1
|
Muro P, Zhang L, Li S, Zhao Z, Jin T, Mao F, Mao Z. The emerging role of oxidative stress in inflammatory bowel disease. Front Endocrinol (Lausanne) 2024; 15:1390351. [PMID: 39076514 PMCID: PMC11284038 DOI: 10.3389/fendo.2024.1390351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/19/2024] [Indexed: 07/31/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic immune-mediated condition that affects the digestive system and includes Crohn's disease (CD) and ulcerative colitis (UC). Although the exact etiology of IBD remains uncertain, dysfunctional immunoregulation of the gut is believed to be the main culprit. Amongst the immunoregulatory factors, reactive oxygen species (ROS) and reactive nitrogen species (RNS), components of the oxidative stress event, are produced at abnormally high levels in IBD. Their destructive effects may contribute to the disease's initiation and propagation, as they damage the gut lining and activate inflammatory signaling pathways, further exacerbating the inflammation. Oxidative stress markers, such as malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG), and serum-free thiols (R-SH), can be measured in the blood and stool of patients with IBD. These markers are elevated in patients with IBD, and their levels correlate with the severity of the disease. Thus, oxidative stress markers can be used not only in IBD diagnosis but also in monitoring the response to treatment. It can also be targeted in IBD treatment through the use of antioxidants, including vitamin C, vitamin E, glutathione, and N-acetylcysteine. In this review, we summarize the role of oxidative stress in the pathophysiology of IBD, its diagnostic targets, and the potential application of antioxidant therapies to manage and treat IBD.
Collapse
Affiliation(s)
- Peter Muro
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Zhang
- Nanjing Lishui People’s Hospital, Zhongda Hospital, Southeast University, Nanjing, China
| | - Shuxuan Li
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zihan Zhao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Tao Jin
- Department of Gastrointestinal and Endoscopy, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhenwei Mao
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Yüzbaşıoğlu Y, Hazar M, Aydın Dilsiz S, Yücel C, Bulut M, Cetinkaya S, Erdem O, Basaran N. Biomonitoring of Oxidative-Stress-Related Genotoxic Damage in Patients with End-Stage Renal Disease. TOXICS 2024; 12:69. [PMID: 38251024 PMCID: PMC10819997 DOI: 10.3390/toxics12010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Chronic kidney disease (CKD), a common progressive renal failure characterized by the permanent loss of functional nephrons can rapidly progress to end-stage renal disease, which is known to be an irreversible renal failure. In the therapy of ESRD, there are controversial suggestions about the use of regular dialysis, since it is claimed to increase oxidative stress, which may increase mortality in patients. In ESRD, oxidative-stress-related DNA damage is expected to occur, along with increased inflammation. Many factors, including heavy metals, have been suggested to exacerbate the damage in kidneys; therefore, it is important to reveal the relationship between these factors in ESRD patients. There are very few studies showing the role of oxidative-stress-related genotoxic events in the progression of ESRD patients. Within the scope of this study, genotoxic damage was evaluated using the comet assay and 8-OHdG measurement in patients with ESRD who were undergoing hemodialysis. The biochemical changes, the levels of heavy metals (aluminum, arsenic, cadmium, lead, and mercury) in the blood, and the oxidative biomarkers, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) levels were evaluated, and their relationship with genotoxic damages was revealed. Genotoxicity, oxidative stress, and heavy-metal levels, except mercury, increased significantly in all renal patients. DNA damage, 8OHdG, and MDA significantly increased, and GSH significantly decreased in patients undergoing dialysis, compared with those not having dialysis. The duration and the severity of disease was positively correlated with increased aluminum levels and moderate positively correlated with increased DNA damage and cadmium levels. In conclusion, this study revealed that the oxidative-stress-related DNA damage, and also the levels of Al and Cd, increased in ESRD patients. It is assumed that these changes may play an important role in the progression of renal damage. Approaches for reducing oxidative-stress-related DNA damage and heavy-metal load in ESRD patients are recommended.
Collapse
Affiliation(s)
- Yücel Yüzbaşıoğlu
- Department of Emergency Medicine, Ankara Gülhane Training and Research Hospital, Health Sciences University, Ankara 06018, Türkiye
| | - Merve Hazar
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ağrı İbrahim Cecen University, Ağrı 04100, Türkiye;
| | - Sevtap Aydın Dilsiz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Türkiye;
| | - Ciğdem Yücel
- Department of Clinical Biochemistry, Ankara Gülhane Training and Research Hospital, Health Sciences University, Ankara 06018, Türkiye;
| | - Mesudiye Bulut
- Department of Nephrology, Ankara Gülhane Training and Research Hospital, Health Sciences University, Ankara 06018, Türkiye;
| | - Serdar Cetinkaya
- Department of Pharmaceutical Toxicology, Gülhane Faculty of Pharmacy, Health Sciences University, Ankara 06018, Türkiye; (S.C.); (O.E.)
| | - Onur Erdem
- Department of Pharmaceutical Toxicology, Gülhane Faculty of Pharmacy, Health Sciences University, Ankara 06018, Türkiye; (S.C.); (O.E.)
| | - Nursen Basaran
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Başkent University, Ankara 06790, Türkiye;
| |
Collapse
|
3
|
Andrés CMC, de la Lastra JMP, Juan CA, Plou FJ, Pérez-Lebeña E. Chemical Insights into Oxidative and Nitrative Modifications of DNA. Int J Mol Sci 2023; 24:15240. [PMID: 37894920 PMCID: PMC10607741 DOI: 10.3390/ijms242015240] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
This review focuses on DNA damage caused by a variety of oxidizing, alkylating, and nitrating species, and it may play an important role in the pathophysiology of inflammation, cancer, and degenerative diseases. Infection and chronic inflammation have been recognized as important factors in carcinogenesis. Under inflammatory conditions, reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from inflammatory and epithelial cells, and result in the formation of oxidative and nitrative DNA lesions, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-nitroguanine. Cellular DNA is continuously exposed to a very high level of genotoxic stress caused by physical, chemical, and biological agents, with an estimated 10,000 modifications occurring every hour in the genetic material of each of our cells. This review highlights recent developments in the chemical biology and toxicology of 2'-deoxyribose oxidation products in DNA.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. AstrofísicoFco. Sánchez, 3, 38206 La Laguna, Spain
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain;
| | - Francisco J. Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain;
| | | |
Collapse
|
4
|
da Costa Xavier LA, Navoni JA, Souza do Amaral V. Oxidative genomic damage in humans exposed to high indoor radon levels in Northeast Brazil. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 889:503652. [PMID: 37491111 DOI: 10.1016/j.mrgentox.2023.503652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 07/27/2023]
Abstract
Radon gas inhalation is the main source of exposure to ionizing radiation by humans. There is still lack in knowledge concerning the chronic and indirect effects of exposure to this carcinogenic factor. Therefore, the aim of this work is to analyze the levels of oxidative genomic damage in inhabitants of a medium-high background radiation area (HBRA) (N = 82) in Northeastern Brazil and compare them with people living in a low background radiation area (LBRA) (N = 46). 8-hydroxy-2-deoxyguanosine (8-OHdG) was quantified in urine, Ser326Cys polymorphism was determined in the hOGG1 gene and indoor radon was measured. HBRA houses had 6.5 times higher indoor radon levels than those from LBRA (p-value < 0.001). The 8-OHdG mean (95% confidence interval) were significantly different, 8.42 (5.98-11.9) ng/mg creatinine and 29.91 (23.37-38.30) ng/mg creatinine for LBRA and HBRA, respectively. The variables representing lifestyle and environmental and occupational exposures did not have a significant association with oxidized guanosine concentrations. On the other hand, lower 8-OHdG values were observed in subjects that had one mutant allele (326Cys) in the hOGG1 gene than those who had both wild alleles (Ser/Ser (p-value < 0.05). It can be concluded that high radon levels have significantly influenced the genome oxidative metabolism and hOGG1 gene polymorphism would mediate the observed biological response.
Collapse
Affiliation(s)
- Luíza Araújo da Costa Xavier
- Post-graduation Program of Biochemistry and Molecular Biology, Laboratory of Toxicological Genetic, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Julio Alejandro Navoni
- Post-graduation Program of Development and Environment - DDMA, Federal University of Rio Grande do Norte (UFRN), Natal/RN, Brazil
| | - Viviane Souza do Amaral
- Post-graduation Program of Biochemistry and Molecular Biology, Laboratory of Toxicological Genetic, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Post-graduation Program of Development and Environment - DDMA, Federal University of Rio Grande do Norte (UFRN), Natal/RN, Brazil..
| |
Collapse
|
5
|
Geronimo I, Vidossich P, De Vivo M. On the Role of Molecular Conformation of the 8-Oxoguanine Lesion in Damaged DNA Processing by Polymerases. J Chem Inf Model 2023; 63:1521-1528. [PMID: 36825471 PMCID: PMC10015460 DOI: 10.1021/acs.jcim.2c01430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
A common and insidious DNA damage is 8-oxoguanine (8OG), bypassed with low catalytic efficiency and high error frequency by polymerases (Pols) during DNA replication. This is a fundamental process with far-reaching implications in cell function and diseases. However, the molecular determinants of how 8OG exactly affects the catalytic efficiency of Pols remain largely unclear. By examining ternary deoxycytidine triphosphate/DNA/Pol complexes containing the 8OG damage, we found that 8OG consistently adopts different conformations when bound to Pols, compared to when in isolated DNA. Equilibrium molecular dynamics and metadynamics free energy calculations quantified that 8OG is in the lowest energy conformation in isolated DNA. In contrast, 8OG adopts high-energy conformations often characterized by intramolecular steric repulsion when bound to Pols. We show that the 8OG conformation can be regulated by mutating Pol residues interacting with the 8OG phosphate group. These findings propose the 8OG conformation as a factor in Pol-mediated processing of damaged DNA.
Collapse
Affiliation(s)
- Inacrist Geronimo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Pietro Vidossich
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| |
Collapse
|
6
|
Bernstein H, Bernstein C. Bile acids as carcinogens in the colon and at other sites in the gastrointestinal system. Exp Biol Med (Maywood) 2023; 248:79-89. [PMID: 36408538 PMCID: PMC9989147 DOI: 10.1177/15353702221131858] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Colon cancer incidence is associated with a high-fat diet. Such a diet is linked to elevated levels of bile acids in the gastrointestinal system and the circulation. Secondary bile acids are produced by microorganisms present at high concentrations in the colon. Recent prospective studies and a retrospective study in humans associate high circulating blood levels of secondary bile acids with increased risk of colon cancer. Feeding mice a diet containing a secondary bile acid, so their feces have the bile acid at a level comparable to that in the feces of humans on a high-fat diet, also causes colon cancer in the mice. Studies using human cells grown in culture illuminate some mechanisms by which bile acids cause cancer. In human cells, bile acids cause oxidative stress leading to oxidative DNA damage. Increased DNA damage increases the occurrence of mutations and epimutations, some of which provide a cellular growth advantage such as apoptosis resistance. Cells with such mutations/epimutations increase by natural selection. Apoptosis, or programmed cell death, is a beneficial process that eliminates cells with unrepaired DNA damage, whereas apoptosis-resistant cells are able to survive DNA damage using inaccurate repair processes. This results in apoptosis-resistant cells having more frequent mutations/epimutations, some of which are carcinogenic. The experiments on cultured human cells have provided a basis for understanding at the molecular level the human studies that recently reported an association of bile acids with colon cancer, and the mouse studies showing directly that bile acids cause colon cancer. Similar, but more limited, findings of an association of dietary bile acids with other cancers of the gastrointestinal system suggest that understanding the role of bile acids in colon carcinogenesis may contribute to understanding carcinogenesis in other organs.
