1
|
Ertürk Gürkan S, Gürkan M, Sarıtunç V, İbiş EC, Güneş B. Evaluation of Possible Toxic Effects of Boric Acid in Palourde Clam (Ruditapes decussatus) Through Histological Changes and Oxidative Responses. Biol Trace Elem Res 2024:10.1007/s12011-024-04230-4. [PMID: 38743317 DOI: 10.1007/s12011-024-04230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The extensive utilization of boric acid, particularly in industrial and agricultural sectors, also engenders concerns regarding the toxicity of boron and its derivatives. Particularly, the behavior of boric acid at increasing concentrations in aquatic ecosystems remains poorly understood. In light of these concerns, this study aimed to investigate the toxicity of boric acid in bivalves, which occupy a critical position in the food chain. Specimens of Ruditapes decussatus, which had not been previously exposed to any pollutants and were cultivated under controlled conditions, were subjected to three different concentrations of boric acid (0.05 mg/L, 0.5 mg/L, and 5 mg/L) in vitro for 96 h. Following the exposure period, the specimens were assessed for histological changes (the mantle, gill, and digestive gland) and specific oxidative parameters (the gill and digestive gland), including superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase, and lipid peroxidation (LPO). The research findings indicated that boric acid primarily induced oxidative damage at the applied concentrations and increased antioxidant levels (p < 0.05). Moreover, although no significant histopathological abnormalities were observed in the examined histological sections, subtle changes were noted. This study evaluated the potential adverse effects of boric acid on bivalves, which are crucial components of the aquatic food chain, utilizing histological and specific physiological parameters following its introduction into aquatic environments. It is anticipated that the findings of this study will contribute to the development of new insights and perspectives regarding the extensive use of boric acid.
Collapse
Affiliation(s)
- Selin Ertürk Gürkan
- Department of Biology, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.
| | - Mert Gürkan
- Department of Biology, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Volkan Sarıtunç
- School of Graduate Studies, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Ezgi Can İbiş
- School of Graduate Studies, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Berkay Güneş
- School of Graduate Studies, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
2
|
Camilo-Cotrim CF, de Souza Ondei L, de Almeida EA, Teresa FB. Fish biomarker responses reflect landscape anthropic disturbance in savanna streams. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87828-87843. [PMID: 35821333 DOI: 10.1007/s11356-022-21865-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Disturbance in the landscape surrounding streams can interfere with water quality and cause harm to aquatic organisms. In this study, we evaluate the influence of land use on the genetic and biochemical biomarkers of fish in streams of Brazilian savanna (Cerrado). We also evaluated whether biomarker responses are seasonally consistent. For this purpose, individuals of the Neotropical tetra fish Astyanax lacustris were exposed in cages for 96 h, in 13 streams draining agroecosystems with different degrees of disturbance during the dry and wet seasons. After exposure, blood, liver, and gills were collected for multibiomarker analyses (micronuclei, erythrocytic nuclear abnormalities, lipid peroxidation, antioxidant enzymes, and biotransformation enzyme). The results showed that the gradient of anthropic disturbance was positively associated with genotoxic damage (erythrocytic nuclear abnormalities) and negatively associated with antioxidant and biotransformation enzymes of the liver in both seasons. No association of the gradient of anthropic disturbance with the frequency of micronuclei and for most gill enzymes was found for both seasons. Landscape disturbance was also negatively associated with water quality in the wet season. These results indicate that changes in land use interfere with the genetic and biochemical processes of organisms. Thus, the multibiomarker approach may represent an effective strategy for assessing and monitoring terrestrial landscape disturbance.
