1
|
Del Pozo-Yauner L, Herrera GA, Perez Carreon JI, Turbat-Herrera EA, Rodriguez-Alvarez FJ, Ruiz Zamora RA. Role of the mechanisms for antibody repertoire diversification in monoclonal light chain deposition disorders: when a friend becomes foe. Front Immunol 2023; 14:1203425. [PMID: 37520549 PMCID: PMC10374031 DOI: 10.3389/fimmu.2023.1203425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/20/2023] [Indexed: 08/01/2023] Open
Abstract
The adaptive immune system of jawed vertebrates generates a highly diverse repertoire of antibodies to meet the antigenic challenges of a constantly evolving biological ecosystem. Most of the diversity is generated by two mechanisms: V(D)J gene recombination and somatic hypermutation (SHM). SHM introduces changes in the variable domain of antibodies, mostly in the regions that form the paratope, yielding antibodies with higher antigen binding affinity. However, antigen recognition is only possible if the antibody folds into a stable functional conformation. Therefore, a key force determining the survival of B cell clones undergoing somatic hypermutation is the ability of the mutated heavy and light chains to efficiently fold and assemble into a functional antibody. The antibody is the structural context where the selection of the somatic mutations occurs, and where both the heavy and light chains benefit from protective mechanisms that counteract the potentially deleterious impact of the changes. However, in patients with monoclonal gammopathies, the proliferating plasma cell clone may overproduce the light chain, which is then secreted into the bloodstream. This places the light chain out of the protective context provided by the quaternary structure of the antibody, increasing the risk of misfolding and aggregation due to destabilizing somatic mutations. Light chain-derived (AL) amyloidosis, light chain deposition disease (LCDD), Fanconi syndrome, and myeloma (cast) nephropathy are a diverse group of diseases derived from the pathologic aggregation of light chains, in which somatic mutations are recognized to play a role. In this review, we address the mechanisms by which somatic mutations promote the misfolding and pathological aggregation of the light chains, with an emphasis on AL amyloidosis. We also analyze the contribution of the variable domain (VL) gene segments and somatic mutations on light chain cytotoxicity, organ tropism, and structure of the AL fibrils. Finally, we analyze the most recent advances in the development of computational algorithms to predict the role of somatic mutations in the cardiotoxicity of amyloidogenic light chains and discuss the challenges and perspectives that this approach faces.
Collapse
Affiliation(s)
- Luis Del Pozo-Yauner
- Department of Pathology, University of South Alabama-College of Medicine, Mobile, AL, United States
| | - Guillermo A. Herrera
- Department of Pathology, University of South Alabama-College of Medicine, Mobile, AL, United States
| | | | - Elba A. Turbat-Herrera
- Department of Pathology, University of South Alabama-College of Medicine, Mobile, AL, United States
- Mitchell Cancer Institute, University of South Alabama-College of Medicine, Mobile, AL, United States
| | | | | |
Collapse
|
2
|
Baur J, Berghaus N, Schreiner S, Hegenbart U, Schönland SO, Wiese S, Huhn S, Haupt C. Identification of AL proteins from 10 λ-AL amyloidosis patients by mass spectrometry extracted from abdominal fat and heart tissue. Amyloid 2023; 30:27-37. [PMID: 35792725 DOI: 10.1080/13506129.2022.2095618] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND Systemic AL amyloidosis arises from the misfolding of patient-specific immunoglobulin light chains (LCs). Potential drivers of LC amyloid formation are mutational changes and post-translational modifications (PTMs). However, little information is available on the exact primary structure of the AL proteins and their precursor LCs. OBJECTIVE We analyse the exact primary structure of AL proteins extracted from 10 λ AL amyloidosis patients and their corresponding precursor LCs. MATERIALS AND METHODS By cDNA sequencing of the precursor LC genes in combination with mass spectrometry of the AL proteins, the exact primary structure and PTMs were determined. This information was used to analyse their biochemical properties. RESULTS All AL proteins comprise the VL and a small part of the CL with a common C-terminal truncation region. While all AL proteins retain the conserved native disulphide bond of the VL, we found no evidence for presence of other common PTMs. The analysis of the biochemical properties revealed that the isoelectric point of the VL is significantly increased due to introduced mutations. CONCLUSION Our data imply that mutational changes influence the surface charge properties of the VL and that common proteolytic processes are involved in the generation of the cleavage sites of AL proteins.
Collapse
Affiliation(s)
- Julian Baur
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Natalie Berghaus
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Sarah Schreiner
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Ute Hegenbart
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan O Schönland
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University, Ulm, Germany
| | - Stefanie Huhn
- Medical Department V, Section of Multiple Myeloma, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Haupt
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| |
Collapse
|
3
|
Absmeier RM, Rottenaicher GJ, Svilenov HL, Kazman P, Buchner J. Antibodies gone bad - the molecular mechanism of light chain amyloidosis. FEBS J 2023; 290:1398-1419. [PMID: 35122394 DOI: 10.1111/febs.16390] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/19/2022] [Accepted: 02/03/2022] [Indexed: 12/19/2022]
Abstract
Light chain amyloidosis (AL) is a systemic disease in which abnormally proliferating plasma cells secrete large amounts of mutated antibody light chains (LCs) that eventually form fibrils. The fibrils are deposited in various organs, most often in the heart and kidney, and impair their function. The prognosis for patients diagnosed with AL is generally poor. The disease is set apart from other amyloidoses by the huge number of patient-specific mutations in the disease-causing and fibril-forming protein. The molecular mechanisms that drive the aggregation of mutated LCs into fibrils have been enigmatic, which hindered the development of efficient diagnostics and therapies. In this review, we summarize our current knowledge on AL amyloidosis and discuss open issues.
Collapse
Affiliation(s)
- Ramona M Absmeier
- Center for Functional Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Georg J Rottenaicher
- Center for Functional Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Hristo L Svilenov
- Center for Functional Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Pamina Kazman
- Center for Functional Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Functional Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| |
Collapse
|
4
|
An N-glycosylation hotspot in immunoglobulin κ light chains is associated with AL amyloidosis. Leukemia 2022; 36:2076-2085. [PMID: 35610346 DOI: 10.1038/s41375-022-01599-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022]
Abstract
Immunoglobulin light chain (AL) amyloidosis is caused by a small, minimally proliferating B-cell/plasma-cell clone secreting a patient-unique, aggregation-prone, toxic light chain (LC). The pathogenicity of LCs is encrypted in their sequence, yet molecular determinants of amyloidogenesis are poorly understood. Higher rates of N-glycosylation among clonal κ LCs from patients with AL amyloidosis compared to other monoclonal gammopathies indicate that this post-translational modification is associated with a higher risk of developing AL amyloidosis. Here, we exploited LC sequence information from previously published amyloidogenic and control clonal LCs and from a series of 220 patients with AL amyloidosis or multiple myeloma followed at our Institutions to define sequence and spatial features of N-glycosylation, combining bioinformatics, biochemical, proteomics, structural and genetic analyses. We found peculiar sequence and spatial pattern of N-glycosylation in amyloidogenic κ LCs, with most of the N-glycosylation sites laying in the framework region 3, particularly within the E strand, and consisting mainly of the NFT sequon, setting them apart with respect to non-amyloidogenic clonal LCs. Our data further support a potential role of N-glycosylation in determining the pathogenic behavior of a subset of amyloidogenic LCs and may help refine current N-glycosylation-based prognostic assessments for patients with monoclonal gammopathies.
Collapse
|
5
|
Giles HV, Wechalekar A, Pratt G. The potential role of mass spectrometry for the identification and monitoring of patients with plasma cell disorders: Where are we now and which questions remain unanswered? Br J Haematol 2022; 198:641-653. [PMID: 35514140 DOI: 10.1111/bjh.18226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 11/28/2022]
Abstract
Mass spectrometry (MS) techniques provide a highly sensitive methodology for the assessment and monitoring of paraproteins compared to standard electrophoretic techniques. The International Myeloma Working Group (IMWG) recently approved the use of intact light chain matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) in lieu of immunofixation in the clinical assessment of patients and the assessment of patients enrolled on clinical trials. The increased sensitivity of these assays may help to detect and monitor monoclonal proteins (MP) in many patients with previously non-measurable disease, will reduce complete response (CR) rates and increase detection of low-level MP. The ability to track the unique mass or amino acid sequence of the MP also eliminates interference from therapeutic monoclonal antibodies (tmAbs) in most patients with IgG kappa myeloma. The intact light chain assays also provide structural information about the monoclonal light chain, including the presence of N-linked glycosylation, which has been shown to be commoner on amyloidogenic light chains and may have prognostic significance in monoclonal gammopathy of undetermined significance (MGUS). In this review, we discuss these issues alongside differences in the analytical and practical aspects related to the different MS assays under development and the challenges for MS.
