1
|
Hajirezaee S, Abed-Elmdoust A, Alekhina N, Chupradit S, Mustafa YF. Metabolite profiling of the post-ovulatory oocytes of the common carp, Cyprinus carpio: A 1H NMR-based metabolomics approach. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100917. [PMID: 34607241 DOI: 10.1016/j.cbd.2021.100917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
A metabolomics study was conducted to investigate the molecular bases of oocyte over-ripening in common carp, Cyprinus carpio from a metabolic point of view. The ovulation was induced in fish brooders by intramuscular injection of pituitary extract and oocytes were collected four times post-ovulation with 30 min intervals. A set of 32 metabolites were identified on the NMR spectra of the oocytes, which mainly included energy-linked metabolites, amino acids, methylated metabolites and citric acid cycle (TCA) intermediates. PCA and PLS-DA models clearly separated the post ovulations times, indicating the effects of post-ovulation time on oocyte metabolome content. Based on the loading plot outputs, 15 metabolites including tryptophan, cysteine, AMP, tyrosine, valine, creatine phosphate (PCr), ATP, leucine, inosine, malate, acetate, TMAO, glucose, fumarate and lysine had more effects on the separation of post ovulation times. According to the results of metabolite profiling, the concentrations of glutamine, alanine, tryptophan, lysine and cysteine mostly significantly (P < 0.01) increased at 90 and 120 min post-ovulation. The concentrations of PCr, ATP, inosine and guanosine were relatively stable until 60 min post-ovulation, while significantly (P < 0.01) decreased at 90 and 120 min post ovulation. The TCA metabolites succinate, malate and fumarate significantly (P < 0.01) elevated at 90 and 120 min post-ovulation. AMP concentrations remained relatively unchanged until 30 min and then progressively decreased with time post ovulation (P < 0.01). The concentrations of lactate showed significant elevations at 90 and 120 min post ovulation (P < 0.01). In conclusion, the energetic potentials of the oocytes reduced with time post ovulation. There were apparent elevations in the concentrations of free amino acids, which may be associated with the onset of proteolytic activities in the post ovulatory oocytes. In addition, we found some changes in the apoptotic-related metabolites, which may support the results of previous studies regarding the oxidative stress and following apoptosis in post ovulatory oocytes of fish.
Collapse
Affiliation(s)
- Saeed Hajirezaee
- Department of Fisheries Sciences and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Kerman, Iran.
| | - Amirreza Abed-Elmdoust
- Department of Fisheries Sciences, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Natalia Alekhina
- Department of Regulatory Affairs in the Sphere of Drugs Products and Medical Devices, Sechenov First Moscow State Medical University, Trubetskaya st., 8-2, Moscow 119991, Russia
| | - Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
2
|
Malisza KL, Hasinoff BB. Hydroxyl radical production by the iron complex of the hydrolysis product of the antioxidant cardioprotective agent ICRF-187 (dexrazoxane). Redox Rep 2016; 2:69-73. [DOI: 10.1080/13510002.1996.11747029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
3
|
Govender J, Loos B, Marais E, Engelbrecht AM. Mitochondrial catastrophe during doxorubicin-induced cardiotoxicity: a review of the protective role of melatonin. J Pineal Res 2014; 57:367-80. [PMID: 25230823 DOI: 10.1111/jpi.12176] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 09/12/2014] [Indexed: 12/18/2022]
Abstract
Anthracyclines, such as doxorubicin, are among the most valuable treatments for various cancers, but their clinical use is limited due to detrimental side effects such as cardiotoxicity. Doxorubicin-induced cardiotoxicity is emerging as a critical issue among cancer survivors and is an area of much significance to the field of cardio-oncology. Abnormalities in mitochondrial functions such as defects in the respiratory chain, decreased adenosine triphosphate production, mitochondrial DNA damage, modulation of mitochondrial sirtuin activity and free radical formation have all been suggested as the primary causative factors in the pathogenesis of doxorubicin-induced cardiotoxicity. Melatonin is a potent antioxidant, is nontoxic, and has been shown to influence mitochondrial homeostasis and function. Although a number of studies support the mitochondrial protective role of melatonin, the exact mechanisms by which melatonin confers mitochondrial protection in the context of doxorubicin-induced cardiotoxicity remain to be elucidated. This review focuses on the role of melatonin on doxorubicin-induced bioenergetic failure, free radical generation, and cell death. A further aim is to highlight other mitochondrial parameters such as mitophagy, autophagy, mitochondrial fission and fusion, and mitochondrial sirtuin activity, which lack evidence to support the role of melatonin in the context of cardiotoxicity.
