1
|
Mechanistic understanding of metal-catalyzed oxidation of polysorbate 80 and monoclonal antibody in biotherapeutic formulations. Int J Pharm 2022; 615:121496. [DOI: 10.1016/j.ijpharm.2022.121496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 01/20/2023]
|
2
|
Protective Role of Histidine Supplementation Against Oxidative Stress Damage in the Management of Anemia of Chronic Kidney Disease. Pharmaceuticals (Basel) 2018; 11:ph11040111. [PMID: 30347874 PMCID: PMC6315830 DOI: 10.3390/ph11040111] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022] Open
Abstract
Anemia is a major health condition associated with chronic kidney disease (CKD). A key underlying cause of this disorder is iron deficiency. Although intravenous iron treatment can be beneficial in correcting CKD-associated anemia, surplus iron can be detrimental and cause complications. Excessive generation of reactive oxygen species (ROS), particularly by mitochondria, leads to tissue oxidation and damage to DNA, proteins, and lipids. Oxidative stress increase in CKD has been further implicated in the pathogenesis of vascular calcification. Iron supplementation leads to the availability of excess free iron that is toxic and generates ROS that is linked, in turn, to inflammation, endothelial dysfunction, and cardiovascular disease. Histidine is indispensable to uremic patients because of the tendency toward negative plasma histidine levels. Histidine-deficient diets predispose healthy subjects to anemia and accentuate anemia in chronic uremic patients. Histidine is essential in globin synthesis and erythropoiesis and has also been implicated in the enhancement of iron absorption from human diets. Studies have found that L-histidine exhibits antioxidant capabilities, such as scavenging free radicals and chelating divalent metal ions, hence the advocacy for its use in improving oxidative stress in CKD. The current review advances and discusses evidence for iron-induced toxicity in CKD and the mechanisms by which histidine exerts cytoprotective functions.
Collapse
|
3
|
Paul SS, Selim M, Mukherjea KK. Synthesis, characterization and DNA nuclease activity of oxo-peroxomolybdenum(VI) complexes. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1310378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Md. Selim
- Department of Chemistry, Jadavpur University, Kolkata, India
| | | |
Collapse
|
4
|
Rutin, a Flavonoid That Is a Main Component of Saussurea involucrata, Attenuates the Senescence Effect in D-Galactose Aging Mouse Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:980276. [PMID: 22952557 PMCID: PMC3431096 DOI: 10.1155/2012/980276] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 06/19/2012] [Indexed: 12/31/2022]
Abstract
Saussurea involucrata (Kar. et Kir.), known as the snow lotus, grows in the Tian Shan and A'er Tai areas of China. It has recently been reported that the ethyl acetate extract of S. involucrata (SI-2) can inhibit proliferation and induce apoptosis in PC-3 human prostate cancer cells. This study investigated the protective effect of ethyl acetate extract of S. involucrata (SI-2) or rutin, a flavonoid extracted from ethyl acetate extract of S. involucrata (SI-2), on D-galactose- (D-gal-) induced brain injury in mice. Administering SI-2 or rutin (30 mg/kg/d and 30 mg/kg/d) for 6 weeks, concomitant with D-gal injection, significantly increased superoxide dismutase and glutathione peroxidase activities and decreased the MDA level in plasma. Furthermore, the result showed that the percentages of cleaved caspase-3 and PARP in the D-gal-treated mice were much higher than those in the control. Pretreatment using SI-2 or rutin decreased the expression of cyclooxygenase-2 via downregulation of NF-kappaB, resulting in a decrease in lipid peroxidation. Furthermore, our results also showed that oral administration of rutin to these mice significantly improved behavioral performance in a step-through passive avoidance task and these results suggest that SI-2 or rutin exerts potent antiaging effects on D-gal in mice via antioxidative mechanisms.