Collapse
Affiliation(s)
- Hannah V Giles
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,University of Birmingham, Birmingham, UK
| | - Ashutosh Wechalekar
- Royal Free London NHS Foundation Trust, London, UK.,University College London, London, UK
| | - Guy Pratt
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,University of Birmingham, Birmingham, UK
| |
Collapse
|
6
|
Radamaker L, Karimi-Farsijani S, Andreotti G, Baur J, Neumann M, Schreiner S, Berghaus N, Motika R, Haupt C, Walther P, Schmidt V, Huhn S, Hegenbart U, Schönland SO, Wiese S, Read C, Schmidt M, Fändrich M. Role of mutations and post-translational modifications in systemic AL amyloidosis studied by cryo-EM. Nat Commun 2021; 12:6434. [PMID: 34741031 PMCID: PMC8571268 DOI: 10.1038/s41467-021-26553-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/01/2021] [Indexed: 12/29/2022] Open
Abstract
Systemic AL amyloidosis is a rare disease that is caused by the misfolding of immunoglobulin light chains (LCs). Potential drivers of amyloid formation in this disease are post-translational modifications (PTMs) and the mutational changes that are inserted into the LCs by somatic hypermutation. Here we present the cryo electron microscopy (cryo-EM) structure of an ex vivo λ1-AL amyloid fibril whose deposits disrupt the ordered cardiomyocyte structure in the heart. The fibril protein contains six mutational changes compared to the germ line and three PTMs (disulfide bond, N-glycosylation and pyroglutamylation). Our data imply that the disulfide bond, glycosylation and mutational changes contribute to determining the fibril protein fold and help to generate a fibril morphology that is able to withstand proteolytic degradation inside the body.
Collapse
Affiliation(s)
- Lynn Radamaker
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | | | - Giada Andreotti
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Julian Baur
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | | | - Sarah Schreiner
- Medical Department V, Section of Multiple Myeloma, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Natalie Berghaus
- Medical Department V, Section of Multiple Myeloma, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Raoul Motika
- Department of Asia-Africa-Studies, Middle Eastern History and Culture, University of Hamburg, 20148, Hamburg, Germany
| | - Christian Haupt
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, 89081, Ulm, Germany
| | - Volker Schmidt
- Institute of Stochastics, Ulm University, 89081, Ulm, Germany
| | - Stefanie Huhn
- Medical Department V, Section of Multiple Myeloma, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Ute Hegenbart
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Stefan O Schönland
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Clarissa Read
- Central Facility for Electron Microscopy, Ulm University, 89081, Ulm, Germany
- Institute of Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Matthias Schmidt
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany.
| |
Collapse
|
7
|
Morgan GJ. Transient disorder along pathways to amyloid. Biophys Chem 2021; 281:106711. [PMID: 34839162 DOI: 10.1016/j.bpc.2021.106711] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/15/2023]
Abstract
High-resolution structures of amyloid fibrils formed from normally-folded proteins have revealed non-native conformations of the polypeptide chains. Attaining these conformations apparently requires transition from the native state via a highly disordered conformation, in contrast to earlier models that posited a role for assembly of partially folded proteins. Modifications or interactions that extend the lifetime or constrain the conformations of these disordered states could act to enhance or suppress amyloid formation. Understanding how the properties of both the folded and transiently disordered structural ensembles influence the process of amyloid formation is a substantial challenge, but research into the properties of intrinsically disordered proteins will deliver important insights.
Collapse
Affiliation(s)
- Gareth J Morgan
- The Amyloidosis Center and Section of Hematology and Medical Oncology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
8
|
Morgan GJ, Buxbaum JN, Kelly JW. Light Chain Stabilization: A Therapeutic Approach to Ameliorate AL Amyloidosis. HEMATO 2021; 2:645-659. [PMID: 35757512 PMCID: PMC9218996 DOI: 10.3390/hemato2040042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Non-native immunoglobulin light chain conformations, including aggregates, appear to cause light chain amyloidosis pathology. Despite significant progress in pharmacological eradication of the neoplastic plasma cells that secrete these light chains, in many patients impaired organ function remains. The impairment is apparently due to a subset of resistant plasma cells that continue to secrete misfolding-prone light chains. These light chains are susceptible to the proteolytic cleavage that may enable light chain aggregation. We propose that small molecules that preferentially bind to the natively folded state of full-length light chains could act as pharmacological kinetic stabilizers, protecting light chains against unfolding, proteolysis and aggregation. Although the sequence of the pathological light chain is unique to each patient, fortunately light chains have highly conserved residues that form binding sites for small molecule kinetic stabilizers. We envision that such stabilizers could complement existing and emerging therapies to benefit light chain amyloidosis patients.
Collapse
Affiliation(s)
- Gareth J. Morgan
- Section of Hematology and Medical Oncology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
- The Amyloidosis Center, Boston University School of Medicine, Boston, MA 02118, USA
- Correspondence:
| | - Joel N. Buxbaum
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeffery W. Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
9
|
Abstract
Amyloidosis constitutes a large spectrum of diseases characterized by an extracellular deposition of a fibrillar aggregate, generating insoluble and toxic amasses that may be deposited in tissues in bundles with an abnormal cross-β-sheet conformation, known as amyloid. Amyloid may lead to a cell damage and an impairment of organ function. Several different proteins are recognized as able to produce amyloid fibrils with a different tissue tropism related to the molecular structure. The deposition of amyloid may occur as a consequence of the presence of an abnormal protein, caused by high plasma levels of a normal protein, or as a result of the aging process along with some environmental factors. Although amyloidosis is rare, amyloid deposits play a role in several conditions as degenerative diseases. Thus, the development of antiamyloid curative treatments may be a rational approach to treat neurodegenerative conditions like Alzheimer's disease in the future. Nowadays, novel treatment options are currently refined through controlled trials, as new drug targets and different therapeutic approaches have been identified and validated through modern advances in basic research. Fibril formation stabilizers, proteasome inhibitors, and immunotherapy revealed promising results in improving the outcomes of patients with systemic amyloidosis, and these novel algorithms will be effectively combined with current treatments based on chemotherapeutic regimens. The aim of this review is to provide an update on diagnosis and treatment for systemic amyloidosis.
Collapse
|
10
|
Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity. Nat Commun 2021; 12:3532. [PMID: 34112780 PMCID: PMC8192768 DOI: 10.1038/s41467-021-23880-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/23/2021] [Indexed: 02/05/2023] Open
Abstract
In systemic light chain amyloidosis (AL), pathogenic monoclonal immunoglobulin light chains (LC) form toxic aggregates and amyloid fibrils in target organs. Prompt diagnosis is crucial to avoid permanent organ damage, but delayed diagnosis is common because symptoms usually appear only after strong organ involvement. Here we present LICTOR, a machine learning approach predicting LC toxicity in AL, based on the distribution of somatic mutations acquired during clonal selection. LICTOR achieves a specificity and a sensitivity of 0.82 and 0.76, respectively, with an area under the receiver operating characteristic curve (AUC) of 0.87. Tested on an independent set of 12 LCs sequences with known clinical phenotypes, LICTOR achieves a prediction accuracy of 83%. Furthermore, we are able to abolish the toxic phenotype of an LC by in silico reverting two germline-specific somatic mutations identified by LICTOR, and by experimentally assessing the loss of in vivo toxicity in a Caenorhabditis elegans model. Therefore, LICTOR represents a promising strategy for AL diagnosis and reducing high mortality rates in AL.
Collapse
|
11
|
Mellors PW, Dasari S, Kohlhagen MC, Kourelis T, Go RS, Muchtar E, Gertz MA, Kumar SK, Buadi FK, Willrich MAV, Lust JA, Kapoor P, Lacy MQ, Dingli D, Hwa Y, Fonder A, Hobbs M, Hayman S, Warsame R, Leung NR, Lin Y, Gonsalves W, Siddiqui M, Kyle RA, Rajkumar SV, Murray DL, Dispenzieri A. MASS-FIX for the detection of monoclonal proteins and light chain N-glycosylation in routine clinical practice: a cross-sectional study of 6315 patients. Blood Cancer J 2021; 11:50. [PMID: 33664227 PMCID: PMC7933343 DOI: 10.1038/s41408-021-00444-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/15/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022] Open
Abstract
Immunoenrichment-based matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), termed MASS-FIX, offers several advantages over immunofixation for the detection and isotyping of serum monoclonal protein, including superior sensitivity and specificity, the ability to differentiate therapeutic monoclonal antibodies, and the rapid identification of light chain (LC) N-glycosylation. We identified 6315 patients with MASS-FIX performed at our institution since 2018. Of these, 4118 patients (65%) with a wide array of plasma cell disorders (PCD), including rare monoclonal gammopathies of clinical significance, had a positive MASS-FIX. Two-hundred twenty-one (5%) of the MASS-FIX positive patients had evidence of LC N-glycosylation, which was more commonly identified in IgM heavy chain isotype, kappa LC isotype, and in diagnoses of immunoglobulin light chain (AL) amyloidosis and cold agglutinin disease (CAD) compared to other PCD. This cross-sectional study describes the largest cohort of patients to undergo MASS-FIX in routine clinical practice. Our findings demonstrate the widespread utility of this assay, and confirm that LC N-glycosylation should prompt suspicion for AL amyloidosis and CAD in the appropriate clinical context.