Collapse
Affiliation(s)
- Jenelle Govender
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | | | | | | |
Collapse
|
4
|
Gupta A, Rohlfsen C, Leppo MK, Chacko VP, Wang Y, Steenbergen C, Weiss RG. Creatine kinase-overexpression improves myocardial energetics, contractile dysfunction and survival in murine doxorubicin cardiotoxicity. PLoS One 2013; 8:e74675. [PMID: 24098344 PMCID: PMC3788056 DOI: 10.1371/journal.pone.0074675] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/05/2013] [Indexed: 11/19/2022] Open
Abstract
Doxorubicin (DOX) is a commonly used life-saving antineoplastic agent that also causes dose-dependent cardiotoxicity. Because ATP is absolutely required to sustain normal cardiac contractile function and because impaired ATP synthesis through creatine kinase (CK), the primary myocardial energy reserve reaction, may contribute to contractile dysfunction in heart failure, we hypothesized that impaired CK energy metabolism contributes to DOX-induced cardiotoxicity. We therefore overexpressed the myofibrillar isoform of CK (CK-M) in the heart and determined the energetic, contractile and survival effects of CK-M following weekly DOX (5mg/kg) administration using in vivo31P MRS and 1H MRI. In control animals, in vivo cardiac energetics were reduced at 7 weeks of DOX protocol and this was followed by a mild but significant reduction in left ventricular ejection fraction (EF) at 8 weeks of DOX, as compared to baseline. At baseline, CK-M overexpression (CK-M-OE) increased rates of ATP synthesis through cardiac CK (CK flux) but did not affect contractile function. Following DOX however, CK-M-OE hearts had better preservation of creatine phosphate and higher CK flux and higher EF as compared to control DOX hearts. Survival after DOX administration was significantly better in CK-M-OE than in control animals (p<0.02). Thus CK-M-OE attenuates the early decline in myocardial high-energy phosphates and contractile function caused by chronic DOX administration and increases survival. These findings suggest that CK impairment plays an energetic and functional role in this DOX-cardiotoxicity model and suggests that metabolic strategies, particularly those targeting CK, offer an appealing new strategy for limiting DOX-associated cardiotoxicity.
Collapse
Affiliation(s)
- Ashish Gupta
- Department of Medicine, Division of Cardiology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Radiology, Division of Magnetic Resonance Research, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Cory Rohlfsen
- Department of Medicine, Division of Cardiology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Michelle K. Leppo
- Department of Medicine, Division of Cardiology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Vadappuram P. Chacko
- Department of Radiology, Division of Magnetic Resonance Research, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Yibin Wang
- University of California Los Angeles, Los Angeles, California, United States of America
| | - Charles Steenbergen
- Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Robert G. Weiss
- Department of Medicine, Division of Cardiology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Radiology, Division of Magnetic Resonance Research, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
5
|
Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL. Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol 2012; 52:1213-25. [DOI: 10.1016/j.yjmcc.2012.03.006] [Citation(s) in RCA: 779] [Impact Index Per Article: 64.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 02/15/2012] [Accepted: 03/13/2012] [Indexed: 10/28/2022]
|
6
|
Brioschi M, Polvani G, Fratto P, Parolari A, Agostoni P, Tremoli E, Banfi C. Redox proteomics identification of oxidatively modified myocardial proteins in human heart failure: implications for protein function. PLoS One 2012; 7:e35841. [PMID: 22606238 PMCID: PMC3351458 DOI: 10.1371/journal.pone.0035841] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 03/27/2012] [Indexed: 12/13/2022] Open
Abstract
Increased oxidative stress in a failing heart may contribute to the pathogenesis of heart failure (HF). The aim of this study was to identify the oxidised proteins in the myocardium of HF patients and analyse the consequences of oxidation on protein function. The carbonylated proteins in left ventricular tissue from failing (n = 14) and non-failing human hearts (n = 13) were measured by immunoassay and identified by proteomics. HL-1 cardiomyocytes were incubated in the presence of stimuli relevant for HF in order to assess the generation of reactive oxygen species (ROS), the induction of protein carbonylation, and its consequences on protein function. The levels of carbonylated proteins were significantly higher in the HF patients than in the controls (p<0.01). We identified two proteins that mainly underwent carbonylation: M-type creatine kinase (M-CK), whose activity is impaired, and, to a lesser extent, α-cardiac actin. Exposure of cardiomyocytes to angiotensin II and norepinephrine led to ROS generation and M-CK carbonylation with loss of its enzymatic activity. Our findings indicate that protein carbonylation is increased in the myocardium during HF and that these oxidative changes may help to explain the decreased CK activity and consequent defects in energy metabolism observed in HF.