Collapse
|
5
|
Friedman M, Levin CE. Nutritional and medicinal aspects of D-amino acids. Amino Acids 2011; 42:1553-82. [PMID: 21519915 DOI: 10.1007/s00726-011-0915-1] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/06/2011] [Indexed: 02/07/2023]
Abstract
This paper reviews and interprets a method for determining the nutritional value of D-amino acids, D-peptides, and amino acid derivatives using a growth assay in mice fed a synthetic all-amino acid diet. A large number of experiments were carried out in which a molar equivalent of the test compound replaced a nutritionally essential amino acid such as L-lysine (L-Lys), L-methionine (L-Met), L-phenylalanine (L-Phe), and L-tryptophan (L-Trp) as well as the semi-essential amino acids L-cysteine (L-Cys) and L-tyrosine (L-Tyr). The results show wide-ranging variations in the biological utilization of test substances. The method is generally applicable to the determination of the biological utilization and safety of any amino acid derivative as a potential nutritional source of the corresponding L-amino acid. Because the organism is forced to use the D-amino acid or amino acid derivative as the sole source of the essential or semi-essential amino acid being replaced, and because a free amino acid diet allows better control of composition, the use of all-amino-acid diets for such determinations may be preferable to protein-based diets. Also covered are brief summaries of the widely scattered literature on dietary and pharmacological aspects of 27 individual D-amino acids, D-peptides, and isomeric amino acid derivatives and suggested research needs in each of these areas. The described results provide a valuable record and resource for further progress on the multifaceted aspects of D-amino acids in food and biological samples.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA.
| | | |
Collapse
|
6
|
Yu SL, Lin SB, Yu YL, Chien MH, Su KJ, Lin CJ, Way TD, Yiang GT, Lin CC, Chan DC, Harn HJ, Chen YLS. Isochaihulactone protects PC12 cell against H(2)O(2) induced oxidative stress and exerts the potent anti-aging effects in D-galactose aging mouse model. Acta Pharmacol Sin 2010; 31:1532-40. [PMID: 21042289 DOI: 10.1038/aps.2010.152] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
AIM to investigate the effect of isochaihulactone (also known as K8), a lignan compound of Bupleurum scorzonerifolium, on H(2)O(2)-induced cytotoxicity in neuronally differentiated PC12 cells (nPC12). METHODS viability of neuronal PC12 cells was measured using MTT assay. Protein expression was determined by Western blot. Apoptotic cells was determined using TUNEL assay. D-galactose aging mice were used as a model system to study the anti-oxidant effects of isochaihulactone in vivo. RESULTS pretreatment with isochaihulactone (5-10 micromol/L) increased cell viability and decreased membrane damage, generation of reactive oxygen species and degradation of poly (ADP-ribose) polymerase in H(2)O(2)-treated nPC12 cells and also decreased the expression of cyclooxygenase-2, via downregulation of NF-kappaB, resulting in a decrease in lipid peroxidation. The results suggest that isochaihulactone is a potential antioxidant agent. In a murine aging model, in which chronic systemic exposure to D-galactose (D-gal) causes the acceleration of senescence, administration of isochaihulactone (10 mgxkg(-1)xd(-1), sc) for 7 weeks concomitant with D-gal injection significantly increased superoxide dismutase and glutathione peroxidase activities and decreased the MDA level in plasma. Furthermore, H&E staining to quantify cell death within hippocampus showed that percentage of pyknotic nuclei in the D-gal-treated mice were much higher than in control. CONCLUSION the results suggest that isochaihulactone exerts potent anti-aging effects against D-gal in mice possibly via antioxidative mechanisms.
Collapse
|
7
|
|
8
|
Friedman M. Origin, Microbiology, Nutrition, and Pharmacology of D-Amino Acids. Chem Biodivers 2010; 7:1491-530. [DOI: 10.1002/cbdv.200900225] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
|
10
|
Su M, Yang Y, Yang G. Quantitative measurement of hydroxyl radical induced DNA double-strand breaks and the effect of N-acetyl-L-cysteine. FEBS Lett 2006; 580:4136-42. [PMID: 16828758 DOI: 10.1016/j.febslet.2006.06.060] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 06/15/2006] [Accepted: 06/16/2006] [Indexed: 01/09/2023]
Abstract
Reactive oxygen species, such as hydroxyl or superoxide radicals, can be generated by exogenous agents as well as from normal cellular metabolism. Those radicals are known to induce various lesions in DNA, including strand breaks and base modifications. These lesions have been implicated in a variety of diseases such as cancer, arteriosclerosis, arthritis, neurodegenerative disorders and others. To assess these oxidative DNA damages and to evaluate the effects of the antioxidant N-acetyl-L-cysteine (NAC), atomic force microscopy (AFM) was used to image DNA molecules exposed to hydroxyl radicals generated via Fenton chemistry. AFM images showed that the circular DNA molecules became linear after incubation with hydroxyl radicals, indicating the development of double-strand breaks. The occurrence of the double-strand breaks was found to depend on the concentration of the hydroxyl radicals and the duration of the reaction. Under the conditions of the experiments, NAC was found to exacerbate the free radical-induced DNA damage.
