
| | | | | |
Collapse
|
10
|
Hacioglu G, Agar A, Yargicoglu P. The role of docosahexaenoic acid on visual evoked potentials in one kidney-one clip hypertension. ACTA ACUST UNITED AC 2006; 84:488-94. [PMID: 16879569 DOI: 10.1111/j.1600-0420.2006.00666.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE To investigate the effects of polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA) on visual evoked potentials (VEPs) in a one kidney-one clip (1K-1C) hypertension model in rats. METHODS Five experimental groups were formed: a control group, a sham group, a group supplemented with DHA, a 1K-1C group, and a 1K-1C + DHA group. The DHA groups were treated for 60 days. In the 1K-1C groups, the right kidney was removed and a silver clip with a 0.2-mm gap was placed on the left renal artery. RESULTS The DHA-supplemented rats had lower blood pressure than their respective controls (p < 0.01). The increased brain and retina thiobarbituric acid reactive substances (TBARS) levels in hypertensive rats were abolished by DHA administration. The brain nitrite levels were lower in the DHA, 1K-1C and 1K-1C + DHA groups compared with the control group (p < 0.01), and the retina nitrite level was higher in the 1K-1C + DHA group compared with the DHA and 1K-1C groups (p < 0.01). There was an improvement of P(2), N(2) and P(3) components following DHA supplementation in 1K-1C hypertensive rats compared with the 1K-1C group. CONCLUSION The present study suggests that DHA supplementation has the potential to prevent VEP changes caused by an experimental model of hypertension. This state might be related to the lipid peroxidation lowering effect of DHA.
Collapse
Affiliation(s)
- Gulay Hacioglu
- Department of Physiology, Faculty of Medicine, Akdeniz University, Arapsuyu, Antalya, Turkey
| | | | | |
Collapse
|
11
|
Arenas IA, Armstrong SJ, Xu Y, Davidge ST. Chronic tumor necrosis factor-alpha inhibition enhances NO modulation of vascular function in estrogen-deficient rats. Hypertension 2005; 46:76-81. [PMID: 15911738 DOI: 10.1161/01.hyp.0000168925.98963.ef] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is involved in the pathogenesis of vascular disease. Clinical studies have shown that postmenopausal women have higher serum TNF-alpha levels; however, whether this increase in TNF-alpha is associated with vascular dysfunction is unknown. We investigated whether estrogen deficiency is associated with increased serum TNF-alpha levels and tested the effects of in vivo TNF-alpha inhibition on vascular reactivity. Aged (12 to 15 months) Sprague-Dawley rats were ovariectomized and treated with placebo, estrogen, or a TNF-alpha inhibitor (Etanercept; 0.3 mg/kg) for 4 weeks. Serum TNF-alpha was determined by a bioassay, and vascular function was evaluated in the myograph system. Estrogen-deficient animals had higher serum levels of TNF-alpha compared with either estrogen-replaced animals or animals treated with Etanercept. Moreover, in estrogen-deficient rats, TNF-alpha inhibition reduced the constriction of mesenteric arteries to phenylephrine, increased the modulation of this vasoconstriction by the NO synthase inhibitor nitro-l-arginine methyl ester, and decreased the modulation by a superoxide scavenger (Mn(III)tetrakis(4-benzoic acid) porphyrin chloride). Furthermore, endothelium-dependent relaxation was also enhanced by TNF-alpha antagonism. Additionally, vascular expression of endothelial NO synthase was increased in animals treated with Etanercept, whereas the expression of NAD(P)H oxidase gp91phox and p22phox subunits was decreased. These data show that estrogen-deficient female rats have higher bioactive serum TNF-alpha levels compared with estrogen-replaced animals. Moreover, a decrease in serum bioactive TNF-alpha by a soluble TNF-alpha receptor (Etanercept) results in increased modulation of vascular function by NO. These observations suggest that TNF-alpha could be a mediator of vascular dysfunction associated with estrogen deficiency.