Collapse
Affiliation(s)
| | - Gianluca Polvani
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Cardiovascular Science, University of Milan, Milan, Italy
| | | | - Alessandro Parolari
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Cardiovascular Science, University of Milan, Milan, Italy
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Cardiovascular Science, University of Milan, Milan, Italy
- Department of Clinical Care and Respiratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Elena Tremoli
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | - Cristina Banfi
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- * E-mail:
| |
Collapse
|
7
|
Srinivasan U, Bala A, Jao SC, Starke DW, Jordan TW, Mieyal JJ. Selective inactivation of glutaredoxin by sporidesmin and other epidithiopiperazinediones. Biochemistry 2006; 45:8978-87. [PMID: 16846241 PMCID: PMC3199604 DOI: 10.1021/bi060440o] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glutaredoxin (thioltransferase) is a thiol-disulfide oxidoreductase that displays efficient and specific catalysis of protein-SSG deglutathionylation and is thereby implicated in homeostatic regulation of the thiol-disulfide status of cellular proteins. Sporidesmin is an epidithiopiperazine-2,5-dione (ETP) fungal toxin that disrupts cellular functions likely via oxidative alteration of cysteine residues on key proteins. In the current study sporidesmin inactivated human glutaredoxin in a time- and concentration-dependent manner. Under comparable conditions other thiol-disulfide oxidoreductase enzymes, glutathione reductase, thioredoxin, and thioredoxin reductase, were unaffected by sporidesmin. Inactivation of glutaredoxin required the reduced (dithiol) form of the enzyme, the oxidized (intramolecular disulfide) form of sporidesmin, and molecular oxygen. The inactivated glutaredoxin could be reactivated by dithiothreitol only in the presence of urea, followed by removal of the denaturant, indicating that inactivation of the enzyme involves a conformationally inaccessible disulfide bond(s). Various cysteine-to-serine mutants of glutaredoxin were resistant to inactivation by sporidesmin, suggesting that the inactivation reaction specifically involves at least two of the five cysteine residues in human glutaredoxin. The relative ability of various epidithiopiperazine-2,5-diones to inactivate glutaredoxin indicated that at least one phenyl substituent was required in addition to the epidithiodioxopiperazine moiety for inhibitory activity. Mass spectrometry of the modified protein is consistent with formation of intermolecular disulfides, containing one adducted toxin per glutaredoxin but with elimination of two sulfur atoms from the detected product. We suggest that the initial reaction is between the toxin sulfurs and cysteine 22 in the glutaredoxin active site. This study implicates selective modification of sulfhydryls of target proteins in some of the cytotoxic effects of the ETP fungal toxins and their synthetic analogues.
Collapse
Affiliation(s)
- Usha Srinivasan
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965
| | - Aveenash Bala
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, New Zealand
| | - Shu-chuan Jao
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965
| | - David W. Starke
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965
| | - T. William Jordan
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, New Zealand
| | - John J. Mieyal
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965
| |
Collapse
|
8
|
Schlattner U, Tokarska-Schlattner M, Wallimann T. Mitochondrial creatine kinase in human health and disease. Biochim Biophys Acta Mol Basis Dis 2006; 1762:164-80. [PMID: 16236486 DOI: 10.1016/j.bbadis.2005.09.004] [Citation(s) in RCA: 437] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2005] [Revised: 08/09/2005] [Accepted: 09/13/2005] [Indexed: 01/23/2023]
Abstract
Mitochondrial creatine kinase (MtCK), together with cytosolic creatine kinase isoenzymes and the highly diffusible CK reaction product, phosphocreatine, provide a temporal and spatial energy buffer to maintain cellular energy homeostasis. Mitochondrial proteolipid complexes containing MtCK form microcompartments that are involved in channeling energy in form of phosphocreatine rather than ATP into the cytosol. Under situations of compromised cellular energy state, which are often linked to ischemia, oxidative stress and calcium overload, two characteristics of mitochondrial creatine kinase are particularly relevant: its exquisite susceptibility to oxidative modifications and the compensatory up-regulation of its gene expression, in some cases leading to accumulation of crystalline MtCK inclusion bodies in mitochondria that are the clinical hallmarks for mitochondrial cytopathies. Both of these events may either impair or reinforce, respectively, the functions of mitochondrial MtCK complexes in cellular energy supply and protection of mitochondria form the so-called permeability transition leading to apoptosis or necrosis.
Collapse
Affiliation(s)
- Uwe Schlattner
- Institute of Cell Biology, Swiss Federal Institute of Technology (ETH Zürich), Hönggerberg HPM, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
9
|
Peskin AV, Winterbourn CC. Taurine chloramine is more selective than hypochlorous acid at targeting critical cysteines and inactivating creatine kinase and glyceraldehyde-3-phosphate dehydrogenase. Free Radic Biol Med 2006; 40:45-53. [PMID: 16337878 DOI: 10.1016/j.freeradbiomed.2005.08.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 07/11/2005] [Accepted: 08/09/2005] [Indexed: 11/19/2022]
Abstract
Hypochlorous acid (HOCl) and chloramines are produced by the neutrophil enzyme, myeloperoxidase. Both react readily with thiols, although chloramines differ from HOCl in discriminating between low molecular weight thiols on the basis of their pKa. Here, we have compared the reactivity of HOCl and taurine chloramine with thiol proteins by examining inactivation of creatine kinase (CK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). With both enzymes, loss of activity paralleled thiol loss. For CK both were complete at a 1:1 taurine chloramine:thiol mole ratio. For GAPDH each chloramine oxidized two thiols. Three times more HOCl than taurine chloramine was required for inactivation, indicating that HOCl is less thiol specific. Competition studies showed that thiols of CK were 4 times more reactive with taurine chloramine than thiols of GAPDH (rate constants of 1200 and 300 M-1s-1 respectively). These compare with 205 M-1s-1 for cysteine and are consistent with their lower pKa's. Both enzymes were equally susceptible to HOCl. GSH competed directly with the enzyme thiols for taurine chloramine and protected against oxidative inactivation. At lower GSH concentrations, mixed disulfides were formed. We propose that chloramines should preferentially attack proteins with low pKa thiols and this could be important in regulatory processes.