Collapse
Affiliation(s)
- Meihong Su
- Department of Physics, Drexel University, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
11
|
Ramirez DC, Mejiba SEG, Mason RP. Copper-catalyzed Protein Oxidation and Its Modulation by Carbon Dioxide. J Biol Chem 2005; 280:27402-11. [PMID: 15905164 DOI: 10.1074/jbc.m504241200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is well known that hydrogen peroxide (H2O2)-induced copper-catalyzed fragmentation of proteins follows a site-specific oxidative mechanism mediated by hydroxyl radical-like species (i.e. Cu(I)O, Cu(II)/*OH or Cu(III)) that ends in increased carbonyl formation and protein fragmentation. We have found that the nitrone spin trap DMPO (5,5-dimethyl-1-pyrroline N-oxide) prevented such processes by trapping human serum albumin (HSA)-centered radicals, in situ and in real time, before they reacted with oxygen. When (bi)carbonate (CO2, H2CO3, HCO3- and CO3(-2)) was added to the reaction mixture, it blocked fragmentation mediated by hydroxyl radical-like species but enhanced DMPO-trappable radical sites in HSA. In the past, this effect would have been explained by oxidation of (bi)carbonate to a carbonate radical anion (CO3*) by a bound hydroxyl radical-like species. We now propose that the CO3* radical is formed by the reduction of HOOCO2- (a complex of H2O2 with CO2) by the protein-Cu(I) complex. CO3* diffuses and produces more DMPO-trappable radical sites but does not fragment HSA. We were also able, for the first time, to detect discrete but highly specific H2O2-induced copper-catalyzed CO3*-mediated induction of DMPO-trappable protein radicals in functioning RAW 264.7 macrophages. We conclude that carbon dioxide modulates H2O2-induced copper-catalyzed oxidative damage to proteins by preventing site-specific fragmentation and enhancing DMPO-trappable protein radicals in functioning cells. The pathophysiological significance of our findings is discussed.
Collapse
Affiliation(s)
- Dario C Ramirez
- Laboratory of Pharmacology and Chemistry, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
| | | | | |
Collapse
|
12
|
Podestá D, Stoppani A, Villamil SF. Inactivation of Trypanosoma cruzi and Crithidia fasciculata topoisomerase I by Fenton systems. Redox Rep 2004; 8:357-63. [PMID: 14980068 DOI: 10.1179/135100003225003366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Fenton systems (H(2)O(2)/Fe(II) or H(2)O(2)/Cu(II)) inhibited Trypanosoma cruzi and Crithidia fasciculata topoisomerase I activity. About 61-71% inactivation was produced by 25 microM Fe(II) or Cu(II) with 3.0 mM H(2)O(2). Thiol compounds and free radical scavengers prevented Fenton system effects, depending on the topoisomerase assayed. With the T. cruzi enzyme, reduced glutathione (GSH), dithiothreitol (DTT), cysteine and N-acetyl-L-cysteine (NAC) entirely prevented the effect of the H(2)O(2)/Fe(II) system; mannitol protected 37%, whereas histidine and ethanol were ineffective. With C. fasciculata topoisomerase, GSH, DTT and NAC protected 100%, cysteine, histidine and mannitol protected 28%, 34% and 48%, respectively, whereas ethanol was ineffective. With the H(2)O(2)/Cu(II) system and T. cruzi topoisomerase, DTT and histidine protected 100% and 60%, respectively, but the other assayed protectors were less effective. Similar results were obtained with the C. fasciculata enzyme. Topoisomerase inactivation by the H(2)O(2)/Fe(II) or H(2)O(2)/Cu(II) systems proved to be irreversible since it was not reversed by the more effective enzyme protectors. It is suggested that topoisomerases could act either as targets of 'reactive oxygen species' (ROS) generated by Fenton systems or bind the corresponding metal ions, whose redox cycling would generate reactive oxygen species in situ.