Collapse
Affiliation(s)
- Ivan A Arenas
- Perinatal Research Center, Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | | | | | | |
Collapse
|
12
|
Higashi Y, Sasaki S, Nakagawa K, Matsuura H, Oshima T, Chayama K. Endothelial function and oxidative stress in renovascular hypertension. N Engl J Med 2002; 346:1954-62. [PMID: 12075056 DOI: 10.1056/nejmoa013591] [Citation(s) in RCA: 404] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND It has been reported that renovascular hypertension activates the renin-angiotensin system, leading to an increase in oxidative stress. We sought to determine whether renal-artery angioplasty improves endothelial dysfunction in patients with renovascular hypertension through a reduction in oxidative stress. METHODS We evaluated the response of forearm blood flow to acetylcholine, an endothelium-dependent vasodilator, and isosorbide dinitrate, an endothelium-independent vasodilator, before and after renal-artery angioplasty in 15 subjects with renovascular hypertension and 15 controls without hypertension who were matched for age and sex. Forearm blood flow was measured with the use of a mercury-filled Silastic strain-gauge plethysmograph. RESULTS The forearm blood flow in response to acetylcholine was less in subjects with renovascular hypertension than in controls, although the forearm blood flow in response to isosorbide dinitrate was similar in the two groups. Angioplasty decreased systolic and diastolic blood pressures, forearm vascular resistance, and urinary excretion of 8-hydroxy-2'-deoxyguanosine and serum malondialdehyde-modified low-density lipoprotein (LDL), indexes of oxidative stress. After angioplasty, the mean (+/-SD) forearm blood flow in response to acetylcholine was increased in the patients with renovascular hypertension (19.3+/-6.8 vs. 29.6+/-7.1 ml per minute per 100 ml, P=0.002). The increase in the maximal forearm blood flow in response to acetylcholine correlated significantly with the decrease in urinary excretion of 8-hydroxy-2'-deoxyguanosine (r=-0.51, P=0.004) and serum malondialdehyde-modified LDL (r=-0.39, P=0.02). Coinfusion of ascorbic acid (vitamin C) augmented the response of forearm blood flow to acetylcholine before angioplasty (P<0.001) but not after angioplasty. CONCLUSIONS These findings suggest that excessive oxidative stress is involved, at least in part, in impaired endothelium-dependent vasodilatation in patients with renovascular hypertension.
Collapse
Affiliation(s)
- Yukihito Higashi
- First Department of Internal Medicine, Hiroshima University, Faculty of Medicine, Hiroshima, Japan.
| | | | | | | | | | | |
Collapse
|
13
|
Srivastava P, Rajanikanth M, Raghavan SAV, Dikshit M. Role of endogenous reactive oxygen derived species and cyclooxygenase mediators in 5-hydroxytryptamine-induced contractions in rat aorta: relationship to nitric oxide. Pharmacol Res 2002; 45:375-82. [PMID: 12123625 DOI: 10.1006/phrs.2001.0859] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endogenous reactive oxygen species (superoxide anion, hydroxyl radical and hydrogen peroxide), endothelium-derived nitric oxide and cyclooxygenase mediators are involved in the regulation of vascular smooth muscle tone. An imbalance of these mediators can have profound implications in various cardiovascular disorders. Involvement of endogenous reactive oxygen species, endothelium-derived nitric oxide (NO) and cyclooxygenase mediators in 5-hydroxytryptamine- (5-HT-) induced contractions of endothelium intact rat aortic rings have been investigated in the present study. The contribution of each of the endogenous reactive oxygen species in mediating 5-HT-induced contractions was studied by pretreating the rings with their respective scavengers. Pretreatment of the rings with superoxide dismutase (superoxide radical scavenger), catalase (H (2)O (2)inactivator), mannitol (extracellular OH. scavenger), or thiourea (intracellular OH. radical scavenger) significantly depressed the 5-HT-induced contractions in the aortic rings. The responses to 5-HT in the presence of SOD or catalase were augmented byL -NAME pretreatment. Though aminotriazole partially inhibited the catalase activity, it inhibited 5-HT-induced contractions significantly. The results obtained thus suggest that endogenous generation of ROS (O(2).(-), H (2)O (2)and OH.) modulates 5-HT-induced rat aortic ring contractions. In addition, H (2)O (2)generated in the endothelium seems to regulate the vascular response and also act as a mediator to release other vasoactive substances. Basal production of NO by the endothelium seems to affect the vascular response due to its interaction with ROS mediators.
Collapse
Affiliation(s)
- P Srivastava
- Division of Pharmacology, Central Drug Research Institute, Lucknow 226 001, India.