Collapse
Affiliation(s)
- Alexander V Peskin
- Free Radical Research Group, Department of Pathology, Christchurch School of Medicine and Health Sciences, P.O. Box 4345, Christchurch, New Zealand.
| | | |
Collapse
|
10
|
Mohamed HE, Asker ME, Ali SI, el-Fattah TMA. Protection against doxorubicin cardiomyopathy in rats: role of phosphodiesterase inhibitors type 4. J Pharm Pharmacol 2004; 56:757-68. [PMID: 15231041 DOI: 10.1211/0022357023565] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Selective cardiotoxicity of doxorubicin (DOX) remains a significant and dose-limiting clinical problem. The mechanisms implicated are not yet fully defined but may involve the production of reactive oxygen species or expression of cytokines. Although patients with advanced congestive heart failure express elevated circulating levels of tumour necrosis factor-alpha (TNFalpha), little is known about the prognostic importance and regulation of TNF in the heart in cardiac disease states. Here we tested whether the expression of TNFalpha, along with oxidative stress, is associated with the development of DOX-induced cardiomyopathy (DOX-CM) and whether concurrent treatment with taurine (Taur), an antioxidant, or rolipram (Rolp), a TNFalpha inhibitor, offer a certain protection against DOX cardiotoxic properties. DOX (cumulative dose, 12 mg kg(-1)) was administered to rats in six equal (intraperitoneal) injections over a period of 6 weeks. Cardiomyopathy was evident by myocardial cell damage, which was characterized by a dense indented nucleus with peripheral heterochromatin condensation and distorted mitochondria, as well as significant increase in serum levels of creatine kinase and lactate dehydrogenase. DOX also induced an increment (P<0.001) in serum TNF and plasma nitric oxide levels. The extent of left ventricular (LV) superoxide anion, lipid peroxide measured as malondialdehyde, catalase and calcium content were markedly elevated, whereas superoxide dismutase, total and non-protein-bound thiol were dramatically decreased in DOX-treated rats. Exaggeration of DOX-CM was achieved by intraperitoneal injection of lipopolysaccharide (LPS) (1 mg kg(-1)) 18 h before sampling and evaluated by highly significant increase in heart enzymes (P<0.001), oxidative stress biomarkers and TNFalpha production. Pre- and co-treatment of DOX or DOX-LPS rats with Taur (1% daily supplemented in drinking water, 10 days before and concurrent with DOX) or Rolp (3 mg kg(-1), intraperitoneally, one dose before DOX administration then every 2 weeks throughout the experimental period) ameliorated the deleterious effect of both DOX and LPS on the aforementioned parameters. Meanwhile, it is noteworthy that Rolp exhibited a more preferable effect on serum TNFalpha level. Taur and rolipram also restored the myocardial apoptosis induced by DOX. In conclusion, a cumulative dose of DOX affected free radical and TNFalpha production in the heart of an experimental cardiomyopathy animal model. The current results suggest that down-regulation of these radicals and cytokines could be maintained by using the free radical scavenger Taur or, more favourably, the TNFalpha inhibitor Rolp.
Collapse
Affiliation(s)
- Hoda E Mohamed
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Egypt.
| | | | | | | |
Collapse
|
11
|
Crane JD, Sharp K. Nickel(II) and iron(III) complexes of a diamide derivative of the hexadentate complexone trans-1,2-diaminocyclohexane-tetraacetic acid. INORG CHEM COMMUN 2004. [DOI: 10.1016/j.inoche.2003.10.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Wendt S, Schlattner U, Wallimann T. Differential effects of peroxynitrite on human mitochondrial creatine kinase isoenzymes. Inactivation, octamer destabilization, and identification of involved residues. J Biol Chem 2003; 278:1125-30. [PMID: 12401781 DOI: 10.1074/jbc.m208572200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Creatine kinase isoenzymes are very susceptible to free radical damage and are inactivated by superoxide radicals and peroxynitrite. In this study, we have analyzed the effects of peroxynitrite on enzymatic activity and octamer stability of the two human mitochondrial isoenzymes (ubiquitous mitochondrial creatine kinase (uMtCK) and sarcomeric mitochondrial creatine kinase (sMtCK)), as well as of chicken sMtCK, and identified the involved residues. Inactivation by peroxynitrite was concentration-dependent and similar for both types of MtCK isoenzymes. Because peroxynitrite did not lower the residual activity of a sMtCK mutant missing the active site cysteine (C278G), oxidation of this residue is sufficient to explain MtCK inactivation. Mass spectrometric analysis confirmed oxidation of Cys-278 and further revealed oxidation of the C-terminal Cys-358, possibly involved in MtCK/membrane interaction. Peroxynitrite also led to concentration-dependent dissociation of MtCK octamers into dimers. In this study, ubiquitous uMtCK was much more stable than sarcomeric sMtCK. Mass spectrometric analysis revealed chemical modifications in peptide Gly-263-Arg-271 located at the dimer/dimer interface, including oxidation of Met-267 and nitration of Trp-268 and/or Trp-264, the latter being a very critical residue for octamer stability. These data demonstrate that peroxynitrite affects the octameric state of MtCK and confirms human sMtCK as the generally more susceptible isoenzyme. The results provide a molecular explanation of how oxidative damage can lead to inactivation and decreased octamer/dimer ratio of MtCK, as seen in neurodegenerative diseases and heart pathology, respectively.