Collapse
Affiliation(s)
- Dolores Podestá
- Bioenergetics Research Centre (CONICET) and School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | | | | |
Collapse
|
13
|
Drouin R, Rodriguez H, Gao SW, Gebreyes Z, O'Connor TR, Holmquist GP, Akman SA. Cupric ion/ascorbate/hydrogen peroxide-induced DNA damage: DNA-bound copper ion primarily induces base modifications. Free Radic Biol Med 1996; 21:261-73. [PMID: 8855437 DOI: 10.1016/0891-5849(96)00037-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The kinetics of frank DNA strand breaks and DNA base modifications produced by Cu(II)/ascorbate/H2O2 were simultaneously determined in purified human genomic DNA in vitro. Modified bases were determined by cleavage with Escherichia coli enzymes Nth protein (modified pyrimidines) and Fpg protein (modified purines). Single-stranded lesion frequency before (frank strand breaks) and after (modified bases) Nth or Fpg protein digestion was quantified by neutral glyoxal gel electrophoresis. Dialysis of EDTA-treated genomic DNA purified by standard proteinase K digestion/phenol extraction was necessary to remove low molecular weight species, probably transition metal ions and metal ion chelators, which supported frank strand breaks in the presence of ascorbate + H2O2 without supplemental copper ions. We then established a kinetic model of the DNA-damaging reactions caused by Cu(II) + ascorbate + H2O2. The principal new assumption in our model was that DNA base modifications were caused exclusively by DNA-bound Cu(I) and frank strand breaks by non-DNA-bound Cu(I). The model was simulated by computer using published rate constants. The computer simulation quantitatively predicted: (1) the rate of H2O2 degradation, which was measured using an H2O2-sensitive electrode, (2) the linearity of accumulation of DNA strand breaks and modified bases over the reaction period, (3) the rate of modified base accumulation, and (4) the dependence of modified base and frank strand production on initial Cu(II) concentration. The simulation significantly overestimated the rate of frank strand break accumulation, suggesting either that the ultimate oxidizing species that attacks the sugar-phosphate backbone is a less-reactive species than the hydroxyl radical used in the model and/or an unidentified hydroxyl radical-scavenging species was present in the reactions. Our experimental data are consistent with a model of copper ion-DNA interaction in which DNA-bound Cu(I) primarily mediates DNA base modifications and nonbound Cu(I) primarily mediates frank strand break production.
Collapse
Affiliation(s)
- R Drouin
- Division of Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Luzzatto E, Cohen H, Stockheim C, Wieghardt K, Meyerstein D. Reactions of low valent transition metal complexes with hydrogen peroxide. Are they "Fenton-like" or not? 4. The case of Fe(II)L, L = edta; hedta and tcma. Free Radic Res 1995; 23:453-63. [PMID: 7581828 DOI: 10.3109/10715769509065266] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The question whether hydroxyl free radicals are formed in the reactions of divalent iron complexes Fe(II)L; L = edta; hedta; tcma (tcma = 1-acetato-1,4,7-triazacyclononane) with hydrogen peroxide in neutral and slightly acidic solutions was studied by using the beta elimination reaction as an assay for the formation of hydroxyl free radicals, OH. The results show that at pH < 5.5 the iron(II)peroxide intermediate complex decomposes rapidly to yield free hydroxyl radicals for L = edta and hedta. This is in contrast to the mechanism of the corresponding Fe(II)nta peroxide complex, which probably decomposes to form Fe(IV)nta which then reacts with organic substrates to yield aliphatic free radicals. Thus, the non-participating ligand L has an appreciable effect on the mechanism of reaction of the metal center with hydrogen peroxide. Blank experiments using ionizing radiation as the source of .CH2CR(CH3)OH, R = H or CH3 radicals indicate that when L = tcma intermediates of the type LFeIII-CH2CR(CH3)OHaq are formed, but their major mode of decomposition is not the beta elimination reaction. Thus, the present assay for the formation of hydroxyl free radicals by the Fenton Reaction does not fit the latter system.