Collapse
Affiliation(s)
- Harris Bernstein
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ 85724-5044, USA
| | - Carol Bernstein
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ 85724-5044, USA
| |
Collapse
|
7
|
Taidi Z, Zhou T, Moore KH, Mansfield KJ, Liu L. P2X7 Receptor Blockade Protects Against Acrolein-Induced Bladder Damage: A Potential New Therapeutic Approach for the Treatment of Bladder Inflammatory Diseases. Front Pharmacol 2021; 12:682520. [PMID: 34456718 PMCID: PMC8397461 DOI: 10.3389/fphar.2021.682520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/12/2021] [Indexed: 01/28/2023] Open
Abstract
Inflammatory conditions of the urinary bladder have been shown to be associated with urothelial damage and loss of function. The purinergic P2X7 receptor has been implicated in several inflammatory conditions. The aim of this study was to investigate the role of the P2X7 receptor in acrolein-induced inflammatory damage using the porcine urinary bladder. For this purpose, an ex-vivo model of porcine urothelial damage induced by direct instillation of acrolein into the whole bladder lumen was used. To determine the role of the P2X7 receptor, the bladders were pre-incubated with a selective P2X7 receptor antagonist, A804598 (10 μM), for 1 h. The effects of the acrolein-induced urothelial damage on the bladder’s function were assessed by examining the bladder wall contractile response, structure changes, apoptosis, and oxidative stress in the bladder tissues. The acrolein treatment led to significant damage to the urothelium histology, tight junction expression, and contractile responses. Acrolein also induced apoptosis in the mucosa layer. All these acrolein-induced responses were attenuated by pre-treatment with the P2X7 receptor antagonist A804598. Acrolein also significantly induced DNA oxidation in the submucosal layer; however, the P2X7 receptor antagonism did not show any protective effect towards the acrolein-induced oxidative stress. These findings suggested that the P2X7 receptor is involved in the acrolein-induced damage to the urothelium; therefore, the P2X7 receptor antagonists may be a new therapeutic option for the treatment of bladder inflammation.
Collapse
Affiliation(s)
- Zhinoos Taidi
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Tommy Zhou
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Kate H Moore
- St George Hospital, UNSW Sydney, Kogarah, NSW, Australia
| | - Kylie J Mansfield
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Lu Liu
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Kim H, Lee DG. Contribution of SOS genes to H 2O 2-induced apoptosis-like death in Escherichia coli. Curr Genet 2021; 67:969-980. [PMID: 34435216 DOI: 10.1007/s00294-021-01204-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 01/07/2023]
Abstract
Hydrogen peroxide (H2O2) is a debriding agent that damages the microbial structure and function by generating various reactive oxygen species (ROS). H2O2-produced hydroxyl radical (OH∙) also exerts oxidative stress on microorganisms. The spread of antibiotic-resistance in bacteria is a serious issue worldwide, and greater efforts are needed to identify and characterize novel antibacterial mechanisms to develop new treatment strategies. Therefore, this study aimed to clarify the relationship between H2O2 and Escherichia coli and to elucidate a novel antibacterial mechanism(s) of H2O2. Following H2O2 exposure, increased levels of 8-hydroxydeoxyguanosine and malondialdehyde indicated that H2O2 accelerates oxidation of bacterial DNA and lipids in E. coli. As oxidative damage worsened, the SOS response was triggered. Cell division arrest and resulting filamentous cells were identified in cells, indicating that LexA was involved in DNA replication. It was also verified that RecA, a representative SOS gene, helps self-cleavage of LexA and acts as a bacterial caspase-like protein. Our findings also showed that dinF is essential to preserve E. coli from H2O2-induced ROS, and furthermore, demonstrated that H2O2-induced SOS response and SOS genes participate differently in guarding E. coli from oxidative stress. As an extreme SOS response is considered apoptosis-like death (ALD) in bacteria, additional experiments were performed to examine the characteristics of ALD. DNA fragmentation and membrane depolarization appeared in H2O2-treated cells, suggesting that H2O2 causes ALD in E. coli. In conclusion, our investigations revealed that ALD is a novel antibacterial mode of action(s) of H2O2 with important contributions from SOS genes.
Collapse
Affiliation(s)
- Heesu Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Korea
| | - Dong Gun Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Korea.
| |
Collapse
|
9
|
The influence of oxoG on the electronic properties of ds-DNA. Damage versus mismatch: A theoretical approach. Comput Biol Chem 2021; 92:107485. [PMID: 33872920 DOI: 10.1016/j.compbiolchem.2021.107485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/04/2021] [Indexed: 11/20/2022]
Abstract
The seed of life is concealed in the base sequence in DNA. This macromolecule is continuously exposed to harmful factors which can cause it damage. The stability of genetic information depends on the protein efficiency of repair systems. Glycosylases are the scouts which recognize and remove damaged bases. Their efficiency depends on how rapidly they recognize DNA lesions. One theory states that charge transfer is involved in protein cross talking through ds-DNA. For these reasons a comparative analysis of ds-oligo containing a mismatched base pair dA:::dG and a damaged dA::dGOXO is proposed. Additionally, the electronic properties of the short ds-oligo in the context of non-equilibrated and equilibrated solvent modes were taken into theoretical consideration. All energetic calculations were performed at the M062x/6-31++G** level of theory, while for geometry optimized ONIOM methodology was used. The lowest adiabatic ionization potential was assigned for DNA containing a dA:dGOXO pair. Moreover, the adiabatic electron affinity was assigned at the same level for the mismatched and lesioned ds-oligo. Surprisingly, in the non-equilibrated mode, a significantly higher vertical electro affinity was found for lesioned DNA. The higher VEA in a non-equilibrated solvent state supported faster recognition in the A:GOXO base pair than A:G by MutY glycosylases under electron transfer mechanism.
Collapse
|
10
|
Two Faces of Vitamin C in Hemodialysis Patients: Relation to Oxidative Stress and Inflammation. Nutrients 2021; 13:nu13030791. [PMID: 33673687 PMCID: PMC7997461 DOI: 10.3390/nu13030791] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/11/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Hemodialysis (HD) is the most common method of renal replacement therapy. Besides toxins, it eliminates nutrients from the circulation, such as ascorbic acid (AA). HD-patients present AA deficiency more often than representatives of the general population, also due to dietary restrictions. This condition aggravates oxidative stress and inflammation related to uremia and extracorporeal circulation and increases cardiovascular risk followed by mortality. Supplementation of AA seems to be a promising approach in the treatment of hemodialysis patients. Many successful interventions restored plasma AA concentration in HD patients by enteral or intravenous supplementation, concomitantly inhibiting oxidative stress and inflammation. A significant number of studies reported opposite, serious pro-oxidant effects of AA. In this narrative review, we present studies, commenting on their limitations; on AA plasma or serum concentration and the influence of its supplementation on protein and lipid peroxidation, DNA damage, reactive oxygen species generation, paraoxonase activity, advanced glycation endproducts, and C-reactive protein (CRP) concentration. Moreover, in terms of safety, the possible development of oxalosis in HD patients regarding the intravenous or enteral route of AA administration is discussed. Unequivocal clinical results of recent studies on hemodialysis patients are displayed.
Collapse
|
11
|
Crosstalk between Different DNA Repair Pathways Contributes to Neurodegenerative Diseases. BIOLOGY 2021; 10:biology10020163. [PMID: 33669593 PMCID: PMC7922961 DOI: 10.3390/biology10020163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary Constant exposure to endogenous and environmental factors induces oxidative stress and DNA damage. Rare brain disorders caused by defects in DNA repair and DNA damage response (DDR) signaling establish that failure to process DNA damage may lead to neurodegeneration. In this review, we present mechanisms that link DDR with neurodegeneration in these disorders and discuss their relevance for common age-related neurodegenerative diseases (NDDs). Moreover, we highlight recent insight into the crosstalk between the DDR and other cellular processes known to be disturbed during NDDs. Abstract Genomic integrity is maintained by DNA repair and the DNA damage response (DDR). Defects in certain DNA repair genes give rise to many rare progressive neurodegenerative diseases (NDDs), such as ocular motor ataxia, Huntington disease (HD), and spinocerebellar ataxias (SCA). Dysregulation or dysfunction of DDR is also proposed to contribute to more common NDDs, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), and Amyotrophic Lateral Sclerosis (ALS). Here, we present mechanisms that link DDR with neurodegeneration in rare NDDs caused by defects in the DDR and discuss the relevance for more common age-related neurodegenerative diseases. Moreover, we highlight recent insight into the crosstalk between the DDR and other cellular processes known to be disturbed during NDDs. We compare the strengths and limitations of established model systems to model human NDDs, ranging from C. elegans and mouse models towards advanced stem cell-based 3D models.
Collapse
|
12
|
Zhang L, Misiara L, Samaranayake GJ, Sharma N, Nguyen DM, Tahara YK, Kool ET, Rai P. OGG1 co-inhibition antagonizes the tumor-inhibitory effects of targeting MTH1. Redox Biol 2021; 40:101848. [PMID: 33450725 PMCID: PMC7810763 DOI: 10.1016/j.redox.2020.101848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 12/30/2022] Open
Abstract
Cancer cells develop protective adaptations against oxidative DNA damage, providing a strong rationale for targeting DNA repair proteins. There has been a high degree of recent interest in inhibiting the mammalian Nudix pyrophosphatase MutT Homolog 1 (MTH1). MTH1 degrades 8-oxo-dGTP, thus limiting its incorporation into genomic DNA. MTH1 inhibition has variously been shown to induce genomic 8-oxo-dG elevation, genotoxic strand breaks in p53-functional cells, and tumor-inhibitory outcomes. Genomically incorporated 8-oxo-dG is excised by the base excision repair enzyme, 8-oxo-dG glycosylase 1 (OGG1). Thus, OGG1 inhibitors have been developed with the idea that their combination with MTH1 inhibitors will have anti-tumor effects by increasing genomic oxidative DNA damage. However, contradictory to this idea, we found that human lung adenocarcinoma with low OGG1 and MTH1 were robustly represented in patient datasets. Furthermore, OGG1 co-depletion mitigated the extent of DNA strand breaks and cellular senescence in MTH1-depleted p53-wildtype lung adenocarcinoma cells. Similarly, shMTH1-transduced cells were less sensitive to the OGG1 inhibitor, SU0268, than shGFP-transduced counterparts. Although the dual OGG1/MTH1 inhibitor, SU0383, induced greater cytotoxicity than equivalent combined or single doses of its parent scaffold MTH1 and OGG1 inhibitors, IACS-4759 and SU0268, this effect was only observed at the highest concentration assessed. Collectively, using both genetic depletion as well as small molecule inhibitors, our findings suggest that OGG1/MTH1 co-inhibition is unlikely to yield significant tumor-suppressive benefit. Instead such co-inhibition may exert tumor-protective effects by preventing base excision repair-induced DNA nicks and p53 induction, thus potentially conferring a survival advantage to the treated tumors. Low MTH1/low OGG1 tumors are robustly represented in patient lung adenocarcinoma datasets but low MTH1/high OGG1 are not. Co-depletion of OGG1 in lung adenocarcinoma cells mitigates shMTH1-induced DNA strand breaks and p53-induced senescence. p53-null tumor cells have lower OGG1 vs. wt p53 counterparts and are more resistant to MTH1 loss-induced anti-tumor effects. Pharmacologic co-inhibition of OGG1 and MTH1 does not enhance cytotoxicity over the respective single inhibitors.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Radiation Oncology, University of Miami Medical School, FL 33136, USA
| | - Laura Misiara
- College of Arts and Sciences, University of Miami, FL 33146, USA
| | - Govindi J Samaranayake
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Medical School, FL 33136, USA
| | - Nisha Sharma
- College of Arts and Sciences, University of Miami, FL 33146, USA
| | - Dao M Nguyen
- Department of Surgery, University of Miami Medical School, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Yu-Ki Tahara
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Priyamvada Rai
- Department of Radiation Oncology, University of Miami Medical School, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA.