Collapse
Affiliation(s)
| | - Surendra Dasari
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Mindy C Kohlhagen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Taxiarchis Kourelis
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.,Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Ronald S Go
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Eli Muchtar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Morie A Gertz
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Shaji K Kumar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Maria A V Willrich
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - John A Lust
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.,Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Martha Q Lacy
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - David Dingli
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Yi Hwa
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Amie Fonder
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Miriam Hobbs
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Susan Hayman
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Rahma Warsame
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Yi Lin
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Robert A Kyle
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - David L Murray
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Angela Dispenzieri
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA. .,Division of Hematology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
12
|
Morgan GJ, Wall JS. The Process of Amyloid Formation due to Monoclonal Immunoglobulins. Hematol Oncol Clin North Am 2020; 34:1041-1054. [PMID: 33099422 DOI: 10.1016/j.hoc.2020.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Monoclonal antibodies secreted by clonally expanded plasma cells can form a range of pathologic aggregates including amyloid fibrils. The enormous diversity in the sequences of the involved light chains may be responsible for complexity of the disease. Nevertheless, important common features have been recognized. Two recent high-resolution structures of light chain fibrils show related but distinct conformations. The native structure of the light chains is lost when they are incorporated into the amyloid fibrils. The authors discuss the processes that lead to aggregation and describe how existing and emerging therapies aim to prevent aggregation or remove amyloid fibrils from tissues.
Collapse
Affiliation(s)
- Gareth J Morgan
- Amyloidosis Center and Section of Hematology and Medical Oncology, Department of Medicine, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA.
| | - Jonathan S Wall
- Amyloidosis and Cancer Theranostics Program, Preclinical and Diagnostic Molecular Imaging Laboratory, The University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37920, USA
| |
Collapse
|
13
|
Nevone A, Merlini G, Nuvolone M. Treating Protein Misfolding Diseases: Therapeutic Successes Against Systemic Amyloidoses. Front Pharmacol 2020; 11:1024. [PMID: 32754033 PMCID: PMC7366848 DOI: 10.3389/fphar.2020.01024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
Misfolding and extracellular deposition of proteins is the hallmark of a heterogeneous group of conditions collectively termed protein misfolding and deposition diseases or amyloidoses. These include both localized (e.g. Alzheimer’s disease, prion diseases, type 2 diabetes mellitus) and systemic amyloidoses. Historically regarded as a group of maladies with limited, even inexistent, therapeutic options, some forms of systemic amyloidoses have recently witnessed a series of unparalleled therapeutic successes, positively impacting on their natural history and sometimes even on their incidence. In this review article we will revisit the most relevant of these accomplishments. Collectively, current evidence converges towards a crucial role of an early and conspicuous reduction or stabilization of the amyloid-forming protein in its native conformation. Such an approach can reduce disease incidence in at risk individuals, limit organ function deterioration, promote organ function recovery, improve quality of life and extend survival in diseased subjects. Therapeutic success achieved in these forms of systemic amyloidoses may guide the research on other protein misfolding and deposition diseases for which effective etiologic therapeutic options are still absent.
Collapse
Affiliation(s)
- Alice Nevone
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giampaolo Merlini
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Mario Nuvolone
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
14
|
N-glycosylation of monoclonal light chains on routine MASS-FIX testing is a risk factor for MGUS progression. Leukemia 2020; 34:2749-2753. [PMID: 32594098 PMCID: PMC7529948 DOI: 10.1038/s41375-020-0940-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/27/2022]
Abstract
Our group previously demonstrated that M-protein light chain (LC) glycosylation can be detected on routine MASS-FIX testing. Glycosylation is increased in patients with immunoglobulin light chain amyloidosis (AL) and rarely changes over the course of a patient’s lifetime. To determine the rates of progression to AL and other plasma cell disorders (PCDs), we used residual serum samples from the Olmsted monoclonal gammopathy of undetermined significance (MGUS) screening cohort. Four-hundred and fourteen patients with known MGUS were tested by MASS-FIX, and 25 (6%) were found to have glycosylated light chains (LCs). With a median follow-up of surviving patients of 22.2 years, the 20-year progression rates to a malignant PCD were 67% (95% CI 29%, 84%) and 13% (95% CI 9%, 18%) for patients with and without glycosylated LCs, respectively. The risk of progression was independent of Mayo MGUS risk score. The respective rates of progression to AL at 20-years were 21% (95% CI 0.0, 38%) and 3% (95% CI 0.6%, 5.5%). In summary, monoclonal LC glycosylation is a potent risk factor for progression to AL, myeloma, and other PCDs, an observation which could lead to earlier diagnoses and potentially reduced morbidity and mortality.
Collapse
|
15
|
Reiter T, Knafl D, Agis H, Mechtler K, Wagner L, Winnicki W. Structural analysis of urinary light chains and proteomic analysis of hyaline tubular casts in light chain associated kidney disorders. PeerJ 2019; 7:e7819. [PMID: 31592189 PMCID: PMC6778432 DOI: 10.7717/peerj.7819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/03/2019] [Indexed: 11/20/2022] Open
Abstract
Background Monoclonal overproduction of kappa and/or lambda light chains might result in renal light chain deposition disease. Light chain associated cast nephropathy and renal AL-amyloidosis represent two further pathologies going along with monoclonal gammopathy of renal significance and multiple myeloma. While cast nephropathy often manifests with acute kidney injury, AL-amyloidosis is rather accompanied with chronic kidney disease. Methods Urine samples were collected from 17 patients with multiple myeloma or monoclonal gammopathy. The urine sediment was stained for cast morphology by H/E and light chain immunofluorescence. Following micro-selection of casts under microscope, proteomic analysis of casts was performed by mass spectrometry. Sucrose gradient sedimentation was employed and light chain architecture examined by immunoblotting. Uromodulin was measured by ELISA in sucrose gradient fractions. Results Urinary casts were observed of about 30 µm in diameter by H/E staining and under immunofluorescence microscopy. Casts with a diameter of 20 µm were observed as a novel variant. Proteome analysis showed that in addition to the expected light chain variants produced by the malignant clone of plasma cells, also histones such as H2B and cathepsin B were contained. Uromodulin was not detectable in urinary casts of all patients. All eleven patients with lambda light chains showed predominant dimerized light chains in the urine immunoblot. Six patients with kappa light chains presented with predominantly monomeric forms of light chains in the immunoblot. The densitometric evaluated ratio of lambda dimers vs. monomers was significantly higher (2.12 ± 0.75) when compared with the ratio of kappa dimers vs. monomers (0.64 ± 0.47), p = 0.00001. Aggregates of light chains separated in part into denser sucrose fractions. Conclusion This work on urinary casts and light chains demonstrates that hyaline tubular casts represent a complex formation of protein-protein aggregates with histones and cathepsin B identified as novel cast components. Apart from the proteomic composition of the casts, also the formation of the light chains and aggregates is of relevance. Dimerized light chains, which are typical for lambda paraproteins, might be less dialyzable than monomeric forms and may therefore identify patients less responsive to high cut-off dialysis.
Collapse
Affiliation(s)
- Thomas Reiter
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Daniela Knafl
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Hermine Agis
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Karl Mechtler
- ProtChem Facility, IMP-IMBA, Research Institute of Molecular Pathology, Vienna, Austria
| | - Ludwig Wagner
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Winnicki
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Assay to rapidly screen for immunoglobulin light chain glycosylation: a potential path to earlier AL diagnosis for a subset of patients. Leukemia 2018; 33:254-257. [DOI: 10.1038/s41375-018-0194-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/01/2018] [Accepted: 05/21/2018] [Indexed: 12/31/2022]
|
17
|
Zhao J, Zhang B, Zhu J, Nussinov R, Ma B. Structure and energetic basis of overrepresented λ light chain in systemic light chain amyloidosis patients. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2294-2303. [PMID: 29241665 PMCID: PMC5927852 DOI: 10.1016/j.bbadis.2017.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022]
Abstract
Amyloid formation and deposition of immunoglobulin light-chain proteins in systemic amyloidosis (AL) cause major organ failures. While the κ light-chain is dominant (λ/κ=1:2) in healthy individuals, λ is highly overrepresented (λ/κ=3:1) in AL patients. The structural basis of the amyloid formation and the sequence preference are unknown. We examined the correlation between sequence and structural stability of dimeric variable domains of immunoglobulin light chains using molecular dynamics simulations of 24 representative dimer interfaces, followed by energy evaluation of conformational ensembles for 20 AL patients' light chain sequences. We identified a stable interface with displaced N-terminal residues, provides the structural basis for AL protein fibrils formation. Proline isomerization may cause the N-terminus to adopt amyloid-prone conformations. We found that λ light-chains prefer misfolded dimer conformation, while κ chain structures are stabilized by a natively folded dimer. Our study may facilitate structure-based small molecule and antibody design to inhibit AL. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang.