Collapse
Affiliation(s)
- E Luzzatto
- R. Bloch Coal Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | |
Collapse
|
15
|
Cai L, Koropatnick J, Cherian MG. Metallothionein protects DNA from copper-induced but not iron-induced cleavage in vitro. Chem Biol Interact 1995; 96:143-55. [PMID: 7728904 DOI: 10.1016/0009-2797(94)03585-v] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Iron and copper ions mediate generation of reactive oxygen radicals from O2 and H2O2 by the Fenton reaction: these radicals are capable of damaging DNA. We studied (a) the ability of these metals to induce double-strand breaks in DNA in vitro in the presence of H2O2 and ascorbic acid as donors of reactive oxygen, and (b) the ability of the metal-binding protein metallothionein (MT) to protect DNA from damage. Strand cleavage was measured by loss of fluorescence after binding to ethidium bromide and by increased mobility of DNA in agarose. The results show that Cu(II), Fe(II) and Fe(III) all can induce damage to calf thymus DNA under our experimental conditions. Cu(II)-induced DNA damage was dose-dependent and the degree of damage was proportional to the concentration of H2O2. On the other hand, DNA fragmentation was significant only in the presence of high concentrations of Fe(II) or Fe(III). Addition of Zn-MT to the reaction mixture prior to addition of Cu(II) inhibited fragmentation of DNA in a dose-dependent manner but had little effect on iron induced damage. Other proteins (histone or albumin) were not effective in protecting DNA from Cu-induced damage, as compared to Zn-MT. The formation of Cu(I) from Cu(II) in the presence of hydrogen peroxide and ascorbate was also inhibited by addition of Zn-MT. Thus, MT may protect DNA from damage by free radicals by sequestering copper and preventing its participation in redox reactions.
Collapse
Affiliation(s)
- L Cai
- Department of Pathology, University of Western Ontario, London, Canada
| | | | | |
Collapse
|
16
|
Abstract
It has been recently reported that L-DOPA and Cu(II) in the presence of H2O2 leads to extensive DNA damage. In this paper we show that L-DOPA in the presence of Cu(II) alone can cause DNA cleavage through the generation of reactive oxygen species such as the hydroxyl radical. Fluorescence quenching studies indicate that L-DOPA is capable of binding to DNA.
Collapse
Affiliation(s)
- S Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, India
| | | |
Collapse
|
17
|
Spencer JP, Jenner A, Aruoma OI, Evans PJ, Kaur H, Dexter DT, Jenner P, Lees AJ, Marsden DC, Halliwell B. Intense oxidative DNA damage promoted by L-dopa and its metabolites. Implications for neurodegenerative disease. FEBS Lett 1994; 353:246-50. [PMID: 7957867 DOI: 10.1016/0014-5793(94)01056-0] [Citation(s) in RCA: 192] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Oxidative DNA damage can cause mutation and cell death. We show that L-DOPA, dopamine and 3-O-methyl-DOPA cause extensive oxidative DNA damage in the presence of H2O2 and traces of copper ions. 8-Hydroxyguanine is the major product. Iron ions were much less effective and manganese ions did not catalyse DNA damage. We propose that copper ion release, in the presence of L-DOPA and its metabolites, may be an important mechanism of neurotoxicity, e.g. in Parkinson's disease and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- J P Spencer
- Neurodegenerative Disease Research Centre, King's College, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ouzou S, Deflandre A, Giacomoni PU. Protonation of the imidazole ring prevents the modulation by histidine of oxidative DNA degradation. Mutat Res 1994; 316:9-16. [PMID: 7507569 DOI: 10.1016/0921-8734(94)90003-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
When supercoiled DNA is incubated with Fe(II) at pH 7 in the presence of hydrogen peroxide, the rate of nicking first increases with increasing H2O2 concentration to reach a maximum, then decreases and eventually increases again. When 0.1 mM histidine is added at neutral pH at low H2O2 concentration (< 3 mM), it hinders the nicking of DNA; when it is added at high H2O2 concentrations (> 10 mM), it enhances the rate of nicking. When similar experiments are performed at slightly acidic pH (4.5) the biphasic behavior is maintained, independent of the presence of histidine. One can conclude that the protonation of imidazole (pK = 5.9) abolishes the capability of histidine to modulate the oxidative degradation of DNA. Results of electron spin resonance experiments suggest that at low H2O2 concentration, the protective effect of histidine could be the consequence of its capability to bind OH. radicals.