| |
Collapse
|
13
|
Pan G, Deshpande M, Pang H, Stemmer PM, Carruthers NJ, Shearn CT, Backos DS, Palaniyandi SS. 4-Hydroxy-2-nonenal attenuates 8-oxoguanine DNA glycosylase 1 activity. J Cell Biochem 2020; 121:4887-4897. [PMID: 32628320 PMCID: PMC7935017 DOI: 10.1002/jcb.29814] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/18/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Elevated cellular oxidative stress and oxidative DNA damage are key contributors to impaired cardiac function in diabetes. During chronic inflammation, reactive oxygen species (ROS)-induced lipid peroxidation results in the formation of reactive aldehydes, foremost of which is 4-hydroxy-2-nonenal (4HNE). 4HNE forms covalent adducts with proteins, negatively impacting cellular protein function. During conditions of elevated oxidative stress, oxidative DNA damage such as modification by 8-hydroxydeoxyguanosine (8OHdG) is repaired by 8-oxoguanine glycosylase-1 (OGG-1). Based on these facts, we hypothesized that 4HNE forms adducts with OGG-1 inhibiting its activity, and thus, increases the levels of 8OHG in diabetic heart tissues. To test our hypothesis, we evaluated OGG-1 activity, 8OHG and 4HNE in the hearts of leptin receptor deficient db/db mice, a type-2 diabetic model. We also treated the recombinant OGG-1 with 4HNE to measure direct adduction. We found decreased OGG-1 activity (P > .05), increased 8OHG (P > .05) and increased 4HNE adducts (P > .05) along with low aldehyde dehydrogenase-2 activity (P > .05). The increased colocalization of OGG-1 and 4HNE in cardiomyocytes suggest 4HNE adduction on OGG-1. Furthermore, colocalization of 8OHG and OGG-1 with mitochondrial markers TOM 20 and aconitase, respectively, indicated significant levels of oxidatively-induced mtDNA damage and implicated a role for mitochondrial OGG-1 function. In vitro exposure of recombinant OGG-1 (rOGG-1) with increasing concentrations of 4HNE resulted in a concentration-dependent decrease in OGG-1 activity. Mass spectral analysis of trypsin digests of 4HNE-treated rOGG-1 identified 4HNE adducts on C28, C75, C163, H179, H237, C241, K249, H270, and H282. In silico molecular modeling of 4HNE-K249 OGG-1 and 4HNE-H270 OGG-1 mechanistically supported 4HNE-mediated enzymatic inhibition of OGG-1. In conclusion, these data support the hypothesis that inhibition of OGG-1 by direct modification by 4HNE contributes to decreased OGG-1 activity and increased 8OHG-modified DNA that are present in the diabetic heart.
Collapse
Affiliation(s)
- Guodong Pan
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202
| | - Mandar Deshpande
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202
| | - Haiyan Pang
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202
| | - Paul M. Stemmer
- Institute of Environmental Health Sciences & Proteomics Facility Core, Wayne State University, Detroit, MI, USA, 48201
| | - Nicholas J Carruthers
- Institute of Environmental Health Sciences & Proteomics Facility Core, Wayne State University, Detroit, MI, USA, 48201
| | - Colin T. Shearn
- Department of Pediatrics Division of Pediatric Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO 80045
| | - Donald S. Backos
- School of Pharmacy, University of Colorado Anschutz Medical Center, Aurora, CO 80045
| | - Suresh Selvaraj Palaniyandi
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202
- Department of Physiology, Wayne State University, Detroit, MI, 48202
| |
Collapse
|
14
|
Sun C, Limbach PA, Addepalli B. Characterization of UVA-Induced Alterations to Transfer RNA Sequences. Biomolecules 2020; 10:E1527. [PMID: 33171700 PMCID: PMC7695249 DOI: 10.3390/biom10111527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Ultraviolet radiation (UVR) adversely affects the integrity of DNA, RNA, and their nucleoside modifications. By employing liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based RNA modification mapping approaches, we identified the transfer RNA (tRNA) regions most vulnerable to photooxidation. Photooxidative damage to the anticodon and variable loop regions was consistently observed in both modified and unmodified sequences of tRNA upon UVA (λ 370 nm) exposure. The extent of oxidative damage measured in terms of oxidized guanosine, however, was higher in unmodified RNA compared to its modified version, suggesting an auxiliary role for nucleoside modifications. The type of oxidation product formed in the anticodon stem-loop region varied with the modification type, status, and whether the tRNA was inside or outside the cell during exposure. Oligonucleotide-based characterization of tRNA following UVA exposure also revealed the presence of novel photoproducts and stable intermediates not observed by nucleoside analysis alone. This approach provides sequence-specific information revealing potential hotspots for UVA-induced damage in tRNAs.
Collapse
Affiliation(s)
| | | | - Balasubrahmanyam Addepalli
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172, USA; (C.S.); (P.A.L.)
| |
Collapse
|
15
|
Ikram M, Park TJ, Ali T, Kim MO. Antioxidant and Neuroprotective Effects of Caffeine against Alzheimer's and Parkinson's Disease: Insight into the Role of Nrf-2 and A2AR Signaling. Antioxidants (Basel) 2020; 9:antiox9090902. [PMID: 32971922 PMCID: PMC7554764 DOI: 10.3390/antiox9090902] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022] Open
Abstract
This paper reviews the results of studies conducted on the role of caffeine in the management of different neurological disorders, such as Parkinson's disease (PD) and Alzheimer's disease (AD). To highlight the potential role of caffeine in managing different neurodegenerative diseases, we identified studies by searching PubMed, Web of Science, and Google Scholar by scrutinizing the lists of pertinent publications. According to the collected overall findings, caffeine may reduce the elevated oxidative stress; inhibit the activation of adenosine A2A, thereby regulating the accumulation of Aβ; reduce the hyperphosphorylation of tau; and reduce the accumulation of misfolded proteins, such as α-synuclein, in Alzheimer's and Parkinson's diseases. The studies have suggested that caffeine has promising protective effects against different neurodegenerative diseases and that these effects may be used to tackle the neurological diseases and/or their consequences. Here, we review the ongoing research on the role of caffeine in the management of different neurodegenerative disorders, focusing on AD and PD. The current findings suggest that caffeine produces potent antioxidant, inflammatory, and anti-apoptotic effects against different models of neurodegenerative disease, including AD, PD, and other neurodegenerative disorders. Caffeine has shown strong antagonistic effects against the adenosine A2A receptor, which is a microglial receptor, and strong agonistic effects against nuclear-related factor-2 (Nrf-2), thereby regulating the cellular homeostasis at the brain by reducing oxidative stress, neuroinflammation, regulating the accumulation of α-synuclein in PD and tau hyperphosphorylation, amyloidogenesis, and synaptic deficits in AD, which are the cardinal features of these neurodegenerative diseases.
Collapse
Affiliation(s)
- Muhammad Ikram
- Division of Life Science and Applied Life Science (BK21 plus), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.I.); (T.A.)
| | - Tae Ju Park
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow 0747 657 5394, UK;
| | - Tahir Ali
- Division of Life Science and Applied Life Science (BK21 plus), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.I.); (T.A.)
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 plus), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.I.); (T.A.)
- Correspondence: ; Tel.: +82-55-772-1345; Fax: +82-55-772-2656
| |
Collapse
|
16
|
The Electronic Property Differences between dA::dG and dA::dG oxo. A Theoretical Approach. Molecules 2020; 25:molecules25173828. [PMID: 32842464 PMCID: PMC7503971 DOI: 10.3390/molecules25173828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 11/19/2022] Open
Abstract
The dA::dGoxo pair appearing in nucleic ds-DNA can lead to a mutation in the genetic information. Depending on the dGoxo source, an AT→GC and GC→AC transversion might be observed. As a result, glycosylases are developed during the evolution, i.e., OGG1 and MutY. While the former effectively removes Goxo from the genome, the second one removes adenine from the dA::dGoxo and dA:dG pair. However, dA::dGoxo is recognized by MutY as ~6–10 times faster than dA:dG. In this article, the structural and electronic properties of simple nucleoside pairs dA:dG, dC:::dGoxo, dC:::dG, dA::dGoxo in the aqueous phase have been taken into theoretical consideration. The influence of solvent relaxation on the above is also discussed. It can be concluded that the dA::dGoxo nucleoside pair shows a lower ionization potential and higher electron affinity than the dA:dG pair in both a vertical and adiabatic mode. Therefore, it could be predicted, under electronic properties, that the electron ejected, for instance by a MutY 4[Fe-S]2+ cluster, is predisposed to trapping by the ds-DNA part containing the dA::dGoxo pair rather than by dA::dG.
Collapse
|
17
|
Jain R, Dhiman S, Grogan DW. Genetic Control of Oxidative Mutagenesis in Sulfolobus acidocaldarius. J Bacteriol 2020; 202:JB.00756-19. [PMID: 32482723 PMCID: PMC8404708 DOI: 10.1128/jb.00756-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/26/2020] [Indexed: 02/01/2023] Open
Abstract
To identify DNA-oxidation defenses of hyperthermophilic archaea, we deleted genes encoding the putative 7,8-dihydro-8-oxoguanine (oxoG)-targeted N-glycosylase of S. acidocaldarius (ogg; Saci_01367), the Y-family DNA polymerase (dbh; Saci_0554), or both, and measured the effects on cellular survival, replication accuracy, and oxoG bypass in vivo Spontaneous G:C to T:A transversions were elevated in all Δogg and Δdbh constructs, and the Δogg Δdbh double mutant lost viability at a faster rate than isogenic WT and ogg strains. The distribution of G:C to T:A transversions within mutation-detector genes suggested that reactivity of G toward oxidation and the effect on translation contribute heavily to the pattern of mutations that are recovered. An impact of the Ogg protein on overall efficiency of bypassing oxoG in transforming DNA was evident only in the absence of Dbh, and Ogg status did not affect the accuracy of bypass. Dbh function, in contrast, dramatically influenced both the efficiency and accuracy of oxoG bypass. Thus, Ogg and Dbh were found to work independently to avoid mutagenesis by oxoG, and inactivating this simple but effective defense system by deleting both genes imposed a severe mutational burden on S. acidocaldarius cells.IMPORTANCE Hyperthermophilic archaea are expected to have effective (and perhaps atypical) mechanisms to limit the genetic consequences of DNA damage, but few gene products have been demonstrated to have genome-preserving functions in vivo This study confirmed by genetic criteria that the S. acidocaldarius Ogg protein avoids the characteristic mutagenesis of G oxidation. This enzyme and the bypass polymerase Dbh have similar impacts on genome stability but work independently, and may comprise most of the DNA-oxidation defense of S. acidocaldarius The critical dependence of accurate oxoG bypass on the accessory DNA polymerase Dbh further argues that some form of polymerase exchange is important for accurate genome replication in Sulfolobus, and perhaps in related hyperthermophilic archaea.
Collapse
Affiliation(s)
- Rupal Jain
- Department of Biological Sciences, 614 Rieveschl Hall, ML0006, University of Cincinnati 513-556-9748
| | - Samuel Dhiman
- Department of Biological Sciences, 614 Rieveschl Hall, ML0006, University of Cincinnati 513-556-9748
| | - Dennis W Grogan
- Department of Biological Sciences, 614 Rieveschl Hall, ML0006, University of Cincinnati 513-556-9748
| |
Collapse
|
18
|
Singh MV, Kotla S, Le NT, Ae Ko K, Heo KS, Wang Y, Fujii Y, Thi Vu H, McBeath E, Thomas TN, Jin Gi Y, Tao Y, Medina JL, Taunton J, Carson N, Dogra V, Doyley MM, Tyrell A, Lu W, Qiu X, Stirpe NE, Gates KJ, Hurley C, Fujiwara K, Maggirwar SB, Schifitto G, Abe JI. Senescent Phenotype Induced by p90RSK-NRF2 Signaling Sensitizes Monocytes and Macrophages to Oxidative Stress in HIV-Positive Individuals. Circulation 2019; 139:1199-1216. [PMID: 30586719 DOI: 10.1161/circulationaha.118.036232] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The incidence of cardiovascular disease is higher in HIV-positive (HIV+) patients than it is in the average population, and combination antiretroviral therapy (cART) is a recognized risk factor for cardiovascular disease. However, the molecular mechanisms that link cART and cardiovascular disease are currently unknown. Our study explores the role of the activation of p90RSK, a reactive oxygen species-sensitive kinase, in engendering senescent phenotype in macrophages and accelerating atherogenesis in patients undergoing cART. METHODS Peripheral whole blood from cART-treated HIV+ individuals and nontreated HIV-negative individuals was treated with H2O2 (200 µmol/L) for 4 minutes, and p90RSK activity in CD14+ monocytes was measured. Plaque formation in the carotids was also analyzed in these individuals. Macrophage senescence was determined by evaluating their efferocytotic ability, antioxidation-related molecule expression, telomere length, and inflammatory gene expression. The involvement of p90RSK-NRF2 signaling in cART-induced senescence was assessed by p90RSK-specific inhibitor (FMK-MEA) or dominant-negative p90RSK (DN-p90RSK) and NRF2 activator (NRF2A). Further, the severity of atherosclerosis was determined in myeloid cell-specific wild-type and DN-p90RSK transgenic mice. RESULTS Monocytes from HIV+ patients exhibited higher levels of p90RSK activity and were also more sensitive to reactive oxygen species than monocytes from HIV-negative individuals. A multiple linear regression analysis involving cART, Reynolds cardiovascular risk score, and basal p90RSK activity revealed that cART and basal p90RSK activity were the 2 significant determinants of plaque formation. Many of the antiretroviral drugs individually activated p90RSK, which simultaneously triggered all components of the macrophage senescent phenotype. cART inhibited antioxidant response element reporter activity via ERK5 S496 phosphorylation. NRF2A reversed the H2O2-induced overactivation of p90RSK in cART-treated macrophages by countering the induction of senescent phenotype. Last, the data obtained from our gain- or loss-of-function mice conclusively showed the crucial role of p90RSK in inducing senescent phenotype in macrophages and atherogenesis. CONCLUSIONS cART increased monocyte/macrophage sensitivity to reactive oxygen species- in HIV+ individuals by suppressing NRF2-ARE activity via p90RSK-mediated ERK5 S496 phosphorylation, which coordinately elicited senescent phenotypes and proinflammatory responses. As such, our report underscores the importance of p90RSK regulation in monocytes/macrophages as a viable biomarker and therapeutic target for preventing cardiovascular disease, especially in HIV+ patients treated with cART.