Collapse
Affiliation(s)
- Jun Zhao
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Baohong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jianwei Zhu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Jecho Laboratories, Inc., 7320A Executive Way, Frederick, MD 21704, USA
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA; Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
18
|
Valdés-García G, Millán-Pacheco C, Pastor N. Convergent mechanisms favor fast amyloid formation in two lambda 6a Ig light chain mutants. Biopolymers 2018; 107. [PMID: 28509352 DOI: 10.1002/bip.23027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/30/2022]
Abstract
Extracellular deposition as amyloids of immunoglobulin light chains causes light chain amyloidosis. Among the light chain families, lambda 6a is one of the most frequent in light chain amyloidosis patients. Its germline protein, 6aJL2, and point mutants, R24G and P7S, are good models to study fibrillogenesis, because their stability and fibril formation characteristics have been described. Both mutations make the germline protein unstable and speed up its ability to aggregate. To date, there is no molecular mechanism that explains how these differences in amyloidogenesis can arise from a single mutation. To look into the structural and dynamical differences in the native state of these proteins, we carried out molecular dynamics simulations at room temperature. Despite the structural similarity of the germline protein and the mutants, we found differences in their dynamical signatures that explain the mutants' increased tendency to form amyloids. The contact network alterations caused by the mutations, though different, converge in affecting two anti-aggregation motifs present in light chain variable domains, suggesting a different starting point for aggregation in lambda chains compared to kappa chains.
Collapse
Affiliation(s)
- Gilberto Valdés-García
- Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - César Millán-Pacheco
- Facultad de Farmacia; Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Nina Pastor
- Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| |
Collapse
|
19
|
Blancas-Mejía LM, Martin EB, Williams A, Wall JS, Ramirez-Alvarado M. Kinetic stability and sequence/structure studies of urine-derived Bence-Jones proteins from multiple myeloma and light chain amyloidosis patients. Biophys Chem 2017; 230:89-98. [PMID: 28916410 DOI: 10.1016/j.bpc.2017.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/24/2017] [Accepted: 08/24/2017] [Indexed: 01/05/2023]
Abstract
It is now accepted that the ability of a protein to form amyloid fibrils could be associated both kinetic and thermodynamic protein folding parameters. A recent study from our laboratory using recombinant full-length (encompassing the variable and constant domain) immunoglobulin light chains found a strong kinetic control of the protein unfolding for these proteins. In this study, we are extending our analysis by using urine-derived Bence Jones proteins (BJPs) from five patients with light chain (AL) amyloidosis and four patients with multiple myeloma (MM). We observed lower stability in κ proteins compared to λ proteins (for both MM and AL proteins) in agreement with previous studies. The kinetic component of protein stability is not a universal feature of BJPs and the hysteresis observed during refolding reactions could be attributed to the inability of the protein to refold all domains. The most stable proteins exhibited 3-state unfolding transitions. While these proteins do not refold reversibly, partial refolding shows 2-state partial refolding transitions, suggesting that one of the domains (possibly the variable domain) does not refold completely. Sequences were aligned with their respective germlines and the location and nature of the mutations were analyzed. The location of the mutations were analyzed and compared with the stability and amyloidogenic properties for the proteins in this study, increasing our understanding of light chain unfolding and amyloidogenic potential.
Collapse
Affiliation(s)
- Luis M Blancas-Mejía
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Emily B Martin
- Department of Medicine, The University of Tennessee Medical Center, Knoxville, TN, USA
| | - Angela Williams
- Department of Medicine, The University of Tennessee Medical Center, Knoxville, TN, USA
| | - Jonathan S Wall
- Department of Medicine, The University of Tennessee Medical Center, Knoxville, TN, USA; Department of Radiology, The University of Tennessee Medical Center, Knoxville, TN, USA
| | - Marina Ramirez-Alvarado
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
20
|
Abe N, Tomita T, Bohgaki M, Kasahara H, Koike T. Crystalglobulinemia manifesting as chronic arthralgia and acute limb ischemia: A clinical case report. Medicine (Baltimore) 2017; 96:e6643. [PMID: 28422865 PMCID: PMC5406081 DOI: 10.1097/md.0000000000006643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Crystalglobulinemia is a rare disease caused by monoclonal immunoglobulins, characterized by irreversible crystallization on refrigeration. It causes systemic symptoms including purpura, arthralgia, and vessel occlusive conditions to be exacerbated by exposure to cold. We report a patient with crystalglobulinemia associated with monoclonal gammopathy of undetermined significance (MGUS) manifesting as chronic arthralgia and recurrent acute arterial occlusion. PRESENTING CONCERNS A 61-year-old man, who had been diagnosed with MGUS and who had arthralgia of unknown origin, presented with recurrent acute limb ischemia after surgical thromboembolectomy. Refrigeration of his serum formed precipitates that looked like needle-shaped crystals. These crystals did not dissolve with warming, which is not a characteristic of cryoglobulins. Skin biopsy results showed crystal-liked eosinophilic bodies in small vessels and we diagnosed crystalglobulinemia. INTERVENTION AND OUTCOMES Although he underwent above-knee amputation, he was treated with a bortezomib and dexamethasone-based chemotherapeutic regimen, following lenalidomide maintenance therapy. Finally, he achieved complete remission and serum crystalglobulins diminished. LESSONS Monoclonal gammopathy, previously diagnosed as MGUS, can cause systemic symptoms and thrombotic conditions by producing pathologic immunoglobulins, such as crystalglobulins. In such situations, MGUS, even when it has not progressed to multiple myeloma, can be a target of aggressive chemotherapy. Crystalglobulinemia should be considered for patients with monoclonal gammopathy manifesting as systemic and thrombotic symptoms exacerbated by cooling.
Collapse
|
21
|
Zhang C, Huang X, Li J. Light chain amyloidosis: Where are the light chains from and how they play their pathogenic role? Blood Rev 2017; 31:261-270. [PMID: 28336182 DOI: 10.1016/j.blre.2017.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 03/03/2017] [Indexed: 12/17/2022]
Abstract
Amyloid light-chain (AL) amyloidosis is a plasma-cell dyscrasia, as well as the most common type of systematic amyloidosis. Pathogenic plasma cells that have distinct cytogenetic and molecular properties secrete an excess amount of amyloidogenic light chains. Assisted by post-translational modifications, matrix components, and other environmental factors, these light chains undergo a conformational change that triggers the formation of amyloid fibrils that overrides the extracellular protein quality control system. Moreover, the amyloidogenic light-chain itself is cytotoxic. As a consequence, organ dysfunction is caused by both organ architecture disruption and the direct cytotoxic effect of amyloidogenic light chains. Here, we reviewed the molecular mechanisms underlying this sequence of events that ultimately leads to AL amyloidosis and also discuss current in vitro and in vivo models, as well as relevant novel therapeutic approaches.
Collapse
Affiliation(s)
- Chunlan Zhang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xufei Huang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jian Li
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
22
|
Clarifying immunoglobulin gene usage in systemic and localized immunoglobulin light-chain amyloidosis by mass spectrometry. Blood 2016; 129:299-306. [PMID: 27856462 DOI: 10.1182/blood-2016-10-743997] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/09/2016] [Indexed: 01/30/2023] Open
Abstract
The goal of this study was to investigate the frequency of use of light-chain variable region (IGVL) genes among patients with systemic (ALS) and localized (ALL) amyloidosis and to assess for associations between IGVL gene usage and organ tropism. We evaluated clinic charts from 821 AL patients seen at the Mayo Clinic who had bone marrow, fat pad, and solid organ tissue samples typed by liquid chromatography tandem mass spectrometry (LC-MS). We identified 701 patients with ALS and 120 with ALL Overall, we were able to identify an IGVL gene in 87 (72%) patients with ALL and 573 (82%) patients with ALS When compared with ALL, LV6-57 was more common, whereas KV3-20 and heavy-chain codeposition were less common in ALS In this large series of ALS, characteristics particular to specific genotypes became apparent. LV6-57 patients were more likely to have renal involvement and to harbor a translocation 11;14. LV3-01 patients were less likely to have advanced cardiac disease and renal involvement. LV2-14 patients were more likely to have peripheral nerve involvement, an intact circulating immunoglobulin, and lower circulating dFLC. LV1-44 patients were more likely to have cardiac involvement. KV1-33 patients had more liver involvement and higher circulating dFLC. Finally, KV1-05 was associated with inferior overall survival but not independently of cardiac stage. IGVL gene usage appears to provide clues about disease pathophysiology and tissue tropism. LC-MS is a high-throughput and low-resource technique that can be used to identify IGVL gene from clinical tissue specimens.