Collapse
Affiliation(s)
- S Ouzou
- Laboratoire de Recherche Fondamentale de l'Oréal, Aulnay-sous-Bois, France
| | | | | |
Collapse
|
19
|
Berthon G. Is copper pro- or anti-inflammatory? A reconciling view and a novel approach for the use of copper in the control of inflammation. AGENTS AND ACTIONS 1993; 39:210-7. [PMID: 8304249 DOI: 10.1007/bf01998975] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The anti-inflammatory role of copper is well-known although still largely unexplained. On the other hand, the capacity of copper to induce the formation of damaging .OH radicals in vivo is no longer debated. These two aspects of the physiological activity of copper have been considered to be paradoxical. Arguments developed here show that they may actually derive from a single chemical process, the type of physiological effect observed depending on the ligand bound to the copper ions involved in Fenton chemistry. Both iron and copper are Fenton catalysts. Given its intrinsic coordination properties, however, copper induces more site-specific .OH damage to the ligands bound to it. It, therefore, appears that copper complexes with specific .OH-inactivating ligands (OILs) can be used as "lures" for the Fenton reaction, .OH radicals preferentially formed on these being immediately inactivated. The hypothesis is thus put forward here that copper-OIL complexes acting as effective Fenton catalysts are potential "catalase-like" anti-inflammatory drugs.
Collapse
Affiliation(s)
- G Berthon
- INSERM U305, Equipe Bioréactifs, Spéciation et Biodisponibilité, Toulouse, France
| |
Collapse
|
20
|
Müller J, Janz S. Modulation of the H2O2-induced SOS response in Escherichia coli PQ300 by amino acids, metal chelators, antioxidants, and scavengers of reactive oxygen species. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1993; 22:157-163. [PMID: 8404875 DOI: 10.1002/em.2850220308] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The SOS chromotest is a simple colorimetric genotoxicity assay that monitors DNA repair by measuring the induction of the gene sfiA in Escherichia coli K-12. E. coli PQ300, a diagnostic SOS tester strain for the detection of oxidative genotoxins, carries a mutation in a key gene for antioxidative defense, oxyR. This mutation renders PQ300 more sensitive to oxidative genotoxins, particularly to H2O2. We found that induction of the SOS response by H2O2 in E. coli PQ300 is dependent on the composition of the incubation medium; a substantially reduced response was obtained in minimal phosphate buffered saline (PBS) as opposed to complex Luria broth (LB) medium. Supplementation of PBS with histidine or cysteine stimulated H2O2-induced SOS induction to levels exceeding those found in LB medium. Low concentrations of glutathione (20-70 microM) also enhanced the H2O2-induced SOS response in E. coli PQ300, whereas higher concentrations (> 150 microM) were protective. Preincubation of tester cells with the chelators o-phenanthroline, 2,2-dipyridyl, and ethylenediaminetetraacetic acid (EDTA) protected cells from the effects of H2O2, although EDTA was only partially effective. Pretreatment of PQ300 with the antioxidant ascorbic acid or the hydroxyl radical scavenger dimethyl sulfoxide also diminished the SOS response, whereas mannitol and glucose were ineffective. The results show that the net effect of H2O2-induced DNA damage is influenced by the balance of oxidative and antioxidative factors and, furthermore, can be modulated by constituents of the extracellular milieu.