Collapse
Affiliation(s)
- Meera V Singh
- Departments of Microbiology and Immunology (M.V.S., N.E.S., K.J.G., S.B.M.), University of Rochester, NY
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston (S.K., N.-T.L., K.A.K., K.-S.H., Y.W., Y.F., H.T.V., E.M., T.N.T., Y.J.G., Y.T., J.L.M., K.F., J.-i.A.).,Radiology Research (S.K., N.-T.L., K.A.K.), Houston Methodist Research Institute, TX
| | - Nhat-Tu Le
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston (S.K., N.-T.L., K.A.K., K.-S.H., Y.W., Y.F., H.T.V., E.M., T.N.T., Y.J.G., Y.T., J.L.M., K.F., J.-i.A.).,Departments of Cardiovascular Sciences (N.-T.L.), Houston Methodist Research Institute, TX.,Radiology Research (S.K., N.-T.L., K.A.K.), Houston Methodist Research Institute, TX
| | - Kyung Ae Ko
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston (S.K., N.-T.L., K.A.K., K.-S.H., Y.W., Y.F., H.T.V., E.M., T.N.T., Y.J.G., Y.T., J.L.M., K.F., J.-i.A.).,Radiology Research (S.K., N.-T.L., K.A.K.), Houston Methodist Research Institute, TX
| | - Kyung-Sun Heo
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston (S.K., N.-T.L., K.A.K., K.-S.H., Y.W., Y.F., H.T.V., E.M., T.N.T., Y.J.G., Y.T., J.L.M., K.F., J.-i.A.).,Institute of Drug Research and Development, Chungnam National University, Daejeon, Republic of Korea (K.-S.H.)
| | - Yin Wang
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston (S.K., N.-T.L., K.A.K., K.-S.H., Y.W., Y.F., H.T.V., E.M., T.N.T., Y.J.G., Y.T., J.L.M., K.F., J.-i.A.)
| | - Yuka Fujii
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston (S.K., N.-T.L., K.A.K., K.-S.H., Y.W., Y.F., H.T.V., E.M., T.N.T., Y.J.G., Y.T., J.L.M., K.F., J.-i.A.)
| | - Hang Thi Vu
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston (S.K., N.-T.L., K.A.K., K.-S.H., Y.W., Y.F., H.T.V., E.M., T.N.T., Y.J.G., Y.T., J.L.M., K.F., J.-i.A.)
| | - Elena McBeath
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston (S.K., N.-T.L., K.A.K., K.-S.H., Y.W., Y.F., H.T.V., E.M., T.N.T., Y.J.G., Y.T., J.L.M., K.F., J.-i.A.)
| | - Tamlyn N Thomas
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston (S.K., N.-T.L., K.A.K., K.-S.H., Y.W., Y.F., H.T.V., E.M., T.N.T., Y.J.G., Y.T., J.L.M., K.F., J.-i.A.)
| | - Young Jin Gi
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston (S.K., N.-T.L., K.A.K., K.-S.H., Y.W., Y.F., H.T.V., E.M., T.N.T., Y.J.G., Y.T., J.L.M., K.F., J.-i.A.)
| | - Yunting Tao
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston (S.K., N.-T.L., K.A.K., K.-S.H., Y.W., Y.F., H.T.V., E.M., T.N.T., Y.J.G., Y.T., J.L.M., K.F., J.-i.A.)
| | - Jan L Medina
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston (S.K., N.-T.L., K.A.K., K.-S.H., Y.W., Y.F., H.T.V., E.M., T.N.T., Y.J.G., Y.T., J.L.M., K.F., J.-i.A.)
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California-San Francisco (J.T.)
| | - Nancy Carson
- Imaging Sciences (N.C., V.D.), University of Rochester, NY
| | - Vikram Dogra
- Imaging Sciences (N.C., V.D.), University of Rochester, NY
| | - Marvin M Doyley
- Electrical and Computer Engineering (M.M.D.), University of Rochester, NY
| | - Alicia Tyrell
- Biostatistics and Computational Biology (A.T., W.L., X.Q.), University of Rochester, NY
| | - Wang Lu
- Biostatistics and Computational Biology (A.T., W.L., X.Q.), University of Rochester, NY
| | - Xing Qiu
- Biostatistics and Computational Biology (A.T., W.L., X.Q.), University of Rochester, NY
| | - Nicole E Stirpe
- Departments of Microbiology and Immunology (M.V.S., N.E.S., K.J.G., S.B.M.), University of Rochester, NY
| | - Kathleen J Gates
- Departments of Microbiology and Immunology (M.V.S., N.E.S., K.J.G., S.B.M.), University of Rochester, NY
| | - Christine Hurley
- Medicine, Infectious Disease (C.H.), University of Rochester, NY
| | - Keigi Fujiwara
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston (S.K., N.-T.L., K.A.K., K.-S.H., Y.W., Y.F., H.T.V., E.M., T.N.T., Y.J.G., Y.T., J.L.M., K.F., J.-i.A.)
| | - Sanjay B Maggirwar
- Departments of Microbiology and Immunology (M.V.S., N.E.S., K.J.G., S.B.M.), University of Rochester, NY
| | | | - Jun-Ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston (S.K., N.-T.L., K.A.K., K.-S.H., Y.W., Y.F., H.T.V., E.M., T.N.T., Y.J.G., Y.T., J.L.M., K.F., J.-i.A.)
| |
Collapse
|
19
|
Hebert SP, Schlegel HB. Computational Study of the Oxidation of Guanine To Form 5-Carboxyamido-5-formamido-2-iminohydantoin (2Ih). Chem Res Toxicol 2019; 32:2295-2304. [PMID: 31571479 DOI: 10.1021/acs.chemrestox.9b00304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxidative damage to DNA leads to a number of two-electron oxidation products of guanine such as 8-oxo-7,8-dihydroguanine (8oxoG). 5-Carboxyamido-5-formamido-2-iminohydantoin (2Ih) is another two-electron oxidation product that forms in competition with 8oxoG. The pathways for the formation of 2Ih have been studied by density functional theory using the ωB97XD functional with the 6-31+G(d,p) basis set and SMD implicit water solvation plus a small number of explicit water molecules positioned to help stabilize charged species and facilitate reaction steps. For oxidative conditions that produce hydroxyl radical, such as Fenton chemistry, hydroxy radical can add at C4, C5, or C8. Addition at C4 or C5 followed by loss of H2O produces guanine radical. Guanine radical can also be produced directly by oxidation of guanine by reactive oxygen species (ROS). A C5-OH intermediate can be formed by addition of superoxide to C5 of guanine radical followed by reduction. Alternatively, the C5-OH intermediate can be formed by hydroxy radical addition at C5 and oxidation by 3O2. The competition between oxidative and reductive pathways depends on the reaction conditions. Acyl migration of the C5-OH intermediate yields reduced spiroiminodihydantoin (Spred). Subsequent water addition at C8 of Spred and N7-C8 ring opening produces 2Ih. Hydroxy radical addition at C8 can lead to a number of products. Oxidation and tautomerization produces 8oxoG. Alternatively, addition of superoxide at C5 and reduction results in a C5, C8 dihydroxy intermediate. For this species, the low energy pathway to 2Ih is N7-C8 ring opening followed by acyl migration. Ring opening occurs more easily at C8-N9 but leads to a higher energy analogue of 2Ih. Thus, the dominant pathway for the production of 2Ih depends on the nature of the reactive oxygen species and on the presence or absence of reducing agents.
Collapse
Affiliation(s)
- Sebastien P Hebert
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| | - H Bernhard Schlegel
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| |
Collapse
|
20
|
AID, APOBEC3A and APOBEC3B efficiently deaminate deoxycytidines neighboring DNA damage induced by oxidation or alkylation. Biochim Biophys Acta Gen Subj 2019; 1863:129415. [PMID: 31404619 DOI: 10.1016/j.bbagen.2019.129415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/26/2019] [Accepted: 08/07/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND AID/APOBEC3 (A3) enzymes instigate genomic mutations that are involved in immunity and cancer. Although they can deaminate any deoxycytidine (dC) to deoxyuridine (dU), each family member has a signature preference determined by nucleotides surrounding the target dC. This WRC (W = A/T, R = A/G) and YC (Y = T/C) hotspot preference is established for AID and A3A/A3B, respectively. Base alkylation and oxidation are two of the most common types of DNA damage induced environmentally or by chemotherapy. Here we examined the activity of AID, A3A and A3B on dCs neighboring such damaged bases. METHODS Substrates were designed to contain target dCs either in normal WRC/YC hotspots, or in oxidized/alkylated DNA motifs. AID, A3A and A3B were purified and deamination kinetics of each were compared between substrates containing damaged vs. normal motifs. RESULTS All three enzymes efficiently deaminated dC when common damaged bases were present in the -2 or -1 positions. Strikingly, some damaged motifs supported comparable or higher catalytic efficiencies by AID, A3A and A3B than the WRC/YC motifs which are their most favored normal sequences. Based on the resolved interactions of AID, A3A and A3B with DNA, we modeled interactions with alkylated or oxidized bases. Corroborating the enzyme assay data, the surface regions that recognize normal bases are predicted to also interact robustly with oxidized and alkylated bases. CONCLUSIONS AID, A3A and A3B can efficiently recognize and deaminate dC whose neighbouring nucleotides are damaged. GENERAL SIGNIFICANCE Beyond AID/A3s initiating DNA damage, some forms of pre-existing damaged DNA can constitute favored targets of AID/A3s if encountered.