Collapse
|
23
|
Does AL amyloidosis have a unique genomic profile? Gene expression profiling meta-analysis and literature overview. Gene 2016; 591:490-8. [PMID: 27288311 DOI: 10.1016/j.gene.2016.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/02/2016] [Accepted: 06/04/2016] [Indexed: 12/31/2022]
Abstract
Immunoglobulin light chain amyloidosis (ALA) is a plasma cell dyscrasia characterized by deposition of amyloid fibrils in various organs and tissues. The current paper is devoted to clarify if ALA has a unique gene expression profile and to its pathogenetic argumentation. The meta-analysis of ALA patients vs. healthy donors, monoclonal gammopathy of undetermined significance, smoldering and multiple myeloma patients' cohorts have revealed molecular signature of ALA consists of 256 genes representing mostly ribosomal proteins and immunoglobulin regions. This signature appears pathogenetically supported and elucidates for the first time the role of ribosome dysfunction in ALA. In summary of our findings with literature overview, we hypothesize that ALA development is associated not only with changes in genes, coding amyloidogenic protein itself, but with post-transcriptional disbalance as well. Based on our data analysis in ALA, ribosome machinery is impaired and the affected link mainly involves translational initiation, elongation and co-translational protein folding.
Collapse
|
24
|
Nokwe CN, Hora M, Zacharias M, Yagi H, Peschek J, Reif B, Goto Y, Buchner J. A Stable Mutant Predisposes Antibody Domains to Amyloid Formation through Specific Non-Native Interactions. J Mol Biol 2016; 428:1315-1332. [DOI: 10.1016/j.jmb.2016.01.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/10/2016] [Accepted: 01/15/2016] [Indexed: 12/17/2022]
|
25
|
Dovidchenko NV, Leonova EI, Galzitskaya OV. Mechanisms of amyloid fibril formation. BIOCHEMISTRY (MOSCOW) 2015; 79:1515-27. [PMID: 25749162 DOI: 10.1134/s0006297914130057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Amyloid and amyloid-like aggregates are elongated unbranched fibrils consisting of β-structures of separate monomers positioned perpendicular to the fibril axis and stacked strictly above each other. In their physicochemical properties, amyloid fibrils are reminiscent of synthetic polymers rather than usual proteins because they are stable to the action of denaturing agents and proteases. Their mechanical stability can be compared to a spider's web, that in spite of its ability to stretch, is stronger than steel. It is not surprising that a large number of diseases are accompanied with amyloid fibril depositing in different organs. Pathologies provoked by depositing of incorrectly folded proteins include Alzheimer's, Parkinson's, and Huntington's diseases. In addition, this group of diseases involves mucoviscidosis, some types of diabetes, and hereditary cataracts. Each type of amyloidosis is characterized by aggregation of a certain type of protein that is soluble in general, and thus leads to specific distortions of functions of the corresponding organs. Therefore, it is important to understand the process of transformation of "native" proteins to amyloid fibrils to clarify how these molecules acquire such strength and what key elements of this process determine the pathway of erroneous protein folding. This review presents our analysis of complied information on the mechanisms of formation and biochemical properties of amyloid fibrils.
Collapse
Affiliation(s)
- N V Dovidchenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | |
Collapse
|
26
|
Hereditary systemic immunoglobulin light-chain amyloidosis. Blood 2015; 125:3281-6. [DOI: 10.1182/blood-2014-12-618108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/29/2015] [Indexed: 01/01/2023] Open
Abstract
Key Points
Protein and DNA analyses reveal that mutation in the immunoglobulin κ light-chain constant region gene may cause hereditary amyloidosis. Sequencing of immunoglobulin light-chain constant region genes is indicated for patients with AL amyloidosis and no evidence of a plasma cell dyscrasia.
Collapse
|
27
|
Kapoulas S, Raptis V, Papaioannou M. New aspects on the pathogenesis of renal disorders related to monoclonal gammopathies. Nephrol Ther 2015; 11:135-43. [PMID: 25861714 DOI: 10.1016/j.nephro.2014.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Multiple myeloma and other related monoclonal gammopathies are frequently encountered conditions associated with renal damage, especially in elderly population. They are arising from clonal proliferation of plasma cells in bone marrow producing various quantities of abnormal monoclonal immunoglobulins, or their components/fragments. SUMMARY These abnormal proteins differ from normal immunoglobulins in the amino acid sequence and in the three-dimensional structure of the molecule, which may determine their toxicity. Kidney seems to be a target organ as a major catabolic site. The pathology of renal disease is highly heterogeneous involving a variety of different mechanisms, which are divided into immunoglobulin dependent and immunoglobulin independent mechanisms. The Ig-dependent mechanisms may involve the four components of the kidney parenchyma, and the primary structure of these proteins determine the pattern of renal disease. KEY MESSAGE This review summarizes the existing literature in the pathobiology of multiple myeloma, and the pathological properties of the M-proteins, focusing on the mechanisms of the renal manifestations related to these abnormal proteins, especially glomerular injury. Also it supports the opinion that monoclonal gammopathy of undetermined significance (MGUS) should not be used in cases where there is proven renal impairment due to these proteins, even if it is mild and does not meet the current criteria.
Collapse
Affiliation(s)
- Stergios Kapoulas
- Section of nephrology and hypertension, 1st department of internal medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece
| | - Vasileios Raptis
- Section of nephrology and hypertension, 1st department of internal medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece.
| | - Maria Papaioannou
- Section of hematology, 1st department of internal medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece
| |
Collapse
|
28
|
Teng J, Turbat-Herrera EA, Herrera GA. Extrusion of Amyloid Fibrils to the Extracellular Space in Experimental Mesangial AL-Amyloidosis: Transmission and Scanning Electron Microscopy Studies and Correlation with Renal Biopsy Observations. Ultrastruct Pathol 2014; 38:104-15. [DOI: 10.3109/01913123.2013.861568] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Thermal stability threshold for amyloid formation in light chain amyloidosis. Int J Mol Sci 2013; 14:22604-17. [PMID: 24248061 PMCID: PMC3856080 DOI: 10.3390/ijms141122604] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 10/25/2013] [Accepted: 11/04/2013] [Indexed: 11/16/2022] Open
Abstract
Light chain (AL) amyloidosis is a devastating disease characterized by amyloid deposits formed by immunoglobulin light chains. Current available treatments involve conventional chemotherapy and autologous stem cell transplant. We have recently concluded a phase III trial comparing these two treatments. AL amyloidosis patients who achieve hematological complete response (CR) do not necessarily achieve organ response regardless of the treatment they received. In order to investigate the possible correlation between amyloid formation kinetics and organ response, we selected AL amyloidosis patients from the trial with kidney involvement and CR after treatment. Six patients were selected and their monoclonal immunoglobulin light chains were characterized. The proteins showed differences in their stability and their kinetics of amyloid formation. A correlation was detected at pH 7.4, showing that less stable proteins are more likely to form amyloid fibrils. AL-T03 is too unstable to form amyloid fibrils at pH 7.4. This protein was found in the only patient in the study that had organ response, suggesting that partially folded species are required for amyloid formation to occur in AL amyloidosis.
Collapse
|
30
|
Ramirez-Alvarado M. Amyloid formation in light chain amyloidosis. Curr Top Med Chem 2013; 12:2523-33. [PMID: 23339305 DOI: 10.2174/1568026611212220007] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/10/2012] [Accepted: 09/12/2012] [Indexed: 01/16/2023]
Abstract
Light chain amyloidosis is one of the unique examples within amyloid diseases where the amyloidogenic precursor is a protein that escapes the quality control machinery and is secreted from the cells to be circulated in the bloodstream. The immunoglobulin light chains are produced by an abnormally proliferative monoclonal population of plasma cells that under normal conditions produce immunoglobulin molecules such as IgG, IgM or IgA. Once the light chains are in circulation, the proteins misfold and deposit as amyloid fibrils in numerous tissues and organs, causing organ failure and death. While there is a correlation between the thermodynamic stability of the protein and the kinetics of amyloid formation, we have recently found that this correlation applies within a thermodynamic range, and it is only a helpful correlation when comparing mutants from the same protein. Light chain amyloidosis poses unique challenges because each patient has a unique protein sequence as a result of the selection of a germline gene and the incorporation of somatic mutations. The exact location of the misfolding process is unknown as well as the full characterization of all of the toxic species populated during the amyloid formation process in light chain amyloidosis.