Collapse
Affiliation(s)
- Carlos Filipe Camilo-Cotrim
- Laboratório de Biogeografia e Ecologia Aquática, Universidade Estadual de Goiás, Câmpus Central ‑ Sede Anápolis ‑ Ciências Exatas e tecnológicas, 459, Br 153, nº 3.105, Anápolis, Goiás, Brasil.
| | - Luciana de Souza Ondei
- Laboratório de Biogeografia e Ecologia Aquática, Universidade Estadual de Goiás, Câmpus Central ‑ Sede Anápolis ‑ Ciências Exatas e tecnológicas, 459, Br 153, nº 3.105, Anápolis, Goiás, Brasil
| | - Eduardo Alves de Almeida
- Departamento de Ciências Naturais, Fundação Universidade Regional de Blumenau, FURB, Blumenau, Santa Catarina, Brasil
| | - Fabrício Barreto Teresa
- Laboratório de Biogeografia e Ecologia Aquática, Universidade Estadual de Goiás, Câmpus Central ‑ Sede Anápolis ‑ Ciências Exatas e tecnológicas, 459, Br 153, nº 3.105, Anápolis, Goiás, Brasil
| |
Collapse
|
3
|
Qi R, Pan L, Liu T, Li Z. Source risk, ecological risk, and bioeffect assessment for polycyclic aromatic hydrocarbons (PAHs) in Laizhou Bay and Jiaozhou Bay of Shandong Peninsula, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56705-56726. [PMID: 35347599 DOI: 10.1007/s11356-022-19778-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
In order to incorporate the contribution of pollution sources to ecological risks into environmental monitoring, positive matrix factorization-risk quotient (PMF-RQ) was used to quantify the contribution of different PAH sources to ecological risks, which indicated that the unburned petroleum, vehicular emissions, and diesel combustion were the main sources of PAHs in Laizhou Bay and Jiaozhou Bay, and they were caused by petrochemical industry, maritime shipping, and urban traffic exhaust as the major sources of PAHs for ecological risk. Meanwhile, integrated biomarker response (IBR) and multi-biomarker pollution index (MPI) suggested that September was the most polluted month for PAHs in Laizhou Bay and Jiaozhou Bay and the pollution in Laizhou Bay was significantly higher than that in Jiaozhou Bay. This research was dedicated to explore the monitoring pattern for PAH pollution from the source to bioeffects, and it may have contributed a scientific support to monitoring and governance of marine PAH pollution.
Collapse
Affiliation(s)
- Ruicheng Qi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Luqing Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, China.
| | - Tong Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Zeyuan Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
4
|
Cravo A, Silva S, Rodrigues J, Cardoso VV, Benoliel MJ, Correia C, Coelho MR, Rosa MJ, Almeida CMM. Understanding the bioaccumulation of pharmaceutical active compounds by clams Ruditapes decussatus exposed to a UWWTP discharge. ENVIRONMENTAL RESEARCH 2022; 208:112632. [PMID: 35074358 DOI: 10.1016/j.envres.2021.112632] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Twenty-four pharmaceutical active compounds (PhACs) were evaluated in the soft tissues of clams Ruditappes decussatus exposed along a 1.5-km dispersal gradient of the treated effluent from an urban wastewater treatment plant discharging in Ria Formosa, and compared with those in the marine waters and discharged effluents. The clams were exposed for 1 month, in June-July 2016, 2017 and 2018. PhACs were quantified by high performance liquid chromatography coupled to tandem mass spectrometry after the quick, easy, cheap, effective, rugged and safe (QuEChERS) method (clams) or solid-phase extraction (water samples). The most representative PhACs in the effluents and receiving waters (regardless of the tidal dilution effect) were diclofenac, carbamazepine and caffeine (on average ≤ 2 μg/L) and only caffeine exhibited significant inter-annual differences, with higher values in 2017. In turn, the most bioaccumulated PhACs in clams were caffeine (0.54-27 ng/g wet weight, significantly higher in 2016) and acetaminophen (0.37-3.7 ng/g wet weight, significant lower in 2016). A multivariate principal component analysis showed (i) PhAC bioaccumulation primarily depended on biotic factors (clams length and weight), (ii) PhAC physicochemical properties Log Kow, pKa and water solubility interplaying with water abiotic variables were more relevant for explaining data variability in water than the physical dilution/tidal mixing, (iii) this process, reflected by the salinity gradient, had a tertiary role in data variation, responsible for spatial discrimination of marine waters. This study provides a better understanding of PhACs bioaccumulation by clams Ruditapes decussatus in real environmental conditions, under the influence of urban treated effluent dispersal in Ria Formosa coastal lagoon, a major producer of bivalves, ultimately disentangling key factors of PhAC bioaccumulation.