Collapse
Affiliation(s)
- Silke Wendt
- Institute of Cell Biology, Swiss Federal Institute of Technology, Hönggerberg HPM, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
13
|
Aksenova M, Butterfield DA, Zhang SX, Underwood M, Geddes JW. Increased protein oxidation and decreased creatine kinase BB expression and activity after spinal cord contusion injury. J Neurotrauma 2002; 19:491-502. [PMID: 11990354 DOI: 10.1089/08977150252932433] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic injury to the spinal cord triggers several secondary effects, including oxidative stress and compromised energy metabolism, which play a major role in biochemical and pathological changes in spinal cord tissue. Free radical generation and lipid peroxidation have been shown to be early events subsequent to spinal cord injury. In the present study, we demonstrated that protein oxidation increases in rat spinal cord tissue after experimental injury. As early as h after injury, the level of protein carbonyls at the injury epicenter was significantly higher than in control (169%, p < 0.05) and increased gradually over the next 4 weeks to 1260% of control level. Both caudal and rostral parts of the injured spinal cord demonstrated a mild increase of protein carbonyls by 4 weeks postinjury (135-138%, p < 0.05). Immunocytochemical analysis of protein carbonyls in the spinal cord cross-sections showed increased protein carbonyl immunoreactivity in the epicenter section compared to rostral and caudal sections of the same animal or control laminectomy animals. Increased protein carbonyl formation in damaged spinal cord tissue was associated with changes in activity and expression of an oxidative sensitive enzyme, creatine kinase BB, which plays an important role in the maintenance of ATP level in the CNS tissue. Damage to CK function in the CNS may severely aggravate the impairment of energy metabolism. The results of our study indicate that events associated with oxidative damage are triggered immediately after spinal cord trauma but continue to occur over the subsequent 4 weeks. These results suggest that antioxidant therapeutic strategies may be beneficial to lessen the consequences of the injury and potentially improve the restoration of neurological function.
Collapse
Affiliation(s)
- Marina Aksenova
- Department of Pharmacology, University of Kentucky, Lexington 40506-0055, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
The goal of this review is to present a comprehensive survey of the many intriguing facets of creatine (Cr) and creatinine metabolism, encompassing the pathways and regulation of Cr biosynthesis and degradation, species and tissue distribution of the enzymes and metabolites involved, and of the inherent implications for physiology and human pathology. Very recently, a series of new discoveries have been made that are bound to have distinguished implications for bioenergetics, physiology, human pathology, and clinical diagnosis and that suggest that deregulation of the creatine kinase (CK) system is associated with a variety of diseases. Disturbances of the CK system have been observed in muscle, brain, cardiac, and renal diseases as well as in cancer. On the other hand, Cr and Cr analogs such as cyclocreatine were found to have antitumor, antiviral, and antidiabetic effects and to protect tissues from hypoxic, ischemic, neurodegenerative, or muscle damage. Oral Cr ingestion is used in sports as an ergogenic aid, and some data suggest that Cr and creatinine may be precursors of food mutagens and uremic toxins. These findings are discussed in depth, the interrelationships are outlined, and all is put into a broader context to provide a more detailed understanding of the biological functions of Cr and of the CK system.