Collapse
Affiliation(s)
- Marina Ramirez-Alvarado
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| |
Collapse
|
31
|
Abstract
The amyloidoses are a group of protein misfolding diseases in which the precursor protein undergoes a conformational change that triggers the formation of amyloid fibrils in different tissues and organs, causing cell death and organ failure. Amyloidoses can be either localized or systemic. In localized amyloidosis, amyloid deposits form at the site of precursor protein synthesis, whereas in systemic amyloidosis, amyloid deposition occurs distant from the site of precursor protein secretion. We review the type of proteins and cells involved and what is known about the complex pathophysiology of these diseases. We focus on light chain amyloidosis to illustrate how biochemical and biophysical studies have led to a deeper understanding of the pathogenesis of this devastating disease. We also review current cellular, tissue, and animal models and discuss the challenges and opportunities for future studies of the systemic amyloidoses.
Collapse
Affiliation(s)
- Luis M Blancas-Mejía
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | |
Collapse
|
32
|
Rodrigues L, Neves M, Sá H, Campos M. Clinical challenges of an oligosecretory plasma cell dyscrasia. BMJ Case Rep 2013; 2013:bcr-2012-008169. [PMID: 23420725 DOI: 10.1136/bcr-2012-008169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Light chain deposition disease (LCDD) and immunoglobulin light chain (AL) amyloidosis are uncommon, and heterogeneous clonal plasma cell (PC) proliferative disorders defined by the different biochemical characteristics of the underlying anomalous immunoglobulin. The deposits are usually multisystemic and the two diseases can coexist. The diagnosis is sometimes made difficult by the absence of a detectable paraprotein by routine immunofixation techniques, and the use of serum-free light chain (FLC) immunoassay brought new value in terms of their diagnosis, prognosis and assessment of treatment response. Association of LCDD and AL amyloidosis with multiple myeloma (MM) at the time of diagnosis is common, but further progression to this condition is considered rare. We present a case of a patient diagnosed with systemic LCDD and AL amyloidosis of atypical biochemical characteristics, with no paraprotein detected in immunoelectrophoresis and immunofixation techniques, who progressed to MM in the later course of her disease.
Collapse
Affiliation(s)
- Luís Rodrigues
- Department of Nephrology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal, Portugal.
| | | | | | | |
Collapse
|
33
|
Buxbaum JN, Linke RP. A molecular history of the amyloidoses. J Mol Biol 2012; 421:142-59. [PMID: 22321796 DOI: 10.1016/j.jmb.2012.01.024] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/07/2012] [Accepted: 01/18/2012] [Indexed: 11/30/2022]
Abstract
The molecular investigation of the amyloidoses began in the mid-19th century with the observation of areas in human tissues obtained at autopsy that were homogeneous and eosinophilic with conventional stains but became blue when exposed to mixtures of iodine and sulfuric acid. The foci corresponded to regions formerly identified as "waxy" or lardaceous. Subsequent identification of the characteristic staining of the same tissues with metachromatic dyes such as crystal violet or with the cotton dye Congo red (particularly under polarized light) and thioflavins allowed the pathological classification of those tissues as belonging to a set of disorders known as the amyloidoses. Not unexpectedly, progress has reflected evolving technology and parallel advances in all fields of biological science. Investigation using contemporary methods has expanded our notions of amyloid proteins from being simply agents or manifestations of systemic, largely extracellular diseases to include "protein-only infection," the concept that "normal" functional amyloids might exist in eukaryotes and prokaryotes and that aggregatability may be an intrinsic structural price to be paid for some functional protein domains. We now distinguish between the amyloidoses, that is, diseases caused by the deposition of amyloid fibrils and amyloid proteins (i.e., purified or recombinant proteins that form amyloid fibrils in vitro), which may or may not be associated with disease in vivo.
Collapse
Affiliation(s)
- Joel N Buxbaum
- Department of Molecular and Experimental Medicine (MEM230), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
34
|
Guan J, Mishra S, Falk RH, Liao R. Current perspectives on cardiac amyloidosis. Am J Physiol Heart Circ Physiol 2011; 302:H544-52. [PMID: 22058156 DOI: 10.1152/ajpheart.00815.2011] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amyloidosis represents a group of diseases in which proteins undergo misfolding to form insoluble fibrils with subsequent tissue deposition. While almost all deposited amyloid fibers share a common nonbranched morphology, the affected end organs, clinical presentation, treatment strategies, and prognosis vary greatly among this group of diseases and are largely dependent on the specific amyloid precursor protein. To date, at least 27 precursor proteins have been identified to result in either local tissue or systemic amyloidosis, with nine of them manifesting in cardiac deposition and resulting in a syndrome termed "cardiac amyloidosis" or "amyloid cardiomyopathy." Although cardiac amyloidosis has been traditionally considered to be a rare disorder, as clinical appreciation and understanding continues to grow, so too has the prevalence, suggesting that this disease may be greatly underdiagnosed. The most common form of cardiac amyloidosis is associated with circulating amyloidogenic monoclonal immunoglobulin light chain proteins. Other major cardiac amyloidoses result from a misfolding of products of mutated or wild-type transthyretin protein. While the various cardiac amyloidoses share a common functional consequence, namely, an infiltrative cardiomyopathy with restrictive pathophysiology leading to progressive heart failure, the underlying pathophysiology and clinical syndrome varies with each precursor protein. Herein, we aim to provide an up-to-date overview of cardiac amyloidosis from nomenclature to molecular mechanisms and treatment options, with a particular focus on amyloidogenic immunoglobulin light chain protein cardiac amyloidosis.
Collapse
Affiliation(s)
- Jian Guan
- Cardiac Muscle Research Lab., 77 Ave. Louis Pasteur, NRB 431, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
35
|
Abstract
Renal failure remains a principal cause of morbidity for patients with multiple myeloma. Once reversible factors such as hypercalcemia have been corrected, the most common cause of severe renal failure in these patients is a tubulointerstitial pathology that results from the very high circulating concentrations of monoclonal immunoglobulin free light chains. These endogenous proteins can result in isolated proximal tubule cell cytotoxicity, tubulointerstitial nephritis and cast nephropathy (myeloma kidney). Less frequently, high levels of free light chains can lead to immunoglobulin light chain amyloidosis and light chain deposition disease, although these conditions are usually associated with insidious progression of renal failure rather than acute kidney injury. Unless there is rapid intervention, progressive and irreversible damage occurs, particularly interstitial fibrosis and tubular atrophy. Despite advances in our understanding of the pathogenesis of these processes there has been a gap in translating these achievements into improved patient outcomes. The International Kidney and Monoclonal Gammopathy Research Group was formed to address this need. In this Review, we discuss the mechanisms of disease and diagnostic approaches to patients with acute kidney injury complicating multiple myeloma.
Collapse
|
36
|
Basnayake K, Stringer SJ, Hutchison CA, Cockwell P. The biology of immunoglobulin free light chains and kidney injury. Kidney Int 2011; 79:1289-301. [DOI: 10.1038/ki.2011.94] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Wiegel NM, Mentele R, Kellermann J, Meyer L, Riess H, Linke RP. ALkappa(I) (UNK) - primary structure of an AL-amyloid protein presenting an organ-limited subcutaneous nodular amyloid syndrome of long duration. Case report and review. Amyloid 2010; 17:10-23. [PMID: 20146644 DOI: 10.3109/13506121003619328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Slowly progressing subcutaneous nodules all over the body were detected in 1994 in an otherwise healthy, now 66-year-old woman (UNK). A first biopsy was taken 10 years ago and revealed amyloid. Immunohistochemistry was suggestive for ALkappa. From a nodular excisate, performed in the same year for cosmetic reasons, amyloid fibrils were extracted. Protein separation according to their size revealed multiple protein fragments below the MW of an intact kappa-light chain. They were identified as kappa-fragments by Western blotting. The kappa-fragments were cleaved into overlapping peptides using tryptic, N-Asp and chymotryptic digests. Peptides were sequenced by Edman-degradation and mass spectrometry. The complete amino acid sequence of the variable region and most of the constant region of ALkappa (UNK) was identified in various fragments comprising positions 1 to 207 of a monoclonal kappa(I)-light chain. Four novel and several rare amino acid exchanges have been identified as compared to 17 amyloidogenic and >100 non-amyloidogenic kappa(I)-sequences published, leading to increased hydrophobicity of ALkappa (UNK). Sequence analysis of C-region peptides allowed one to determine the kappa-allotype as being invb(+). A rabbit antibody was produced against ALkappa(I) (UNK). It strongly reacted with amyloid on formalin-fixed paraffin embedded tissue sections of the same patient and detected ALkappa-amyloid of many other patients. In contrast, antibodies produced against kappaBJP of subclasses kappa(I)-kappa(IV) failed to label ALkappa (UNK) amyloid deposits. The patient continues to be free of systemic disease, already for 14 years until today.