Collapse
Affiliation(s)
- Alexandra Cravo
- Centro de Investigação Marinha e Ambiental (CIMA), FCT, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Sofia Silva
- iMed.UL (Institute for Medicines and Pharmaceutical Sciences, Portugal), Faculty of Pharmacy, University of Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - João Rodrigues
- Empresa Portuguesa Das Águas Livres, S.A., Direção de Controlo de Qualidade da Água, Av. Berlim 15, 1800-031, Lisboa, Portugal
| | - Vítor Vale Cardoso
- Empresa Portuguesa Das Águas Livres, S.A., Direção de Controlo de Qualidade da Água, Av. Berlim 15, 1800-031, Lisboa, Portugal
| | - Maria João Benoliel
- Empresa Portuguesa Das Águas Livres, S.A., Direção de Controlo de Qualidade da Água, Av. Berlim 15, 1800-031, Lisboa, Portugal
| | - Cátia Correia
- Centro de Investigação Marinha e Ambiental (CIMA), FCT, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | | | - Maria João Rosa
- National Civil Engineering Laboratory (LNEC), Urban Water Unit, Water Quality and Treatment Laboratory, Av. Brasil 101, 1700-066, Lisboa, Portugal
| | - Cristina M M Almeida
- iMed.UL (Institute for Medicines and Pharmaceutical Sciences, Portugal), Faculty of Pharmacy, University of Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Laboratory of Bromatology and Water Quality, Faculty of Pharmacy, University of Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
5
|
Silva DDS, Gonçalves B, Rodrigues CC, Dias FC, Trigueiro NSDS, Moreira IS, de Melo E Silva D, Sabóia-Morais SMT, Gomes T, Rocha TL. A multibiomarker approach in the caged neotropical fish to assess the environment health in a river of central Brazilian Cerrado. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141632. [PMID: 32889457 DOI: 10.1016/j.scitotenv.2020.141632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/05/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Water safety is a world-wide concern and several efforts have been made in order to ensure the conservation of aquatic ecosystems. Water quality monitoring must be performed with an integrated approach using biomonitor organisms allied to water parameters. Nonetheless, very few studies have focused on biomarker responses in neotropical fish, especially in the freshwater ecosystem of Brazilian Cerrado savanna. In present study, the active biomonitoring of the João Leite river (central Brazilian Cerrado river) was performed through the evaluation of biomarker responses in caged Astyanax lacustris in combination with land use classification and analysis of water parameters. Caged fish were exposed for seven days at four sites along the river and two control groups were kept in a tank under controlled conditions. Results showed that pasture was the predominant land use in the João Leite river basin (54.07%), followed by natural vegetation (34.92%) and other kind of land use (11.01%). Water analyses showed metal concentrations (Mn and Fe) above the maximum allowed by Brazilian regulation, with particularly higher concentrations at Site 2 (near to pasture area). Biomarker responses did not show significant differences for somatic and mutagenic biomarkers between sites. However, the comet assay showed high DNA damage at Sites 2 and 3, indicating genotoxic effects in caged fish at pasture areas. Histopathological analysis showed highest frequency of leukocyte infiltration in liver of fish from Site 2, confirming the ecotoxic effects on A. lacustris in streams impacted by grazing activities. DNA damage and leukocyte infiltration in fish hepatic tissues were sensitive biomarkers in the neotropical fish A. lacustris to assess the environment health of the Cerrado river. These results showed the importance of using a multibiomarker approach in environmental risk assessment, especially in areas more at risk from anthropogenic pollution.