Collapse
Affiliation(s)
- M Wyss
- F. Hoffmann-La Roche, Vitamins and Fine Chemicals Division, Basel, Switzerland.
| | | |
Collapse
|
15
|
Aksenov M, Aksenova M, Butterfield DA, Markesbery WR. Oxidative modification of creatine kinase BB in Alzheimer's disease brain. J Neurochem 2000; 74:2520-7. [PMID: 10820214 DOI: 10.1046/j.1471-4159.2000.0742520.x] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Creatine kinase (CK) BB, a member of the CK gene family, is a predominantly cytosolic CK isoform in the brain and plays a key role in regulation of the ATP level in neural cells. CK BB levels are reduced in brain regions affected by neurodegeneration in Alzheimer's disease (AD), Pick's disease, and Lewy body dementia, and this reduction is not a result of decreased mRNA levels. This study demonstrates that posttranslational modification of CK BB plays a role in the decrease of CK activity in AD brain. The specific CK BB activity and protein carbonyl content were determined in brain extracts of six AD and six age-matched control subjects. CK BB activity per microgram of immunoreactive CK BB protein was lower in AD than in control brain extracts, indicating the presence of inactive CK BB molecules. The analysis of specific protein carbonyl levels in CK BB, performed by two-dimensional fingerprinting of oxidatively modified proteins, identified CK BB as one of the targets of protein oxidation in the AD brain. The increase of protein carbonyl content in CK BB provides evidence that oxidative posttranslational modification of CK BB plays a role in the loss of CK BB activity in AD.
Collapse
Affiliation(s)
- M Aksenov
- Sanders-Brown Center on Aging, University of Kentucky, Lexington 40536-0230, USA
| | | | | | | |
Collapse
|
16
|
Diop NK, Vitellaro LK, Arnold P, Shang M, Marusak RA. Iron complexes of the cardioprotective agent dexrazoxane (ICRF-187) and its desmethyl derivative, ICRF-154: solid state structure, solution thermodynamics, and DNA cleavage activity. J Inorg Biochem 2000; 78:209-16. [PMID: 10805177 DOI: 10.1016/s0162-0134(00)00013-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study investigates the solution thermodynamics of the iron complexes of dexrazoxane (ICRF-187, (+)-1,2-bis(3,5-dioxopiperazinyl-1-yl)propane), [Fe(ADR-925)](+/0), and its desmethyl derivative ICRF-154, [Fe(ICRF-247)H2O](+/0). The solid state structure of [Fe(ICRF-247)H2O]+ is also reported. [Fe(ICRF-247)H2O]Br x 0.5NaBr x H2O crystallizes in the P42(1)2 space group with Z = 4, a = 14.9851(8), b = 14.9851(8), c = 8.0825(9) A and R = 0.03(2) for 1839 reflections and exhibits a pentagonal bipyramidal geometry with a labile water molecule occupying the seventh coordination site. Potentiometric titrations (FeL = 8.5 mM, 0.1 M NaNO3, 25 degrees C) reveal stable monomeric complexes (log Kf = 18.2 +/- 0.1, [Fe(ADR-925)]+, and 17.4 +/- 0.1, [Fe(ICRF-247)H2O]+) exist in solution at relatively low pH. Upon addition of base, the iron-bound water is deprotonated; the pKa values for [Fe(ICRF-247)H2O]+ and [Fe(ADR-925)]+ are 5.63 +/- 0.07 and 5.84 +/- 0.07, respectively. At higher pH both complexes undergo mu-oxo dimerization characterized by log Kd values of 2.68 +/- 0.07 for [Fe(ICRF-247)H2O]+ and 2.23 +/- 0.07 for [Fe(ADR-925)]+. In the presence of an oxidant and reductant, both [Fe(ICRF-247)H2O]+ and [Fe(ADR-925)]+ produce hydroxyl radicals that cleave pBR322 plasmid DNA at pH 7 in a metal complex concentration-dependent manner. At low metal complex concentrations (approximately 10(-5) M) where the monomeric form predominates, cleavage by both FeICRF complexes is efficient while at higher concentrations (approximately 5 x 10(-4) M) DNA cleavage is hindered. This change in reactivity is in part accounted for by dimer formation.
Collapse
Affiliation(s)
- N K Diop
- Department of Chemistry, Kenyon College, Gambier, OH 43022, USA
| | | | | | | | | |
Collapse
|
17
|
Pullar JM, Winterbourn CC, Vissers MC. Loss of GSH and thiol enzymes in endothelial cells exposed to sublethal concentrations of hypochlorous acid. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:H1505-12. [PMID: 10516189 DOI: 10.1152/ajpheart.1999.277.4.h1505] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the effect of sublethal concentrations of hypochlorous acid (HOCl) on intracellular thiol groups. Exposure of human umbilical vein endothelial cells to HOCl caused a decrease in cell viability, with concentrations of </=25 microM HOCl being sublethal. At these concentrations, we saw a loss of glutathione and total protein thiol groups. Of the thiol enzymes we investigated, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was particularly susceptible to inactivation, creatine kinase was moderately susceptible, and lactate dehydrogenase was unaffected by HOCl at the concentrations used. Similar results were obtained with HOCl generated over 30 min by myeloperoxidase. GAPDH activity could be regenerated on reincubation of cells in Hanks' balanced salt solution or reduction with dithiothreitol. In contrast, glutathione loss was not reversible, and further decreased with time. Cellular ATP levels decreased with sublethal HOCl concentrations and this appeared to be unrelated to the inactivation of GAPDH. Our results demonstrate that intracellular thiol groups differ in their reactivity with HOCl and suggest that HOCl may be able to regulate specific cellular functions.