Collapse
|
38
|
Westermark GT, Sletten K, Westermark P. Alkali-degradation of amyloid: an ancient method useful for making monoclonal antibodies against amyloid fibril proteins. Scand J Immunol 2009; 70:535-40. [PMID: 19906195 DOI: 10.1111/j.1365-3083.2009.02336.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The systemic amyloidoses constitute a group of life-threatening disorders at which one out of about 15 different proteins have polymerized into fibrils. Prognosis and treatment varies widely and depends on the biochemical type. Determination of this has usually to be performed by immunohistochemistry which is a challenge because of lack of monospecific antibodies that can be used on formaldehyde-fixed tissue sections. We have here used an old method to create immunogenic fragments of AL-amyloid fibrils by partial degradation and solubilization with sodium hydroxide. The mouse monoclonal antibody pwlam raised against this material, labelled AL-amyloid deposits of lambda origin strongly and specifically in sections of formaldehyde-fixed and paraffin-embedded tissues.
Collapse
Affiliation(s)
- G T Westermark
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| | | | | |
Collapse
|
39
|
Randles EG, Thompson JR, Martin DJ, Ramirez-Alvarado M. Structural alterations within native amyloidogenic immunoglobulin light chains. J Mol Biol 2009; 389:199-210. [PMID: 19361523 PMCID: PMC2840394 DOI: 10.1016/j.jmb.2009.04.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 03/20/2009] [Accepted: 04/05/2009] [Indexed: 10/20/2022]
Abstract
Amyloid diseases are characterized by the misfolding of a precursor protein that leads to amyloid fibril formation. Despite the fact that there are different precursors, some commonalities in the misfolding mechanism are thought to exist. In light chain amyloidosis (AL), the immunoglobulin light chain forms amyloid fibrils that deposit in the extracellular space of vital organs. AL proteins are thermodynamically destabilized compared to non-amyloidogenic proteins and some studies have linked this instability to increased fibril formation rates. Here we present the crystal structures of two highly homologous AL proteins, AL-12 and AL-103. This structural study shows that these proteins retain the canonical germ line dimer interface. We highlight important structural alterations in two loops flanking the dimer interface and correlate these results with the somatic mutations present in AL-12 and AL-103. We suggest that these alterations are informative structural features that are likely contributing to protein instability that leads to conformational changes involved in the initial events of amyloid formation.
Collapse
Affiliation(s)
- Edward G. Randles
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905
| | - James R. Thompson
- Department of Physiology and Biomedical Engineering, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905
| | - Douglas J. Martin
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905
| | - Marina Ramirez-Alvarado
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905
| |
Collapse
|
40
|
Poshusta TL, Sikkink LA, Leung N, Clark RJ, Dispenzieri A, Ramirez-Alvarado M. Mutations in specific structural regions of immunoglobulin light chains are associated with free light chain levels in patients with AL amyloidosis. PLoS One 2009; 4:e5169. [PMID: 19365555 PMCID: PMC2664898 DOI: 10.1371/journal.pone.0005169] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 03/08/2009] [Indexed: 11/19/2022] Open
Abstract
Background The amyloidoses are protein misfolding diseases characterized by the deposition of amyloid that leads to cell death and tissue degeneration. In immunoglobulin light chain amyloidosis (AL), each patient has a unique monoclonal immunoglobulin light chain (LC) that forms amyloid deposits. Somatic mutations in AL LCs make these proteins less thermodynamically stable than their non-amyloidogenic counterparts, leading to misfolding and ultimately the formation of amyloid fibrils. We hypothesize that location rather than number of non-conservative mutations determines the amyloidogenicity of light chains. Methodology/Principal Findings We performed sequence alignments on the variable domain of 50 κ and 91 λ AL light chains and calculated the number of non-conservative mutations over total number of patients for each secondary structure element in order to identify regions that accumulate non-conservative mutations. Among patients with AL, the levels of circulating immunoglobulin free light chain varies greatly, but even patients with very low levels can have very advanced amyloid deposition. Conclusions Our results show that in specific secondary structure elements, there are significant differences in the number of non-conservative mutations between normal and AL sequences. AL sequences from patients with different levels of secreted light chain have distinct differences in the location of non-conservative mutations, suggesting that for patients with very low levels of light chains and advanced amyloid deposition, the location of non-conservative mutations rather than the amount of free light chain in circulation may determine the amyloidogenic propensity of light chains.
Collapse
Affiliation(s)
- Tanya L. Poshusta
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Laura A. Sikkink
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Nelson Leung
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Raynell J. Clark
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Angela Dispenzieri
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Marina Ramirez-Alvarado
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
41
|
Bodi K, Prokaeva T, Spencer B, Eberhard M, Connors LH, Seldin DC. AL-Base: a visual platform analysis tool for the study of amyloidogenic immunoglobulin light chain sequences. Amyloid 2009; 16:1-8. [PMID: 19291508 PMCID: PMC4123194 DOI: 10.1080/13506120802676781] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AL-Base, a curated database of human immunoglobulin (Ig) light chain (LC) sequences derived from patients with AL amyloidosis and controls, is described, along with a collection of analytical and graphic tools designed to facilitate their analysis. AL-Base is designed to compile and analyse amyloidogenic Ig LC sequences and to compare their predicted protein sequence and structure to non-amyloidogenic LC sequences. Currently, the database contains over 3000 de-identified LC nucleotide and amino acid sequences, of which 433 encode monoclonal proteins that were reported to form fibrillar deposits in AL patients. Each sequence is categorised according to germline gene usage, clinical status and sample source. Currently, tools are available to search for sequences by various criteria, to analyse the biochemical properties of the predicted amino acids at each position and to display the results in a graphical fashion. The likelihood that each sequence has evolved through somatic hypermutation can be predicted using an automated binomial or multinomial distribution model. AL-Base is available to the scientific community for research purposes.
Collapse
Affiliation(s)
- Kip Bodi
- Amyloid Treatment and Research Program, Alan and Sandra Gerry Amyloid Research Laboratory, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Toda T, Nakamura M, Yamada M, Nishine T, Torii T, Ikenaka K, Hashimoto R, Mori M. Glycoproteomic analysis of abnormal N-glycosylation on the kappa chain of cryocrystalglobulin in a patient of multiple myeloma. ACTA ACUST UNITED AC 2009. [DOI: 10.2198/jelectroph.53.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Stevens FJ. Homology versus analogy: possible evolutionary relationship of immunoglobulins, cupredoxins, and Cu,Zn-superoxide dismutase. J Mol Recognit 2008; 21:20-9. [PMID: 18080994 DOI: 10.1002/jmr.861] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The 'immunoglobulin-like' fold is one of most common structural motifs observed in proteins. This topology is found in more than 80 superfamilies of proteins, including Cu,Zn-superoxide dismutase (SOD) and cupredoxin. Evolutionary relationships have not been identified, but may exist. The challenge remains, therefore, of resolving the issue of whether the diverse distribution of the fold is accounted for by divergent evolution of function or convergent evolution of structure following multiple independent origins of function. Since the early studies that revealed conformational similarity of immunoglobulins and other proteins, the number of primary structures available for comparison has dramatically increased and new computational approaches for analysis of sequences have been developed. It now appears that a hypothesis of a common evolutionary origin for cupredoxins, Cu,Zn-SOD, and immunoglobulins may be credible. The distinction between protein homology and protein analogy is fundamental. The immunoglobulin-like fold may represent a robust system within which to examine again the issue of protein homology versus analogy.
Collapse
Affiliation(s)
- Fred J Stevens
- Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA.
| |
Collapse
|
44
|
Baden EM, Owen BAL, Peterson FC, Volkman BF, Ramirez-Alvarado M, Thompson JR. Altered dimer interface decreases stability in an amyloidogenic protein. J Biol Chem 2008; 283:15853-60. [PMID: 18400753 DOI: 10.1074/jbc.m705347200] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyloidoses are devastating and currently incurable diseases in which the process of amyloid formation causes fatal cellular and organ damage. The molecular mechanisms underlying amyloidoses are not well known. In this study, we address the structural basis of immunoglobulin light chain amyloidosis, which results from deposition of light chains produced by clonal plasma cells. We compare light chain amyloidosis protein AL-09 to its wild-type counterpart, the kappaI O18/O8 light chain germline. Crystallographic studies indicate that both proteins form dimers. However, AL-09 has an altered dimer interface that is rotated 90 degrees from the kappaI O18/O8 dimer interface. The three non-conservative mutations in AL-09 are located within the dimer interface, consistent with their role in the decreased stability of this amyloidogenic protein. Moreover, AL-09 forms amyloid fibrils more quickly than kappaI O18/O8 in vitro. These results support the notion that the increased stability of the monomer and delayed fibril formation, together with a properly formed dimer, may be protective against amyloidogenesis. This could open a new direction into rational drug design for amyloidogenic proteins.