Collapse
Affiliation(s)
- J Müller
- Institute of Clinical Immunology, Faculty of Medicine, Leipzig University, Germany
| | | |
Collapse
|
21
|
Cantoni O. Intra- and extracellular modifiers of the cytotoxic response to oxidative stress. Ann N Y Acad Sci 1992; 663:71-3. [PMID: 1482103 DOI: 10.1111/j.1749-6632.1992.tb38650.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- O Cantoni
- Istituto di Farmacologia e Farmacognosia, Università di Urbino, Italy
| |
Collapse
|
22
|
Sestili P, Giacomoni PU, Guidarelli A, Cattabeni F, Cantoni O. Modulation of the oxidative response of cultured mammalian cells by L-histidine. Ann N Y Acad Sci 1992; 663:456-7. [PMID: 1482085 DOI: 10.1111/j.1749-6632.1992.tb38700.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- P Sestili
- Istituto di Farmacologia e Farmacognosia, University of Urbino, Italy
| | | | | | | | | |
Collapse
|
23
|
Hanna PM, Mason RP. Direct evidence for inhibition of free radical formation from Cu(I) and hydrogen peroxide by glutathione and other potential ligands using the EPR spin-trapping technique. Arch Biochem Biophys 1992; 295:205-13. [PMID: 1315504 DOI: 10.1016/0003-9861(92)90507-s] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Copper-induced oxidative damage is generally attributed to the formation of the highly reactive hydroxyl radical by a mechanism analogous to the Haber-Weiss cycle for Fe(II) and H2O2. In the present work, the reaction between the Cu(I) ion and H2O2 is studied using the EPR spin-trapping technique. The hydroxyl radical adduct was observed when Cu(I), dissolved in acetonitrile under N2, was added to pH 7.4 phosphate buffer containing 100 mM 5,5-dimethyl-1-pyrroline N-oxide (DMPO). Formation of the hydroxyl radical was dependent on the presence of O2 and subsequent formation of H2O2. The kscav/kDMPO ratios obtained were below those expected for a mechanism involving free hydroxyl radical and reflect the interference of nucleophilic addition of H2O to DMPO to form the DMPO/.OH adduct in the presence of nonchelated copper ion. Addition of ethanol or dimethyl sulfoxide to the reaction suggests that a high-valent metal intermediate, possibly Cu(III), was also formed. Spin trapping of hydroxyl radical was almost completely inhibited upon addition of Cu(I) to a solution of either nitrilotriacetate or histidine, even though the copper was fully oxidized to Cu(II) and H2O2 was formed. Bathocuproinedisulfonate, thiourea, and reduced glutathione all stabilized the Cu(I) ion toward oxidation by O2. Upon addition of H2O2, the Cu(I) in all three complexes was oxidized to varying degrees; however, only the thiourea complex was fully oxidized within 2 min of reaction and produced detectable hydroxyl radicals. No radicals were detected from the bathocuproinedisulfonate or glutathione complexes. Overall, these results suggest that the deleterious effects of copper ions in vivo are diminished by biochemical chelators, especially glutathione, which probably has a major role in moderating the toxicological effects of copper.
Collapse
Affiliation(s)
- P M Hanna
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | | |
Collapse
|
24
|
Marrot L, Giacomoni PU. Enhancement of oxidative DNA degradation by histidine: the role of stereochemical parameters. Mutat Res 1992; 275:69-79. [PMID: 1379340 DOI: 10.1016/0921-8734(92)90010-m] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The nicking of supercoiled DNA by H2O2 and ferrous iron has been studied in a variety of environmental conditions. The replicative form of phage fd DNA (fd RF DNA) was used for investigating the phenomenon. The rate of nicking was measured in 10 mM NaCl. The addition of 1 mM Tris-HCl buffer (pH 7.5) slowed down the rate of nicking, the addition of 0.1 mM histidine enhanced it. The simultaneous presence of 1 mM Tris-HCl buffer and of 0.1 mM histidine further enhanced the rate of nicking of fd RF DNA. Increasing the concentration of NaCl dramatically reduced the rate of the reaction. The degradation of fd RF DNA was determined as a function of the concentration of histidine (0-5 mM): the rate increases with concentration, reaches a maximum and then decreases. In the presence of histidine, increasing the concentration of Tris leads to a similar phenomenon. In the absence of histidine, Tris always quenches the degradation of DNA. Electron spin resonance measurements failed to detect an enhancement of the signal characteristic for the hydroxyl radical when histidine was added to the solution containing hydrogen peroxide and ferrous iron. When the nicking of DNA is achieved via the process of auto-oxidation of ferrous iron (i.e., in the absence of added H2O2), histidine only reduces the rate of reaction in a dose-dependent manner, in the explored range of concentrations. In the presence of H2O2 and ferrous iron, histidine enhances the rate of nicking of double-stranded DNA in its supercoiled as well as in its relaxed state, but fails to modify the rate of nicking of fd DNA when it is in its vegetative, single-stranded form.