Collapse
|
21
|
Aslam S, Lan XR, Zhang BW, Chen ZL, Wang L, Niu DK. Aerobic prokaryotes do not have higher GC contents than anaerobic prokaryotes, but obligate aerobic prokaryotes have. BMC Evol Biol 2019; 19:35. [PMID: 30691392 PMCID: PMC6350292 DOI: 10.1186/s12862-019-1365-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 01/17/2019] [Indexed: 12/17/2022] Open
Abstract
Background Among the four bases, guanine is the most susceptible to damage from oxidative stress. Replication of DNA containing damaged guanines results in G to T mutations. Therefore, the mutations resulting from oxidative DNA damage are generally expected to predominantly consist of G to T (and C to A when the damaged guanine is not in the reference strand) and result in decreased GC content. However, the opposite pattern was reported 16 years ago in a study of prokaryotic genomes. Although that result has been widely cited and confirmed by nine later studies with similar methods, the omission of the effect of shared ancestry requires a re-examination of the reliability of the results. Results When aerobic and obligate aerobic prokaryotes were mixed together and anaerobic and obligate anaerobic prokaryotes were mixed together, phylogenetic controlled analyses did not detect significant difference in GC content between aerobic and anaerobic prokaryotes. This result is consistent with two generally neglected studied that had accounted for the phylogenetic relationship. However, when obligate aerobic prokaryotes were compared with aerobic prokaryotes, anaerobic prokaryotes, and obligate anaerobic prokaryotes separately using phylogenetic regression analysis, a significant positive association was observed between aerobiosis and GC content, no matter it was calculated from whole genome sequences or the 4-fold degenerate sites of protein-coding genes. Obligate aerobes have significantly higher GC content than aerobes, anaerobes, and obligate anaerobes. Conclusions The positive association between aerobiosis and GC content could be attributed to a mutational force resulting from incorporation of damaged deoxyguanosine during DNA replication rather than oxidation of the guanine nucleotides within DNA sequences. Our results indicate a grade in the aerobiosis-associated mutational force, strong in obligate aerobes, moderate in aerobes, weak in anaerobes and obligate anaerobes. Electronic supplementary material The online version of this article (10.1186/s12862-019-1365-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sidra Aslam
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xin-Ran Lan
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Bo-Wen Zhang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Zheng-Lin Chen
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Li Wang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Deng-Ke Niu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
22
|
Baker KT, Nachmanson D, Kumar S, Emond MJ, Ussakli C, Brentnall TA, Kennedy SR, Risques RA. Mitochondrial DNA Mutations are Associated with Ulcerative Colitis Preneoplasia but Tend to be Negatively Selected in Cancer. Mol Cancer Res 2018; 17:488-498. [PMID: 30446624 DOI: 10.1158/1541-7786.mcr-18-0520] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/04/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023]
Abstract
The role of mitochondrial DNA (mtDNA) mutations in cancer remains controversial. Ulcerative colitis is an inflammatory bowel disease that increases the risk of colorectal cancer and involves mitochondrial dysfunction, making it an ideal model to study the role of mtDNA in tumorigenesis. Our goal was to comprehensively characterize mtDNA mutations in ulcerative colitis tumorigenesis using Duplex Sequencing, an ultra-accurate next-generation sequencing method. We analyzed 46 colon biopsies from non-ulcerative colitis control patients and ulcerative colitis patients with and without cancer, including biopsies at all stages of dysplastic progression. mtDNA was sequenced at a median depth of 1,364x. Mutations were classified by mutant allele frequency: clonal > 0.95, subclonal 0.01-0.95, and very low frequency (VLF) < 0.01. We identified 208 clonal and subclonal mutations and 56,764 VLF mutations. Mutations were randomly distributed across the mitochondrial genome. Clonal and subclonal mutations increased in number and pathogenicity in early dysplasia, but decreased in number and pathogenicity in cancer. Most clonal, subclonal, and VLF mutations were C>T transitions in the heavy strand of mtDNA, which likely arise from DNA replication errors. A subset of VLF mutations were C>A transversions, which are probably due to oxidative damage. VLF transitions and indels were less abundant in the non-D-loop region and decreased with progression. Our results indicate that mtDNA mutations are frequent in ulcerative colitis preneoplasia but negatively selected in cancers. IMPLICATIONS: While mtDNA mutations might contribute to early ulcerative colitis tumorigenesis, they appear to be selected against in cancer, suggesting that functional mitochondria might be required for malignant transformation in ulcerative colitis.
Collapse
Affiliation(s)
- Kathryn T Baker
- Department of Pathology, University of Washington, Seattle, Washington
| | | | - Shilpa Kumar
- Department of Pathology, University of Washington, Seattle, Washington
| | - Mary J Emond
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Cigdem Ussakli
- Department of Pathology, University of Washington, Seattle, Washington.,Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Teresa A Brentnall
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, Washington
| | - Scott R Kennedy
- Department of Pathology, University of Washington, Seattle, Washington
| | - Rosa Ana Risques
- Department of Pathology, University of Washington, Seattle, Washington.
| |
Collapse
|
23
|
Somatic Mitochondrial DNA Mutations in Diffuse Large B-Cell Lymphoma. Sci Rep 2018; 8:3623. [PMID: 29483551 PMCID: PMC5827201 DOI: 10.1038/s41598-018-21844-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/09/2018] [Indexed: 12/15/2022] Open
Abstract
Diffuse Large B-Cell Lymphoma (DLBCL) is an aggressive hematological cancer for which mitochondrial metabolism may play an important role. Mitochondrial DNA (mtDNA) encodes crucial mitochondrial proteins, yet the relationship between mtDNA and DLBCL remains unclear. We analyzed the functional consequences and mutational spectra of mtDNA somatic mutations and private constitutional variants in 40 DLBCL tumour-normal pairs. While private constitutional variants occurred frequently in the D-Loop, somatic mutations were randomly distributed across the mitochondrial genome. Heteroplasmic constitutional variants showed a trend towards loss of heteroplasmy in the corresponding tumour regardless of whether the reference or variant allele was being lost, suggesting that these variants are selectively neutral. The mtDNA mutational spectrum showed minimal support for ROS damage and revealed strand asymmetry with increased C > T and A > G transitions on the heavy strand, consistent with a replication-associated mode of mutagenesis. These heavy strand transitions carried higher proportions of amino acid changes – which were also more pathogenic – than equivalent substitutions on the light strand. Taken together, endogenous replication-associated events underlie mtDNA mutagenesis in DLBCL and preferentially generate functionally consequential mutations. Yet mtDNA somatic mutations remain selectively neutral, suggesting that mtDNA-encoded mitochondrial functions may not play an important role in DLBCL.
Collapse
|
24
|
Chernikov AV, Gudkov SV, Usacheva AM, Bruskov VI. Exogenous 8-oxo-7,8-dihydro-2′-deoxyguanosine: Biomedical properties, mechanisms of action, and therapeutic potential. BIOCHEMISTRY (MOSCOW) 2018. [DOI: 10.1134/s0006297917130089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Al-Hussaini H, Kilarkaje N. Trans-resveratrol mitigates type 1 diabetes-induced oxidative DNA damage and accumulation of advanced glycation end products in glomeruli and tubules of rat kidneys. Toxicol Appl Pharmacol 2017; 339:97-109. [PMID: 29229234 DOI: 10.1016/j.taap.2017.11.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/15/2022]
Abstract
Hyperglycemia induces the formation of advanced glycation end products (AGEs) and their receptors (RAGEs), which alter several intracellular signaling mechanisms leading to the onset and progression of diabetic nephropathy. The present study focused on, i) modulatory effects of trans-resveratrol (3,5,4'-trihydroxy-trans-stilbene) on structural changes, AGE (NƐ-carboxymethyl-lysine), RAGE, oxidative stress and DNA damage, and apoptosis, and ii) localization of fibrotic changes, AGE, RAGE, 8-oxo-dG and 4-hydroxynonenal (4-HNE) in diabetic rat kidneys. Resveratrol (5mg/kg; po, administered during last 45days of 90-day-long hyperglycemic period) administration to streptozotocin-induced type 1 diabetic male Wistar rats reduced renal hypertrophy and structural changes (tubular atrophy, mesangial expansion or shrinkage, diffuse glomerulonephritis, and fibrosis), AGE accumulation, oxidative stress and DNA damage (8-oxo-dG), 4-HNE, caspase-3, and cleaved-caspase-3, but not the RAGE expression. The AGE accumulated in the mesangium, vascular endothelium, and proximal convoluted tubules and less intensely in distal convoluted tubules of diabetic rat kidneys. The RAGE expression increased in the convoluted tubules and collecting ducts of diabetic rat kidneys, but not in the mesangium. Diabetes increased the expression of 8-oxo-dG in nuclei and cytoplasm of renal cells, and 4-HNE in glomeruli, convoluted tubules, the loops of Henle and collecting ducts. Hyperglycemia-induced AGE-RAGE axis and oxidative stress in turn induced apoptosis in diabetic kidneys. Resveratrol mitigated all diabetic effects except the RAGE expression. In conclusion, Resveratrol significantly alleviates diabetes-induced glycation, oxidative damage, and apoptosis to inhibit the progression of diabetic nephropathy. Resveratrol supplementation may be useful to hinder the onset and progression of diabetic kidney diseases.
Collapse
Affiliation(s)
- Heba Al-Hussaini
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait
| | | |
Collapse
|
26
|
Kalsbeek AM, Chan EK, Corcoran NM, Hovens CM, Hayes VM. Mitochondrial genome variation and prostate cancer: a review of the mutational landscape and application to clinical management. Oncotarget 2017; 8:71342-71357. [PMID: 29050365 PMCID: PMC5642640 DOI: 10.18632/oncotarget.19926] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/26/2017] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer is a genetic disease. While next generation sequencing has allowed for the emergence of molecular taxonomy, classification is restricted to the nuclear genome. Mutations within the maternally inherited mitochondrial genome are known to impact cancer pathogenesis, as a result of disturbances in energy metabolism and apoptosis. With a higher mutation rate, limited repair and increased copy number compared to the nuclear genome, the clinical relevance of mitochondrial DNA (mtDNA) variation requires deeper exploration. Here we provide a systematic review of the landscape of prostate cancer associated mtDNA variation. While the jury is still out on the association between inherited mtDNA variation and prostate cancer risk, we collate a total of 749 uniquely reported prostate cancer associated somatic mutations. Support exists for number of somatic events, extent of heteroplasmy, and rate of recurrence of mtDNA mutations, increasing with disease aggression. While, the predicted pathogenic impact for recurrent prostate cancer associated mutations appears negligible, evidence exists for carcinogenic mutations impacting the cytochrome c oxidase complex and regulating metastasis through elevated reactive oxygen species production. Due to a lack of lethal cohort analyses, we provide additional unpublished data for metastatic disease. Discussing the advantages of mtDNA as a prostate cancer biomarker, we provide a review of current progress of including elevated mtDNA levels, of a large somatic deletion, acquired tRNAs mutations, heteroplasmy and total number of somatic events (mutational load). We confirm via meta-analysis a significant association between mtDNA mutational load and pathological staging at diagnosis or surgery (p < 0.0001).
Collapse
Affiliation(s)
- Anton M.F. Kalsbeek
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Medical Faculty, University of New South Wales, Randwick, New South Wales, Australia
| | - Eva K.F. Chan
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Medical Faculty, University of New South Wales, Randwick, New South Wales, Australia
| | - Niall M. Corcoran
- Australian Prostate Cancer Research Centre Epworth, Richmond, Victoria, Australia
- Departments of Urology and Surgery, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher M. Hovens
- Australian Prostate Cancer Research Centre Epworth, Richmond, Victoria, Australia
- Departments of Urology and Surgery, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Vanessa M. Hayes
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Medical Faculty, University of New South Wales, Randwick, New South Wales, Australia
- Central Clinical School, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
27
|
Alenko A, Fleming AM, Burrows CJ. Reverse Transcription Past Products of Guanine Oxidation in RNA Leads to Insertion of A and C opposite 8-Oxo-7,8-dihydroguanine and A and G opposite 5-Guanidinohydantoin and Spiroiminodihydantoin Diastereomers. Biochemistry 2017; 56:5053-5064. [PMID: 28845978 DOI: 10.1021/acs.biochem.7b00730] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species, both endogenous and exogenous, can damage nucleobases of RNA and DNA. Among the nucleobases, guanine has the lowest redox potential, making it a major target of oxidation. Although RNA is more prone to oxidation than DNA is, oxidation of guanine in RNA has been studied to a significantly lesser extent. One of the reasons for this is that many tools that were previously developed to study oxidation of DNA cannot be used on RNA. In the study presented here, the lack of a method for seeking sites of modification in RNA where oxidation occurs is addressed. For this purpose, reverse transcription of RNA containing major products of guanine oxidation was used. Extension of a DNA primer annealed to an RNA template containing 8-oxo-7,8-dihydroguanine (OG), 5-guanidinohydantoin (Gh), or the R and S diastereomers of spiroiminodihydantoin (Sp) was studied under standing start conditions. SuperScript III reverse transcriptase is capable of bypassing these lesions in RNA inserting predominantly A opposite OG, predominantly G opposite Gh, and almost an equal mixture of A and G opposite the Sp diastereomers. These data should allow RNA sequencing of guanine oxidation products by following characteristic mutation signatures formed by the reverse transcriptase during primer elongation past G oxidation sites in the template RNA strand.