Collapse
Affiliation(s)
- J M Pullar
- Free Radical Research Group, Department of Pathology, Christchurch School of Medicine, Christchurch, New Zealand.
| | | | | |
Collapse
|
18
|
DeAtley SM, Aksenov MY, Aksenova MV, Jordan B, Carney JM, Butterfield DA. Adriamycin-induced changes of creatine kinase activity in vivo and in cardiomyocyte culture. Toxicology 1999; 134:51-62. [PMID: 10413188 DOI: 10.1016/s0300-483x(99)00039-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Adriamycin (ADM) is an anthracycline anti-neoplastic agent, whose clinical effectiveness is limited by severe side effects, including cardiotoxicity. The toxic effects of ADM are likely to be the consequence of the generation of free radicals. This study demonstrates that ADM induces significant changes in the activity of the oxidative sensitive enzyme creatine kinase (CK) in the heart in vivo and in a cardiomyocyte culture model. The changes observed are likely to reflect the ability of ADM to damage the plasma membrane of cardiac cells and to induce the direct inactivation of CK. The role for ADM-derived free radicals is one of the possible mechanisms for the CK inactivation observed during the ADM treatment.
Collapse
Affiliation(s)
- S M DeAtley
- Department of Pharmacology, University of Kentucky, Lexington 40506-0055, USA
| | | | | | | | | | | |
Collapse
|
19
|
DeAtley SM, Aksenov MY, Aksenova MV, Carney JM, Butterfield DA. Adriamycin induces protein oxidation in erythrocyte membranes. PHARMACOLOGY & TOXICOLOGY 1998; 83:62-8. [PMID: 9783322 DOI: 10.1111/j.1600-0773.1998.tb01445.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adriamycin is an anthracycline antineoplastic agent whose clinical effectiveness is limited by severe side effects, including cardiotoxicity. A current hypothesis for adriamycin cardiotoxicity involves free radical oxidative stress. To investigate this hypothesis in a model system, we applied the technique of immunochemical detection of protein carbonyls, known to be increased in oxidized proteins, to study the effect of adriamycin on rat erythrocyte membranes. Erythrocytes obtained from adriamycin-treated rats demonstrated an increase of carbonyl formation in their membrane proteins. Yet, in separate experiments when adriamycin was incubated with rat erythrocyte ghosts, there was no significant increase of membrane protein carbonyls detected. In contrast, isolated erythrocytes incubated with an adriamycin-Fe3+ complex exhibited a robust carbonyl incorporation into their membrane proteins in a time-dependent manner. The level of carbonyl formation was dependent upon the concentration of Fe3+ known to form the adriamycin-Fe3+ complex. When the time course between protein carbonyl formation and lipid peroxidation was compared, protein carbonyl detection occurred earlier than lipid peroxidation as assayed by thiobarbituric acid reactive substances formation. These results are consistent with the notion that oxidative modification of membrane proteins may contribute to the development of the acute adriamycin-mediated toxicity.
Collapse
Affiliation(s)
- S M DeAtley
- Department of Pharmacology, University of Kentucky, Lexington 40506-0055, USA
| | | | | | | | | |
Collapse
|
20
|
Aksenov MY, Aksenova MV, Markesbery WR, Butterfield DA. Amyloid beta-peptide (1-40)-mediated oxidative stress in cultured hippocampal neurons. Protein carbonyl formation, CK BB expression, and the level of Cu, Zn, and Mn SOD mRNA. J Mol Neurosci 1998; 10:181-92. [PMID: 9770641 DOI: 10.1007/bf02761773] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Mechanism of amyloid beta-peptide (A beta) toxicity in cultured neurons involves the development of oxidative stress in the affected cells. A significant increase in protein carbonyl formation was detected in cultured hippocampal neurons soon after the addition of preaggregated A beta(1-40), indicating oxidative damage of proteins. We report that neurons, subjected to A beta(1-40), respond to A beta oxidative impact by activation of antioxidant defense mechanisms and alternative ATP-regenerating pathway. The study demonstrates an increase of Mn SOD gene expression and the restoration of Cu, Zn SOD gene expression to a normal level after temporary suppression. Partial loss of creatine kinase (CK) BB activity, which is the key enzyme for functioning of the creatine/phosphocreatine shuttle, was compensated in neurons surviving the A beta oxidative attack by increased production of the enzyme. As soon as the oxidative attack triggered by the addition of preaggregated A beta (1-40) to rat hippocampal cell cultures has been extinguished, CK BB expression and SOD isoenzyme-specific mRNA levels in surviving neurons return to normal. We propose that the maintenance of a constant level of CK function by increased CK BB production together with the induction of antioxidant enzyme gene expression in A beta-treated hippocampal neurons accounts for at least part of their adaptation to A beta toxicity.