Collapse
Affiliation(s)
- Douglas Dos Santos Silva
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Bruno Gonçalves
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Cândido Carvalho Rodrigues
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Felipe Cirqueira Dias
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Nicholas Silvestre de Souza Trigueiro
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Izabella Soares Moreira
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Daniela de Melo E Silva
- Laboratory of Mutagenesis, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Simone Maria Teixeira Sabóia-Morais
- Laboratory of Cellular Behaviour, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Tânia Gomes
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil.
| |
Collapse
|
6
|
Solé M, Freitas R, Viñas L, Rivera-Ingraham GA. Biomarker considerations in monitoring petrogenic pollution using the mussel Mytilus galloprovincialis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31854-31862. [PMID: 32504435 DOI: 10.1007/s11356-020-09427-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Mussels are worldwide bioindicators in pollution monitoring since they fulfil the requirements for being good sentinels. However, some methodological concerns arise in the use of particular biomarkers, particularly those displaying low enzymatic rates and/or limited responsiveness to chemicals and biological-related variability. In the present study, the suitability of oxidative stress and detoxification parameters when using mussels as sentinels of polycyclic aromatic hydrocarbon (PAH) pollution is addressed. Present results show that the S9 subcellular fraction of the digestive gland in mussels is an adequate and convenient matrix where to measure most pollution-related biomarkers. Furthermore, this work constitutes the first evidence of the potential suitability of using particular carboxylesterase (CE) activities in determining PAHs exposure in mussels. This fact could imply the replacement of more controversial cytochrome P450 components (phase I oxidation), which are only measurable in microsomal fractions, by CEs (measured in S9 fractions) as good alternatives for phase I reactions in PAH-exposed mussels. Some methodological considerations, such as the need of including commercial purified proteins in biomarker determinations for quality assurance, are evaluated.
Collapse
Affiliation(s)
- Montserrat Solé
- Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Lucia Viñas
- Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Vigo, Subida a Radio Faro 50, 36390, Vigo, Spain
| | - Georgina A Rivera-Ingraham
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile
| |
Collapse
|
7
|
Mansour C, Guibbolini M, Rouane Hacene O, Saidane Mosbahi D, Risso-de Faverney C. Oxidative Stress and Damage Biomarkers in Clam Ruditapes decussatus Exposed to a Polluted Site: The Reliable Biomonitoring Tools in Hot and Cold Seasons. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 78:478-494. [PMID: 32016484 DOI: 10.1007/s00244-020-00713-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
In the present study, a multi-biomarker approach was used to assess the biological effects of metal pollution in the southern lagoon of Tunis, on clam Ruditapes decussatus both in "hot" (in summer) and "cold" (in winter) seasons. Clams were collected in August 2015 and February 2016 from three sites of the lagoon and from Louza considered a reference site. The concentrations of five trace metals (cadmium, copper, iron, lead, and zinc) in the soft tissues of R. decussatus were evaluated at the sampling sites. A core of biomarkers indicative of (a) neurotoxicity (acetylcholinesterase, AChE); (b) biotransformation (glutathione S-transferase, GST); (c) oxidative stress (catalase, CAT; total glutathione peroxidase, T-GPx; total glutathione peroxidase, T-GPx; selenium-dependent glutathione peroxidase, Se-GPx; glutathione reductase, GR; superoxide dismutase, SOD) (d) lipid peroxidation (malondialdhyde, MDA level), and (e) apoptotic process (caspase 3-like, CSP3) was selected for measurements of environmental effects on the populations of clams collected from the different sampling sites. The results of metal bioaccumulation in soft tissues of Ruditapes decussatus revealed a high pollution in the South Lagoon of Tunis with spatial variation and relatively high levels at the navigation channel. Anthropogenic pollutants in the lagoon led to the activation of antioxidant defense and biotransformation enzymes to oxidative damage of the membrane and activation of apoptosis, and revealed neurotoxicity. Among this core of biomarkers, the antioxidants enzymes (CAT, SOD, GR, and GPx) were very sensitive, allowing the discrimination among sites and pointing to the navigation channel as the most impacted site in the southern lagoon of Tunis. Moreover, a significant effect of season was recorded on biomarkers responses (e.g., CAT, GR, SOD, AChE, and CSP3 activities and MDA levels) with higher levels in winter than in summer, probably influenced by the reproductive stage and food availability. Finally, the measurement of the selected core of biomarkers in the whole soft tissues of clams was considered as an integrated indicator of environmental stress. Moreover, R. decussatus proved to be a remarkable sentinel species capable to establish a reliable diagnosis of the health status of the marine environment in different areas of the southern lagoon of Tunis, both in "hot" and "cold" seasons.