Collapse
Affiliation(s)
- Anton Alenko
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Aaron M Fleming
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
28
|
Fleming AM, Burrows CJ. Formation and processing of DNA damage substrates for the hNEIL enzymes. Free Radic Biol Med 2017; 107:35-52. [PMID: 27880870 PMCID: PMC5438787 DOI: 10.1016/j.freeradbiomed.2016.11.030] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/13/2016] [Accepted: 11/16/2016] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) are harnessed by the cell for signaling at the same time as being detrimental to cellular components such as DNA. The genome and transcriptome contain instructions that can alter cellular processes when oxidized. The guanine (G) heterocycle in the nucleotide pool, DNA, or RNA is the base most prone to oxidation. The oxidatively-derived products of G consistently observed in high yields from hydroxyl radical, carbonate radical, or singlet oxygen oxidations under conditions modeling the cellular reducing environment are discussed. The major G base oxidation products are 8-oxo-7,8-dihydroguanine (OG), 5-carboxamido-5-formamido-2-iminohydantoin (2Ih), spiroiminodihydantoin (Sp), and 5-guanidinohydantoin (Gh). The yields of these products show dependency on the oxidant and the reaction context that includes nucleoside, single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), and G-quadruplex DNA (G4-DNA) structures. Upon formation of these products in cells, they are recognized by the DNA glycosylases in the base excision repair (BER) pathway. This review focuses on initiation of BER by the mammalian Nei-like1-3 (NEIL1-3) glycosylases for removal of 2Ih, Sp, and Gh. The unique ability of the human NEILs to initiate removal of the hydantoins in ssDNA, bulge-DNA, bubble-DNA, dsDNA, and G4-DNA is outlined. Additionally, when Gh exists in a G4 DNA found in a gene promoter, NEIL-mediated repair is modulated by the plasticity of the G4-DNA structure provided by additional G-runs flanking the sequence. On the basis of these observations and cellular studies from the literature, the interplay between DNA oxidation and BER to alter gene expression is discussed.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S 1400 East, Salt Lake City, UT 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 S 1400 East, Salt Lake City, UT 84112-0850, United States.
| |
Collapse
|
29
|
Fleming AM, Ding Y, Burrows CJ. Sequencing DNA for the Oxidatively Modified Base 8-Oxo-7,8-Dihydroguanine. Methods Enzymol 2017. [PMID: 28645369 DOI: 10.1016/bs.mie.2017.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The DNA base guanine (G) can be oxidatively modified to 8-oxo-7,8-dihydroguanine (OG). Extraction of genomic DNA followed by nuclease digestion and mass spectrometry analysis has found OG is present at background levels of ~1 out of 106 Gs; however, this approach cannot determine the locations for the OGs in the genome. Thus, in this methods report, we outline three different methods (A, B, and C) for sequencing OG in DNA. Method A sequences OG by utilizing the base excision repair pathway to delete the OG nucleotide from the DNA that is then detected by Sanger sequencing as a deletion signature. Method B sequences OG by harnessing the base excision repair pathway to convert OG to an unnatural DNA base pair followed by Sanger sequencing to locate the unnatural base pair indicating where OG was located. Method C (i.e., OG-Seq) takes genomic DNA sheared to ~150bps followed by selectively biotinylating the OG-containing fragments for affinity purification and enrichment of the OG-modified strands. The OG-modified fragments are sequenced on a next-generation sequencing platform to locate OG on the genomic scale with a resolution of ~150bps. The methods outlined are then compared and contrasted allowing researchers to select the one that best suits their experimental goals.
Collapse
Affiliation(s)
| | - Yun Ding
- University of Utah, Salt Lake City, UT, United States
| | | |
Collapse
|
30
|
Zeng T, Fleming AM, Ding Y, White HS, Burrows CJ. Interrogation of Base Pairing of the Spiroiminodihydantoin Diastereomers Using the α-Hemolysin Latch. Biochemistry 2017; 56:1596-1603. [PMID: 28230976 DOI: 10.1021/acs.biochem.6b01175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spiroiminodihydantoin (Sp) is a hyperoxidized form of guanine (G) resulting from oxidation by reactive oxygen species. The lesion is highly mutagenic, and the stereocenter renders the two isomers with distinct behaviors in chemical, spectroscopic, enzymatic, and computational studies. In this work, the α-hemolysin (αHL) latch sensing zone was employed to investigate the base pairing properties of the Sp diastereomers embedded in a double-stranded DNA. Duplexes containing (S)-Sp consistently gave deeper current blockage, and a baseline resolution of ∼0.8 pA was achieved between (S)-Sp:G and (R)-Sp:G base pairs. Ion fluxes were generally more hindered when Sp was placed opposite pyrimidines. Analysis of the current noise of blockade events further provided dynamics information about the Sp-containing base pairs. In general, base pairs comprised of (S)-Sp generated current fluctuations larger than those of their (R)-Sp counterparts, suggesting enhanced base pairing dynamics. The current noise was also substantially affected by the identity of the base opposite Sp, increasing in the following order: A < G < T < C. This report provides information about the dynamic structure of Sp in the DNA duplex and therefore has implications for the enzymatic repair of the Sp diastereomers.
Collapse
Affiliation(s)
- Tao Zeng
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Aaron M Fleming
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Yun Ding
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Henry S White
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
31
|
Lanier KA, Williams LD. The Origin of Life: Models and Data. J Mol Evol 2017; 84:85-92. [PMID: 28243688 PMCID: PMC5371624 DOI: 10.1007/s00239-017-9783-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/14/2017] [Indexed: 11/03/2022]
Abstract
A general framework for conventional models of the origin of life (OOL) is the specification of a ‘privileged function.’ A privileged function is an extant biological function that is excised from its biological context, elevated in importance over other functions, and transported back in time to a primitive chemical or geological environment. In RNA or Clay Worlds, the privileged function is replication. In Metabolism-First Worlds, the privileged function is metabolism. In Thermal Vent Worlds, the privileged function is energy harvesting from chemical gradients. In Membrane Worlds, the privileged function is compartmentalization. In evaluating these models, we consider the contents and properties of the Universal Gene Set of life, which is the set of orthologous genes conserved throughout the tree of life and found in every living system. We also consider the components and properties of the Molecular Toolbox of Life, which contains twenty amino acids, eight nucleotides, glucose, polypeptide, polynucleotide, and several other components. OOL models based on privileged functions necessarily depend on “takeovers” to transition from previous genetic and catalytic systems to the extant DNA/RNA/protein system, requiring replacement of one Molecular Toolbox with another and of one Universal Gene Set with another. The observed robustness and contents of the Toolbox of Life and the Universal Gene Set over the last 3.7 billion years are thought to be post hoc phenomena. Once the takeover processes are acknowledged and are reasonably considered, the privileged function models are seen to be extremely complex with low predictive power. These models require indeterminacy and plasticity of biological and chemical processes.
Collapse
Affiliation(s)
- Kathryn A Lanier
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA.
| |
Collapse
|
32
|
Kramer AC, Weber J, Zhang Y, Tolar J, Gibbens YY, Shevik M, Lund TC. TP53 Modulates Oxidative Stress in Gata1 + Erythroid Cells. Stem Cell Reports 2017; 8:360-372. [PMID: 28132886 PMCID: PMC5312256 DOI: 10.1016/j.stemcr.2016.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 01/28/2023] Open
Abstract
Metabolism of oxidative stress is necessary for cellular survival. We have previously utilized the zebrafish as a model of the oxidative stress response. In this study, we found that gata1-expressing erythroid cells contributed to a significant proportion of total-body oxidative stress when animals were exposed to a strong pro-oxidant. RNA-seq of zebrafish under oxidative stress revealed the induction of tp53. Zebrafish carrying tp53 with a mutation in its DNA-binding domain were acutely sensitive to pro-oxidant exposure and displayed significant reactive oxygen species (ROS) and tp53-independent erythroid cell death resulting in an edematous phenotype. We found that a major contributing factor to ROS was increased basal mitochondrial respiratory rate without reserve. These data add to the concept that tp53, while classically a tumor suppressor and cell-cycle regulator, has additional roles in controlling cellular oxidative stress. Erythroid precursors contribute significantly to total ROS after oxidative challenge Tp53 is induced after pro-oxidant challenge Mutated tp53 is associated with an increased mitochondrial oxygen consumption rate Decreased mitochondrial reserve leads to overwhelming ROS and erythroid cell death
Collapse
Affiliation(s)
- Ashley C Kramer
- Division of Pediatric Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jenna Weber
- Division of Pediatric Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ying Zhang
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jakub Tolar
- Division of Pediatric Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ying Y Gibbens
- Division of Pediatric Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Margaret Shevik
- Division of Pediatric Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Troy C Lund
- Division of Pediatric Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
33
|
Effects of Trans-Resveratrol on hyperglycemia-induced abnormal spermatogenesis, DNA damage and alterations in poly (ADP-ribose) polymerase signaling in rat testis. Toxicol Appl Pharmacol 2016; 311:61-73. [DOI: 10.1016/j.taap.2016.09.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/10/2016] [Accepted: 09/24/2016] [Indexed: 12/19/2022]
|
34
|
DNA Damage in Chronic Kidney Disease: Evaluation of Clinical Biomarkers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3592042. [PMID: 27313827 PMCID: PMC4897719 DOI: 10.1155/2016/3592042] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/03/2016] [Indexed: 12/11/2022]
Abstract
Patients with chronic kidney disease (CKD) exhibit an increased cancer risk compared to a healthy control population. To be able to estimate the cancer risk of the patients and to assess the impact of interventional therapies thereon, it is of particular interest to measure the patients' burden of genomic damage. Chromosomal abnormalities, reduced DNA repair, and DNA lesions were found indeed in cells of patients with CKD. Biomarkers for DNA damage measurable in easily accessible cells like peripheral blood lymphocytes are chromosomal aberrations, structural DNA lesions, and oxidatively modified DNA bases. In this review the most common methods quantifying the three parameters mentioned above, the cytokinesis-block micronucleus assay, the comet assay, and the quantification of 8-oxo-7,8-dihydro-2′-deoxyguanosine, are evaluated concerning the feasibility of the analysis and regarding the marker's potential to predict clinical outcomes.
Collapse
|
35
|
Frying oils with high natural or added antioxidants content, which protect against postprandial oxidative stress, also protect against DNA oxidation damage. Eur J Nutr 2016; 56:1597-1607. [DOI: 10.1007/s00394-016-1205-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 03/12/2016] [Indexed: 10/22/2022]
|
36
|
An N, Fleming AM, Burrows CJ. Human Telomere G-Quadruplexes with Five Repeats Accommodate 8-Oxo-7,8-dihydroguanine by Looping out the DNA Damage. ACS Chem Biol 2016; 11:500-7. [PMID: 26686913 DOI: 10.1021/acschembio.5b00844] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inflammation and oxidative stress generate free radicals that oxidize guanine (G) in DNA to 8-oxo-7,8-dihydroguanine (OG), and this reaction is prominent in the G-rich telomere sequence. In telomeres, OG is not efficiently removed by repair pathways allowing its concentration to build, surprisingly without any immediate negative consequences to stability. Herein, OG was synthesized in five repeats of the human telomere sequence (TTAGGG)n, at the 5'-G of the 5'-most, middle, and 3'-most G tracks, representing hotspots for oxidation. These synthetic oligomers were folded in relevant amounts of K(+)/Na(+) to adopt hybrid G-quadruplex folds. The structural impact of OG was assayed by circular dichroism, thermal melting, (1)H NMR, and single-molecule profiling by the α-hemolysin nanopore. On the basis of these results, OG was well accommodated in the five-repeat sequences by looping out the damaged G track to allow the other four tracks to adopt a hybrid G-quadruplex. These results run counter to previous studies with OG in four-repeat telomere sequences that found OG to be highly destabilizing and causing significant reorientation of the fold. When taking a wider view of the human telomere sequence and considering additional repeats, we found OG to cause minimal impact on the structure. The plasticity of this repeat sequence addresses how OG concentrations can increase in telomeres without immediate telomere instability or attrition.