Collapse
Affiliation(s)
- Elizabeth M Baden
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
45
|
Sikkink LA, Ramirez-Alvarado M. Salts enhance both protein stability and amyloid formation of an immunoglobulin light chain. Biophys Chem 2008; 135:25-31. [PMID: 18395318 DOI: 10.1016/j.bpc.2008.02.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 02/29/2008] [Accepted: 02/29/2008] [Indexed: 10/22/2022]
Abstract
Amyloid fibrils are associated with sulfated glycosaminoglycans in the extracellular matrix. The presence of sulfated glycosaminoglycans is known to promote amyloid formation in vitro and in vivo, with the sulfate groups playing a role in this process. In order to understand the role that sulfate plays in amyloid formation, we have studied the effect of salts from the Hofmeister series on the protein structure, stability and amyloid formation of an amyloidogenic light chain protein, AL-12. We have been able to show for the first time a direct correlation between protein stability and amyloid formation enhancement by salts from the Hofmeister series, where SO(4)(2-) conferred the most protein stability and enhancement of amyloid formation. Our study emphasizes the importance of the effect of ions in the protein bound water properties and downplays the role of specific interactions between the protein and ions.
Collapse
Affiliation(s)
- Laura A Sikkink
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | |
Collapse
|
46
|
Ramirez-Alvarado M. Principles of protein misfolding. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2008; 84:115-60. [PMID: 19121701 DOI: 10.1016/s0079-6603(08)00404-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Marina Ramirez-Alvarado
- Department of Biochemistry, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
47
|
Connors LH, Jiang Y, Budnik M, Théberge R, Prokaeva T, Bodi KL, Seldin DC, Costello CE, Skinner M. Heterogeneity in primary structure, post-translational modifications, and germline gene usage of nine full-length amyloidogenic kappa1 immunoglobulin light chains. Biochemistry 2007; 46:14259-71. [PMID: 18004879 DOI: 10.1021/bi7013773] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Immunoglobulin light chain amyloidosis is a protein misfolding disease in which a monoclonal immunoglobulin (Ig) light chain (LC) with a critically folded beta-conformation self-aggregates to form highly ordered, nonbranching amyloid fibrils. The insoluble nature of amyloid fibrils ultimately results in the extracellular deposition of the LC in tissues and organs throughout the body. Structural features that confer amyloidogenic properties on an Ig LC likely include amino acid sequence variations and post-translational modifications, but the specific natures of these changes remain to be defined. As part of an exploration of the effective range of amyloidogenic modifications, this study details the structural and genetic analyses of nine kappa1 LC proteins. Urinary LCs were purified by size exclusion chromatography using FPLC, and structural analyses were performed by electrospray ionization, matrix-assisted laser desorption/ionization, and tandem mass spectrometry. RT-PCR amplification, cloning, and sequencing of the monoclonal LC genes were accomplished using bone marrow-derived mRNA. Clinical data were reviewed retrospectively. Characterization of the urinary kappa1 LCs revealed extensive post-translational modification in all proteins, in addition to somatic mutations expected on the basis of results from genetic analyses. Post-translational modifications included disulfide-linked dimerization, S-cysteinylation, glycosylation, fragmentation, S-sulfonation, and 3-chlorotyrosine formation. Genetic analyses showed that several LC variable region germline gene donors were represented including O18/O8, O12/O2, L15, and L5. Clinical features included soft tissue, cardiac, renal, and hepatic involvement. This study demonstrated the extensive heterogeneity in primary structure, post-translational modifications, and germline gene usage that occurred in nine amyloidogenic kappa1 LC proteins.
Collapse
Affiliation(s)
- Lawreen H Connors
- Alan and Sandra Gerry Amyloid Research Laboratory in the Amyloid Treatment and Research Program, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Calreticulin expression in the clonal plasma cells of patients with systemic light-chain (AL-) amyloidosis is associated with response to high-dose melphalan. Blood 2007; 111:549-57. [PMID: 17982021 DOI: 10.1182/blood-2007-05-090852] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In high doses with stem-cell transplantation, melphalan is an effective but toxic therapy for patients with systemic light-chain (AL-) amyloidosis, a protein deposition and monoclonal plasma cell disease. Melphalan can eliminate the indolent clonal plasma cells that cause the disease, an achievement called a complete response. Such a response is usually associated with extended survival, while no response (a less than 50% reduction) is not. Gene-expression studies and a stringently supervised analysis identified calreticulin as having significantly higher expression in the pretreatment plasma cells of patients with systemic AL-amyloidosis who then had a complete response to high-dose melphalan. Calreticulin is a pleiotropic calcium-binding protein found in the endoplasmic reticulum and the nucleus whose overexpression is associated with increased sensitivity to apoptotic stimuli. Real-time PCR and immunohistochemical staining also showed that expression of calreticulin was higher in the plasma cells of those with a complete response. Furthermore, wild-type murine embryonic fibroblasts were significantly more sensitive to melphalan than calreticulin knock-out murine embryonic fibroblasts. These data have important implications for understanding the activity of melphalan in plasma-cell diseases and support further investigation of calreticulin and its modulation in patients with systemic AL-amyloidosis receiving high-dose melphalan.
Collapse
|
49
|
Enqvist S, Sletten K, Stevens FJ, Hellman U, Westermark P. Germ line origin and somatic mutations determine the target tissues in systemic AL-amyloidosis. PLoS One 2007; 2:e981. [PMID: 17912358 PMCID: PMC1989140 DOI: 10.1371/journal.pone.0000981] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 09/12/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Amyloid is insoluble aggregated proteins deposited in the extra cellular space. About 25 different proteins are known to form amyloid in vivo and are associated with severe diseases such as Alzheimer's disease, prion diseases and type-2 diabetes. Light chain (AL) -amyloidosis is unique among amyloid diseases in that the fibril protein, a monoclonal immunoglobulin light chain, varies between individuals and that no two AL-proteins with identical primary structures have been described to date. The variability in tissue distribution of amyloid deposits is considerably larger in systemic AL-amyloidosis than in any other form of amyloidosis. The reason for this variation is believed to be based on the differences in properties of the amyloidogenic immunoglobulin light chain. However, there is presently no known relationship between the structure of an AL-protein and tissue distribution. METHODOLOGY/PRINCIPAL FINDINGS We compared the pattern of amyloid deposition in four individuals with amyloid protein derived from variable light chain gene O18-O8, the source of a high proportion of amyloidogenic light chains, and in whom all or most of the fibril protein had been determined by amino acid sequencing. In spite of great similarities between the structures of the proteins, there was a pronounced variability in deposition pattern. We also compared the tissue distribution in these four individuals with that of four other patients with AL-amyloid derived from the L2-L16 gene. Although the interindividual variations were pronounced, liver and kidney involvement was much more evident in the latter four. CONCLUSIONS/SIGNIFICANCE We conclude that although the use of a specific gene influences the tissue distribution of amyloid, each light chain exhibits one or more determinants of organ-specificity, which originate from somatic mutations and post-translational modifications. Eventual identification of such determinants could lead to improved treatment of patients with AL amyloidosis.
Collapse
Affiliation(s)
- Stina Enqvist
- Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Knut Sletten
- Biotechnology Centre of Oslo, University of Oslo, Oslo, Norway
| | - Fred J. Stevens
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Ulf Hellman
- Ludwig Institute for Cancer Research, Uppsala, Sweden
| | - Per Westermark
- Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
50
|
Kjaeraas S, Husby G, Sletten K. The amino acid sequence of an AL-protein, AL-KH, isolated from the heart of a patient with Waldenstroms macroglobulinemia and amyloidosis. Amyloid 2006; 13:260-2. [PMID: 17107886 DOI: 10.1080/13506120600960767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
An AL-protein was isolated from the myocardium of a patient (KH) with Waldenstrom's macroglobulinemia. SDS-PAGE of the fraction revealed three major bands ranging from 14 to 30 kDa. Two of the major bands showed a positive PAS test for carbohydrate. The amino acid sequence was established for positions 1-92 and for positions 104-205, except for 150-187. According to the data, the AL-protein KH is derived from the kappa 1c germline gene.
Collapse
Affiliation(s)
- Sissel Kjaeraas
- Department of Biochemistry/Biotechnology Centre of Oslo, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|