Collapse
Affiliation(s)
- L Marrot
- Laboratoire de Recherche Fondamentale de L'Oréal, Aulnay sous Bois, France
| | | |
Collapse
|
25
|
Asad NR, Leitão AC. Effects of metal ion chelators on DNA strand breaks and inactivation produced by hydrogen peroxide in Escherichia coli: detection of iron-independent lesions. J Bacteriol 1991; 173:2562-8. [PMID: 2013574 PMCID: PMC207821 DOI: 10.1128/jb.173.8.2562-2568.1991] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In order to study the role of metallic ions in the H2O2 inactivation of Escherichia coli cells, H2O2-sensitive mutants were treated with metal ion chelators and then submitted to H2O2 treatment. o-Phenanthroline, dipyridyl, desferrioxamine, and neocuproine were used as metal chelators. Cell sensitivity to H2O2 treatment was not modified by neocuproine, suggesting that copper has a minor role in OH production in E. coli. On the other hand, prior treatment with iron chelators protected the cells against the H2O2 lethal effect, indicating that iron participates in the production of OH. However, analysis of DNA sedimentation profiles and DNA degradation studies indicated that these chelators did not completely block the formation of DNA single-strand breaks by H2O2 treatment. Thiourea, a scavenger of OH, caused a reduction in both H2O2 sensitivity and DNA single-strand break production. The breaks observed after treatment with metal chelators and H2O2 were repaired 60 min after H2O2 elimination in xthA but not polA mutant cells. Therefore, we propose that there are at least two pathways for H2O2-induced DNA lesions: one produced by H2O2 through iron oxidation and OH production, in which lesions are repaired by the products of the xthA and polA genes, and the other produced by an iron-independent pathway in which DNA repair requires polA gene products but not those of the xthA gene.
Collapse
Affiliation(s)
- N R Asad
- Departamento de Radiobiologia, Instituto de Biofísica Carlos, Chagas Filho, Universidade Federal de Rio de Janeiro, Brazil
| | | |
Collapse
|
26
|
Devasagayam TP, Di Mascio P, Kaiser S, Sies H. Singlet oxygen induced single-strand breaks in plasmid pBR322 DNA: the enhancing effect of thiols. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1088:409-12. [PMID: 2015303 DOI: 10.1016/0167-4781(91)90133-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The biologically occurring thiols, glutathione, cysteamine and cysteine, significantly enhance the single-strand breaks in plasmid pBR322 DNA induced by singlet molecular oxygen (1O2) generated by the thermodissociation of the endoperoxide of 3,3'-(1,4-naphthylidene)dipropionate. The enhancing effect was also observed with chemically related sulfhydryl compounds but not by disulfides. In contrast, dihydrolipoate and its disulfide lipoate protected the plasmid DNA. Metal chelators as well as superoxide dismutase or catalase had no effect, whereas mannitol or sodium azide, decreased the thiol-1O2-induced strand breaks. It is concluded that the observed effects are mediated by reactive oxidation products arising from the 1O2-oxidation of thiols.
Collapse
Affiliation(s)
- T P Devasagayam
- Institut für Physiologische Chemie I, Universität Düsseldorf, F.R.G
| | | | | | | |
Collapse
|