Collapse
Affiliation(s)
- Na An
- Department of Chemistry, University of Utah, 315 South 1400
East, Salt Lake City, Utah 84112-0850, United States
| | - Aaron M. Fleming
- Department of Chemistry, University of Utah, 315 South 1400
East, Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, 315 South 1400
East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
37
|
Kharel P, McDonough J, Basu S. Evidence of extensive RNA oxidation in normal appearing cortex of multiple sclerosis brain. Neurochem Int 2016; 92:43-8. [DOI: 10.1016/j.neuint.2015.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 11/22/2015] [Accepted: 12/02/2015] [Indexed: 11/16/2022]
|
38
|
Woods RD, O'Shea VL, Chu A, Cao S, Richards JL, Horvath MP, David SS. Structure and stereochemistry of the base excision repair glycosylase MutY reveal a mechanism similar to retaining glycosidases. Nucleic Acids Res 2015; 44:801-10. [PMID: 26673696 PMCID: PMC4737165 DOI: 10.1093/nar/gkv1469] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 12/02/2015] [Indexed: 12/13/2022] Open
Abstract
MutY adenine glycosylases prevent DNA mutations by excising adenine from promutagenic 8-oxo-7,8-dihydroguanine (OG):A mismatches. Here, we describe structural features of the MutY active site bound to an azaribose transition state analog which indicate a catalytic role for Tyr126 and approach of the water nucleophile on the same side as the departing adenine base. The idea that Tyr126 participates in catalysis, recently predicted by modeling calculations, is strongly supported by mutagenesis and by seeing close contact between the hydroxyl group of this residue and the azaribose moiety of the transition state analog. NMR analysis of MutY methanolysis products corroborates a mechanism for adenine removal with retention of stereochemistry. Based on these results, we propose a revised mechanism for MutY that involves two nucleophilic displacement steps akin to the mechanisms accepted for 'retaining' O-glycosidases. This new-for-MutY yet familiar mechanism may also be operative in related base excision repair glycosylases and provides a critical framework for analysis of human MutY (MUTYH) variants associated with inherited colorectal cancer.
Collapse
Affiliation(s)
- Ryan D Woods
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Valerie L O'Shea
- Department of Chemistry, University of California, Davis, CA 95616, USA Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Aurea Chu
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Sheng Cao
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Jody L Richards
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Martin P Horvath
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sheila S David
- Department of Chemistry, University of California, Davis, CA 95616, USA
| |
Collapse
|
39
|
Zhu J, Fleming AM, Orendt AM, Burrows CJ. pH-Dependent Equilibrium between 5-Guanidinohydantoin and Iminoallantoin Affects Nucleotide Insertion Opposite the DNA Lesion. J Org Chem 2015; 81:351-9. [PMID: 26582419 DOI: 10.1021/acs.joc.5b02180] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Four-electron oxidation of 2'-deoxyguanosine (dG) yields 5-guanidinohydantoin (dGh) as a product. Previously, we hypothesized that dGh could isomerize to iminoallantoin (dIa) via a mechanism similar to the isomerization of allantoin. The isomerization reaction was monitored by HPLC and found to be pH dependent with a transition pH = 10.1 in which dGh was favored at low pH and dIa was favored at high pH. The structures for these isomers were confirmed by UV-vis, MS, and (1)H and (13)C NMR. Additionally, the UV-vis and NMR experimental results are supported by density functional theory calculations. A mechanism is proposed to support the pH dependency of the isomerization reaction. Next, we noted the hydantoin ring of dGh mimics thymine, while the iminohydantoin ring of dIa mimics cytosine; consequently, a dGh/dIa site was synthesized in a DNA template strand, and standing start primer extension studies were conducted with Klenow fragment exo(-). The dATP/dGTP insertion ratio opposite the dGh/dIa site as a function of pH was evaluated from pH 6.5-9.0. At pH 6.5, only dATP was inserted, but as the pH increased to 9.0, the amount of dGTP insertion steadily increased. This observation supports dGh to dIa isomerization in DNA with a transition pH of ∼8.2.
Collapse
Affiliation(s)
- Judy Zhu
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Aaron M Fleming
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Anita M Orendt
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States.,Center for High Performance Computing, University of Utah , Salt Lake City, Utah 84112-0190, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
40
|
Huang J, Yennie CJ, Delaney S. Klenow Fragment Discriminates against the Incorporation of the Hyperoxidized dGTP Lesion Spiroiminodihydantoin into DNA. Chem Res Toxicol 2015; 28:2325-33. [PMID: 26572218 DOI: 10.1021/acs.chemrestox.5b00330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Defining the biological consequences of oxidative DNA damage remains an important and ongoing area of investigation. At the foundation of understanding the repercussions of such damage is a molecular-level description of the action of DNA-processing enzymes, such as polymerases. In this work, we focus on a secondary, or hyperoxidized, oxidative lesion of dG that is formed by oxidation of the primary oxidative lesion, 2'-deoxy-8-oxo-7,8-dihydroguanosine (8-oxodG). In particular, we examine incorporation into DNA of the diastereomers of the hyperoxidized guanosine triphosphate lesion spiroiminodihydantoin-2'-deoxynucleoside-5'-triphosphate (dSpTP). Using kinetic parameters, we describe the ability of the Klenow fragment of Escherichia coli DNA polymerase I lacking 3' → 5' exonuclease activity (KF(-)) to utilize (S)-dSpTP and (R)-dSpTP as building blocks during replication. We find that both diastereomers act as covert lesions, similar to a Trojan horse: KF(-) incorporates the lesion dNTP opposite dC, which is a nonmutagenic event; however, during the subsequent replication, it is known that dSp is nearly 100% mutagenic. Nevertheless, using kpol/Kd to define the nucleotide incorporation specificity, we find that the extent of oxidation of the dGTP-derived lesion correlates with its ability to be incorporated into DNA. KF(-) has the highest specificity for incorporation of dGTP opposite dC. The selection factors for incorporating 8-oxodGTP, (S)-dSpTP, and (R)-dSpTP are 1700-, 64000-, and 850000-fold lower, respectively. Thus, KF(-) is rigorous in its discrimination against incorporation of the hyperoxidized lesion, and these results suggest that the specificity of cellular polymerases provides an effective mechanism to avoid incorporating dSpTP lesions into DNA from the nucleotide pool.
Collapse
Affiliation(s)
- Ji Huang
- Department of Chemistry, Brown University , Providence, Rhode Island 02912, United States
| | - Craig J Yennie
- Department of Chemistry, Brown University , Providence, Rhode Island 02912, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University , Providence, Rhode Island 02912, United States
| |
Collapse
|
41
|
Piedrafita G, Keller MA, Ralser M. The Impact of Non-Enzymatic Reactions and Enzyme Promiscuity on Cellular Metabolism during (Oxidative) Stress Conditions. Biomolecules 2015; 5:2101-22. [PMID: 26378592 PMCID: PMC4598790 DOI: 10.3390/biom5032101] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/03/2015] [Accepted: 08/31/2015] [Indexed: 11/16/2022] Open
Abstract
Cellular metabolism assembles in a structurally highly conserved, but functionally dynamic system, known as the metabolic network. This network involves highly active, enzyme-catalyzed metabolic pathways that provide the building blocks for cell growth. In parallel, however, chemical reactivity of metabolites and unspecific enzyme function give rise to a number of side products that are not part of canonical metabolic pathways. It is increasingly acknowledged that these molecules are important for the evolution of metabolism, affect metabolic efficiency, and that they play a potential role in human disease—age-related disorders and cancer in particular. In this review we discuss the impact of oxidative and other cellular stressors on the formation of metabolic side products, which originate as a consequence of: (i) chemical reactivity or modification of regular metabolites; (ii) through modifications in substrate specificity of damaged enzymes; and (iii) through altered metabolic flux that protects cells in stress conditions. In particular, oxidative and heat stress conditions are causative of metabolite and enzymatic damage and thus promote the non-canonical metabolic activity of the cells through an increased repertoire of side products. On the basis of selected examples, we discuss the consequences of non-canonical metabolic reactivity on evolution, function and repair of the metabolic network.
Collapse
Affiliation(s)
- Gabriel Piedrafita
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK.
| | - Markus A Keller
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK.
| | - Markus Ralser
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK.
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW1 7AA, UK.
| |
Collapse
|
42
|
Rosani U, Tarricone E, Venier P, Brun P, Deligianni V, Zuin M, Martines E, Leonardi A, Brun P. Atmospheric-Pressure Cold Plasma Induces Transcriptional Changes in Ex Vivo Human Corneas. PLoS One 2015. [PMID: 26203910 PMCID: PMC4512711 DOI: 10.1371/journal.pone.0133173] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Atmospheric pressure cold plasma (APCP) might be considered a novel tool for tissue disinfection in medicine since the active chemical species produced by low plasma doses, generated by ionizing helium gas in air, induces reactive oxygen species (ROS) that kill microorganisms without substantially affecting human cells. Objectives In this study, we evaluated morphological and functional changes in human corneas exposed for 2 minutes (min) to APCP and tested if the antioxidant n-acetyl l-cysteine (NAC) was able to inhibit or prevent damage and cell death. Results Immunohistochemistry and western blotting analyses of corneal tissues collected at 6 hours (h) post-APCP treatment demonstrated no morphological tissue changes, but a transient increased expression of OGG1 glycosylase that returned to control levels in 24 h. Transcriptome sequencing and quantitative real time PCR performed on different corneas revealed in the treated corneas many differentially expressed genes: namely, 256 and 304 genes showing expression changes greater than ± 2 folds in the absence and presence of NAC, respectively. At 6 h post-treatment, the most over-expressed gene categories suggested an active or enhanced cell functioning, with only a minority of genes specifically concerning oxidative DNA damage and repair showing slight over-expression values (<2 folds). Moreover, time-related expression analysis of eight genes up-regulated in the APCP-treated corneas overall demonstrated the return to control expression levels after 24 h. Conclusions These findings of transient oxidative stress accompanied by wide-range transcriptome adjustments support the further development of APCP as an ocular disinfectant.
Collapse
Affiliation(s)
- Umberto Rosani
- Department of Biology, University of Padova, Padova, Italy
| | - Elena Tarricone
- Department of Molecular Medicine, Histology Unit, University of Padova, Padova, Italy
| | - Paola Venier
- Department of Biology, University of Padova, Padova, Italy
- * E-mail: (PV); (PB)
| | - Paola Brun
- Department of Molecular Medicine, Microbiology Unit, University of Padova, Padova, Italy
| | | | | | | | - Andrea Leonardi
- Department of Neuroscience, Ophthalmology Unit, University of Padova, Padova, Italy
| | - Paola Brun
- Department of Molecular Medicine, Histology Unit, University of Padova, Padova, Italy
- * E-mail: (PV); (PB)
| |
Collapse
|
43
|
Fleming AM, Alshykhly O, Orendt AM, Burrows CJ. Computational studies of electronic circular dichroism spectra predict absolute configuration assignments for the guanine oxidation product 5-carboxamido-5-formamido-2-iminohydantoin. Tetrahedron Lett 2015; 56:3191-3196. [PMID: 26097262 DOI: 10.1016/j.tetlet.2014.12.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Oxidation of the guanine heterocycle by two electrons can yield the chiral product 5-carboxamido-5-formamido-2-iminohydantoin (2Ih). The 2Ih free base enantiomers were synthesized from 2'-deoxyguanosine oxidized with a Cu(II)/H2O2 oxidant system followed by hydrolysis of the N-glycosidic bond. These isomers were each studied by electronic circular dichroism spectroscopy for determination of their absolute configurations. Time-dependent density functional theory calculations of the expected spectra were completed in both the gas phase and with solvent modeling in order to interpret the experimental spectra and provide the absolute configuration assignments.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, USA
| | - Omar Alshykhly
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, USA
| | - Anita M Orendt
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, USA ; Center for High Performance Computing, University of Utah, Salt Lake City, Utah 84112-0190, USA
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, USA
| |
Collapse
|
44
|
Role of Oxidative RNA Damage in Chronic-Degenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:358713. [PMID: 26078805 PMCID: PMC4452857 DOI: 10.1155/2015/358713] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 12/18/2022]
Abstract
Normal cellular metabolism and exposure to ionizing and ultraviolet radiations and exogenous agents produce reactive oxygen species (ROS). Due to their reactivity, they can interact with many critical biomolecules and induce cell damage. The reaction of ROS with free nucleobases, nucleosides, nucleotides, or oligonucleotides can generate numerous distinct modifications in nucleic acids. Oxidative damage to DNA has been widely investigated and is strongly implicated in the development of many chronic-degenerative diseases. In contrast, RNA damage is a poorly examined field in biomedical research. In this review, I discuss the importance of RNA as a target of oxidative damage and the role of oxidative damage to RNA in the pathogenesis of some chronic-degenerative diseases, such as neurological disorders, atherosclerosis, and cancer. Furthermore, I review recent evidence suggesting that RNA may be the target for toxic agents and indicating RNA degradation as a powerful tool to treat any pathology in which there is an aberrant expression of mRNA and/or its gene products.