Collapse
Affiliation(s)
- M Y Aksenov
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, USA
| | | | | | | |
Collapse
|
21
|
Aksenova MV, Aksenov MY, Carney JM, Butterfield DA. Protein oxidation and enzyme activity decline in old brown Norway rats are reduced by dietary restriction. Mech Ageing Dev 1998; 100:157-68. [PMID: 9541136 DOI: 10.1016/s0047-6374(97)00133-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The effect of aging and diet restriction (DR) on the activity of creatine kinase (CK), glutamine synthetase (GS) and protein carbonyl formation in the cerebellum, hippocampus and cortex of male and female brown Norway (BN) rats has been investigated. It was demonstrated that CK activity in three different regions of the rat brain declines with age by 30%. Age-related decrease of GS activity was only 10-13% and did not reach statistical significance. Consistent with previously published studies, age-related increase of protein carbonyl content in each brain area studied has been observed. Preventive effects of a caloric restricted diet on the age-associated protein oxidation and changes of the activity of CK and GS in the brain was observed for both aging male and female BN rats. DR delayed the accumulation of protein carbonyls. Age-related changes of CK activity in rat brain were abrogated by DR. The activity of GS in the brain of old rats subjected to the caloric restricted diet was higher than that in the brain of young animals fed ad libitum. The results are consistent with the notion that DR may relieve age-associated level of oxidative stress and lessen protein damage.
Collapse
Affiliation(s)
- M V Aksenova
- Department of Pharmacology, University of Kentucky, Lexington 40536, USA
| | | | | | | |
Collapse
|
22
|
Resolution and biological activities of optical isomers of 1,4-diethyl-3,6-epidithiopiperazine-2,5-dione. Bioorg Med Chem Lett 1997. [DOI: 10.1016/s0960-894x(97)10052-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Mekhfi H, Veksler V, Mateo P, Maupoil V, Rochette L, Ventura-Clapier R. Creatine kinase is the main target of reactive oxygen species in cardiac myofibrils. Circ Res 1996; 78:1016-27. [PMID: 8635232 DOI: 10.1161/01.res.78.6.1016] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Reactive oxygen species (ROS) have been reported to alter cardiac myofibrillar function as well as myofibrillar enzymes such as myosin ATPase and creatine kinase (CK). To understand their precise mode and site of action in myofibrils, the effects of the xanthine/xanthine oxidase (X/XO) system or of hydrogen peroxide (H2O2) have been studied in the presence and in the absence of phosphocreatine (PCr) in Triton X-100-treated cardiac fibers. We found that xanthine oxidase (XO), with or without xanthine, induced a decrease in maximal Ca(2+)-activated tension. We attributed this effect to the high contaminating proteolytic activity in commercial XO preparations, since it could be prevented a protease inhibitor, phenylmethylsulfonyl fluoride (PMSF), and it could be mimicked by trypsin. In further experiments, XO was pre-treated with 1 mmo1/L PMSF. Superoxide anion production by the X/XO system, characterized by electron paramagnetic resonance spin-trapping technique, was not altered by PMSF. A slight increase in maximal force was then observed either with X/XO (100 mumol/L per 30 mIU/mL) or H2O2. pMgATP-rigor tension relationships have been established in the presence and in the absence of PCr to separate the effects of ROS on myosin ATPase and myofibrillar-bound CK. In the absence of PCr, pMgATP50, the pMgATP necessary to induce half-maximal rigor tension, was reduced from 5.03 +/- 0.17 (n = 21) to 4.22 +/- 0.22 (n = 4) after 25 minutes of incubation in the presence one of 30 mIU/mL. XO and 100 mumol/L xanthine or to 4.04 +/- 0.1 (n = 11) after incubation in the presence of 2.5 mmol/L H2O2. The ROS effects were partially prevented or antagonized by 1 mmol/L dithiothreitol. No effect was observed on pMgATP50 when PCr was absent. pCa-tension relationships have been evaluated to assess the effects of ROS on active tension development. Incubations with H2O2 induced on increase in Ca2+ sensitivity and resting tension when MgATP was provided through myofibrillar CK (PCr and MgADP as substrates) but not when MgATP was added directly. These results suggest that myofibrillar CK was inhibited by ROS. Active stiffness and the time constant of tension changes after quick stretches applied to the fibers were dose-dependently increased by H2O2 only in the presence of PCr. In addition, myofibrillar CK but not myosin ATPase enzymatic activity was depressed after incubation with either ROS. These results suggest that ROS mainly alters CK in myofibrils, probably by the oxidation of its essential sulfhydryl groups. Such CK inactivation results in a decrease in the intramyofibrillar ATP-to-ADP ratio. The effects of ROS on cytosolic and bound CKs may take part in the overall process of myocardial stunning after cardiac ischemia and reperfusion.
Collapse
Affiliation(s)
- H Mekhfi
- Cardiologie Cellulaire et Moléculaire Université Paris-Sud, Faculté de Pharmacie, Châtenay-Malabry, France
| | | | | | | | | | | |
Collapse
|