| | | | | | | |
Collapse
|
14
|
Raghavan SA, Dikshit M. L-citrulline mediated relaxation in the control and lipopolysaccharide-treated rat aortic rings. Eur J Pharmacol 2001; 431:61-9. [PMID: 11716844 DOI: 10.1016/s0014-2999(01)01407-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study was undertaken to investigate relaxant effect of L-citrulline in phenylephrine precontracted endothelium intact thoracic aortic rings obtained from control or lipopolysaccharide (1 mg/kg)-treated rats. L-citrulline produced 40+/-3% (n=36) and 60+/-5% (n=24) relaxations in control and lipopolysaccharide-treated rings, respectively. Nitric oxide (NO) release and cyclic guanosine-3',5'-monophosphate levels from the rings were also increased following treatment with L-citrulline. Inhibition of guanylate cyclase, L-citrulline recycling to L-arginine or denudation of the endothelium, significantly reduced L-citrulline-induced relaxations both in control and lipopolysaccharide-treated rings. Treatment of rings with protein synthesis inhibitors prevented relaxations to L-citrulline. Inhibitor of Ca2+-activated K+ channels, tetrabutylammonium or precontraction of the rings with KCl (80 mM), significantly attenuated L-citrulline mediated relaxations in control and lipopolysaccharide-treated rings. Thus, L-citrulline seems to exert significant relaxation by supplementing the release of NO due to its recycling to L-arginine, which gets further augmented after lipopolysaccharide treatment.
Collapse
Affiliation(s)
- S A Raghavan
- Division of Pharmacology, Central Drug Research Institute, Post Box 173, -226001, Lucknow, India
| | | |
Collapse
|
15
|
Raghavan SA, Srivastava P, Dikshit M. Altered contractions to endothelin-1, phenylephrine, potassium chloride and relaxations to acetylcholine at various stages of renal hypertension in the rat. Pharmacol Res 2001; 43:225-32. [PMID: 11401413 DOI: 10.1006/phrs.2000.0775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study is aimed at investigating the contraction and relaxation responses in the thoracic and abdominal aortae at various stages of hypertension. Hypertension in the rats was produced by aortic banding and the responses in the abdominal and thoracic aortic rings were studied 2 and 8 weeks after aortic banding. Contractile responses to phenylephrine ( 10(-6)M), KCl (80 mM) or to endothelin-1 ( 10(-12)to 10(-6)M) and the relaxation responses to acetylcholine ( 10(-7)to 10(-5)M) were similar in the thoracic and abdominal rings of normotensive rats. The intact thoracic rings from 2 week aortic-banded hypertensive rats (ABHR) showed attenuated responses to all the contractile agents used. However, the relaxation to acetylcholine was not altered. In the rings from 8 week ABHR, the responses to contractile agents were not significantly altered but the acetylcholine-induced relaxations were significantly attenuated. The endothelial-derived relaxing factors might act to antagonize the vasoconstrictive responses during the onset of hypertension but might be disabled, as the endothelial dysfunction becomes predominant after 8 weeks of hypertension. The results thus suggest that the contractile and relaxant responses are differentially altered during different stages of hypertension.
Collapse
Affiliation(s)
- S A Raghavan
- Pharmacology Division, Central Drug Research Institute, Lucknow 226001, India
| | | | | |
Collapse
|
16
|
Abstract
OBJECTIVES In view of the critical role of intracellular Ca2 overload in the genesis of myocyte dysfunction and the ability of reactive oxygen species (ROS) to induce the intracellular Ca2+-overload, this article is concerned with analysis of the existing literature with respect to the role of oxidative stress in different types of cardiovascular diseases. OBSERVATIONS Oxidative stress in cardiac and vascular myocytes describes the injury caused to cells resulting from increased formation of ROS and/or decreased antioxidant reserve. The increase in the generation of ROS seems to be due to impaired mitochondrial reduction of molecular oxygen, secretion of ROS by white blood cells, endothelial dysfunction, auto-oxidation of catecholamines, as well as exposure to radiation or air pollution. On the other hand, depression in the antioxidant reserve, which serves as a defense mechanism in cardiac and vascular myocytes, appears to be due to the exhaustion and/or changes in gene expression. The deleterious effects of ROS are mainly due to abilities of ROS to produce changes in subcellular organelles, and induce intracellular Ca2+-overload. Although the cause-effect relationship of oxidative stress with any of the cardiovascular diseases still remains to be established, increased formation of ROS indicating the presence of oxidative stress has been observed in a wide variety of experimental and clinical conditions. Furthermore, antioxidant therapy has been shown to exert beneficial effects in hypertension, atherosclerosis, ischemic heart disease, cardiomyopathies and congestive heart failure. CONCLUSIONS The existing evidence support the view that oxidative stress may play a crucial role in cardiac and vascular abnormalities in different types of cardiovascular diseases and that the antioxidant therapy may prove beneficial in combating these problems.
Collapse
Affiliation(s)
- N S Dhalla
- Institute of Cardiovascular Sciences, St Boniface General Hospital Research Centre and Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada.
| | | | | |
Collapse
|