Collapse
|
45
|
Brissos RF, Caubet A, Gamez P. Possible DNA-Interacting Pathways for Metal-Based Compounds Exemplified with Copper Coordination Compounds. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500175] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
46
|
Fleming AM, Alshykhly O, Zhu J, Muller JG, Burrows CJ. Rates of chemical cleavage of DNA and RNA oligomers containing guanine oxidation products. Chem Res Toxicol 2015; 28:1292-300. [PMID: 25853314 PMCID: PMC4482417 DOI: 10.1021/acs.chemrestox.5b00096] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
The nucleobase guanine in DNA (dG)
and RNA (rG) has the lowest
standard reduction potential of the bases, rendering it a major site
of oxidative damage in these polymers. Mapping the sites at which
oxidation occurs in an oligomer via chemical reagents utilizes hot
piperidine for cleaving oxidized DNA and aniline (pH 4.5) for cleaving
oxidized RNA. In the present studies, a series of time-dependent cleavages
of DNA and RNA strands containing various guanine lesions were examined
to determine the strand scission rate constants. The guanine base
lesions 8-oxo-7,8-dihydroguanine (OG), spiroiminodihydantoin
(Sp), 5-guanidinohydantoin (Gh), 2,2,4-triamino-2H-oxazol-5-one (Z), and 5-carboxamido-5-formamido-2-iminohydantoin
(2Ih) were evaluated in piperidine-treated DNA and aniline-treated
RNA. These data identified wide variability in the chemical lability
of the lesions studied in both DNA and RNA. Further, the rate constants
for cleaving lesions in RNA were generally found to be significantly
smaller than for lesions in DNA. The OG nucleotides were poorly cleaved
in DNA and RNA; Sp nucleotides were slowly cleaved in DNA and did
not cleave significantly in RNA; Gh and Z nucleotides cleaved in both
DNA and RNA at intermediate rates; and 2Ih oligonucleotides cleaved
relatively quickly in both DNA and RNA. The data are compared and
contrasted with respect to future experimental design.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Omar Alshykhly
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Judy Zhu
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - James G Muller
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
47
|
Bacolla A, Zhu X, Chen H, Howells K, Cooper DN, Vasquez KM. Local DNA dynamics shape mutational patterns of mononucleotide repeats in human genomes. Nucleic Acids Res 2015; 43:5065-80. [PMID: 25897114 PMCID: PMC4446427 DOI: 10.1093/nar/gkv364] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/07/2015] [Indexed: 12/13/2022] Open
Abstract
Single base substitutions (SBSs) and insertions/deletions are critical for generating population diversity and can lead both to inherited disease and cancer. Whereas on a genome-wide scale SBSs are influenced by cellular factors, on a fine scale SBSs are influenced by the local DNA sequence-context, although the role of flanking sequence is often unclear. Herein, we used bioinformatics, molecular dynamics and hybrid quantum mechanics/molecular mechanics to analyze sequence context-dependent mutagenesis at mononucleotide repeats (A-tracts and G-tracts) in human population variation and in cancer genomes. SBSs and insertions/deletions occur predominantly at the first and last base-pairs of A-tracts, whereas they are concentrated at the second and third base-pairs in G-tracts. These positions correspond to the most flexible sites along A-tracts, and to sites where a ‘hole’, generated by the loss of an electron through oxidation, is most likely to be localized in G-tracts. For A-tracts, most SBSs occur in the direction of the base-pair flanking the tracts. We conclude that intrinsic features of local DNA structure, i.e. base-pair flexibility and charge transfer, render specific nucleotides along mononucleotide runs susceptible to base modification, which then yields mutations. Thus, local DNA dynamics contributes to phenotypic variation and disease in the human population.
Collapse
Affiliation(s)
- Albino Bacolla
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Pediatric Research Institute, The University of Texas at Austin, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA
| | - Xiao Zhu
- Texas Advanced Computing Center, Austin, TX 78758-4497, USA
| | - Hanning Chen
- Department of Chemistry, George Washington University, 725 21st Street, NW, Washington, DC 20052, USA
| | - Katy Howells
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Pediatric Research Institute, The University of Texas at Austin, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA
| |
Collapse
|
48
|
Nowak PJ, Zasowska-Nowak A, Bialasiewicz P, de Graft-Johnson J, Nowak D, Nowicki M. Inhibitory effect of plant phenolics on fMLP-induced intracellular calcium rise and chemiluminescence of human polymorphonuclear leukocytes and their chemotactic activity in vitro. PHARMACEUTICAL BIOLOGY 2015; 53:1661-1670. [PMID: 25856712 DOI: 10.3109/13880209.2014.1001403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Polymorphonuclear leukocytes (PMNs) produce oxidants, contributing to systemic oxidative stress. Diets rich in plant polyphenols seem to decrease the risk of oxidative stress-induced disorders including cardiovascular disease. OBJECTIVE The objective of this study was to examine the in vitro effect of each of the 14 polyphenols on PMNs chemotaxis, intracellular calcium response, oxidants production. MATERIALS AND METHODS Blood samples and PMNs suspensions were obtained from 60 healthy non-smoking donors and incubated with a selected polyphenol (0.5-10 µM) or a control solvent. We assessed resting and fMLP-dependent changes of intracellular calcium concentration ([Ca(2+)]i) in PMNs with the Fura-2AM method and measured fMLP-induced luminol enhanced whole blood chemiluminescence (fMLP-LBCL). Polyphenol chemoattractant activity for PMNs was tested with Boyden chambers. RESULTS Polyphenols had no effect on resting [Ca(2+)]i. Unaffected by other compounds, fMLP-dependent increase of [Ca(2+)]i was inhibited by quercetin and catechol (5 µM) by 32 ± 14 and 12 ± 10% (p < 0.04), respectively. Seven of the 14 tested substances (5 µM) influenced fMLP-LBCL by decreasing it. Catechol, quercetin, and gallic acid acted most potently reducing fMLP-LBCL by 49 ± 5, 42 ± 15, and 28 ± 18% (p < 0.05), respectively. 3,4-Dihydroxyhydrocinnamic, 3,4-dihydroxyphenylacetic, 4-hydroxybenzoic acid, and catechin (5 µM) revealed distinct (p < 0.02) chemoattractant activity with a chemotactic index of 1.9 ± 0.8, 1.8 ± 0.7, 1.6 ± 0.6, 1.4 ± 0.2, respectively. CONCLUSION AND DISCUSSION Catechol, quercetin, and gallic acid at concentrations commensurate in human plasma strongly suppressed the oxidative response of PMNs. Regarding quercetin and catechol, this could result from an inhibition of [Ca(2+)]i response.
Collapse
Affiliation(s)
- Piotr Jan Nowak
- Department of Nephrology, Hypertension, and Kidney Transplantation, Medical University of Lodz , Lodz , Poland
| | | | | | | | | | | |
Collapse
|
49
|
Role of Bacillus subtilis DNA Glycosylase MutM in Counteracting Oxidatively Induced DNA Damage and in Stationary-Phase-Associated Mutagenesis. J Bacteriol 2015; 197:1963-71. [PMID: 25825434 DOI: 10.1128/jb.00147-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/24/2015] [Indexed: 02/03/2023] Open
Abstract
UNLABELLED Reactive oxygen species (ROS) promote the synthesis of the DNA lesion 8-oxo-G, whose mutagenic effects are counteracted in distinct organisms by the DNA glycosylase MutM. We report here that in Bacillus subtilis, mutM is expressed during the exponential and stationary phases of growth. In agreement with this expression pattern, results of a Western blot analysis confirmed the presence of MutM in both stages of growth. In comparison with cells of a wild-type strain, cells of B. subtilis lacking MutM increased their spontaneous mutation frequency to Rif(r) and were more sensitive to the ROS promoter agents hydrogen peroxide and 1,1'-dimethyl-4,4'-bipyridinium dichloride (Paraquat). However, despite MutM's proven participation in preventing ROS-induced-DNA damage, the expression of mutM was not induced by hydrogen peroxide, mitomycin C, or NaCl, suggesting that transcription of this gene is not under the control of the RecA, PerR, or σ(B) regulons. Finally, the role of MutM in stationary-phase-associated mutagenesis (SPM) was investigated in the strain B. subtilis YB955 (hisC952 metB5 leuC427). Results revealed that under limiting growth conditions, a mutM knockout strain significantly increased the amount of stationary-phase-associated his, met, and leu revertants produced. In summary, our results support the notion that the absence of MutM promotes mutagenesis that allows nutritionally stressed B. subtilis cells to escape from growth-limiting conditions. IMPORTANCE The present study describes the role played by a DNA repair protein (MutM) in protecting the soil bacterium Bacillus subtilis from the genotoxic effects induced by reactive oxygen species (ROS) promoter agents. Moreover, it reveals that the genetic inactivation of mutM allows nutritionally stressed bacteria to escape from growth-limiting conditions, putatively by a mechanism that involves the accumulation and error-prone processing of oxidized DNA bases.
Collapse
|
50
|
Ohta S. Molecular hydrogen as a novel antioxidant: overview of the advantages of hydrogen for medical applications. Methods Enzymol 2015; 555:289-317. [PMID: 25747486 DOI: 10.1016/bs.mie.2014.11.038] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Molecular hydrogen (H2) was believed to be inert and nonfunctional in mammalian cells. We overturned this concept by demonstrating that H2 reacts with highly reactive oxidants such as hydroxyl radical ((•)OH) and peroxynitrite (ONOO(-)) inside cells. H2 has several advantages exhibiting marked effects for medical applications: it is mild enough neither to disturb metabolic redox reactions nor to affect signaling by reactive oxygen species. Therefore, it should have no or little adverse effects. H2 can be monitored with an H2-specific electrode or by gas chromatography. H2 rapidly diffuses into tissues and cells to exhibit efficient effects. Thus, we proposed the potential of H2 for preventive and therapeutic applications. There are several methods to ingest or consume H2: inhaling H2 gas, drinking H2-dissolved water (H2-water), injecting H2-dissolved saline (H2-saline), taking an H2 bath, or dropping H2-saline onto the eyes. Recent publications revealed that, in addition to the direct neutralization of highly reactive oxidants, H2 indirectly reduces oxidative stress by regulating the expression of various genes. Moreover, by regulating gene expression, H2 functions as an anti-inflammatory, antiallergic, and antiapoptotic molecule, and stimulates energy metabolism. In addition to growing evidence obtained by model animal experiments, extensive clinical examinations were performed or are under way. Since most drugs specifically act on their specific targets, H2 seems to differ from conventional pharmaceutical drugs. Owing to its great efficacy and lack of adverse effects, H2 has potential for clinical applications for many diseases.
Collapse
Affiliation(s)
- Shigeo Ohta
- Department of Biochemistry and Cell Biology, Institute of Development and Aging Sciences, Graduate School of Medicine, Nippon Medical School, Kawasaki, Japan.
| |
Collapse
|