Collapse
Affiliation(s)
- Chalbia Mansour
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Ibn Sina Street, 5000, Monastir, Tunisia.
| | - Marielle Guibbolini
- University Côte d'Azur, CNRS, ECOSEAS, UMR 7035, 28 Avenue Valrose BP 71, 06108, Nice Cedex 2, France
| | - Omar Rouane Hacene
- Laboratoire Réseau de Surveillance Environnementale (LRSE), Department of Biology, University of Oran, 1 Ahmed Ben Bella, BP 1524 El M'naouer, 31000, Oran, Algeria
| | - Dalila Saidane Mosbahi
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Ibn Sina Street, 5000, Monastir, Tunisia
| | | |
Collapse
|
8
|
Özdilek ŞY, Demir N, Gürkan SE. Assessment of pollution biomarker and stable isotope data in Mytilus galloprovincialis tissues. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:60. [PMID: 30631961 DOI: 10.1007/s10661-019-7189-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/02/2019] [Indexed: 05/06/2023]
Abstract
Superoxide dismutase (SOD) is one of the antioxidant defense enzymes in mussels and converts the superoxide anion into hydrogen peroxide and this enzyme is used as biomarkers of oxidative damage. As well as many topics in ecology, stable isotopes are also signature for organic and heavy metal pollution in aquatic ecosystems. This study aims to compare the stable carbon and nitrogen values of different mussel tissues and the changes on the SOD values of the same tissues in order to understand the relationship between two mechanisms of bioindicator processes of physiological response of mussel to pollution. The changes in SOD activity in the gill, hepatopancreas, and mantle tissues of Mytilus galloprovincialis with δ13C and δ15N isotopes were assessed in two locations (Kepez and Güzelyalı) in Çanakkale. The SOD values of mussel samples were found as the gill > hepatopancreas > mantle collected from Kepez and the gill > hepatopancreas collected from Güzelyalı. There were no significant differences among the mean SOD values of different tissues. There was enrichment both in nitrogen and carbon isotope values of hepatopancreas tissues both in Kepez and Güzelyalı samples. There was a negative correlation between both isotope values and SOD values of samples. As well as SOD values, the isotopic composition of particularly hepatopancreas tissue is a good indicator for evaluation of pollution.
Collapse
Affiliation(s)
- Şükran Yalçın Özdilek
- Faculty of Science and Arts, Department of Biology, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.
| | - Neslihan Demir
- Faculty of Science and Arts, Department of Biology, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Selin Ertürk Gürkan
- Faculty of Science and Arts, Department of Biology, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
9
|
Solé M, Bonsignore M, Rivera-Ingraham G, Freitas R. Exploring alternative biomarkers of pesticide pollution in clams. MARINE POLLUTION BULLETIN 2018; 136:61-67. [PMID: 30509842 DOI: 10.1016/j.marpolbul.2018.08.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 06/09/2023]
Abstract
Acetylcholinesterase (AChE) is a reliable biomarker of pesticide exposure although in clams this activity is often very low or undetectable. Carboxylesterases (CEs) exhort several physiological roles, but also respond to pesticides. Searching for an AChE alternative, baseline CE activities were characterised in Ruditapes decussatus gills and digestive glands using five substrates suggestive of different isozymes. The long chain p-nitrophenyl butyrate and 1-naphthyl butyrate were the most sensitive. In the digestive gland, their kinetic parameters (Vmax and Km) and in vitro sensitivity to the organophosphorus metabolite chlorpyrifos oxon (CPX) were calculated. IC50 values, in the pM-nM range, suggest a high protection efficiency of CE-related enzymes towards CPX neurotoxicity. Other targeted enzymes were: activities of glutathione reductase, glutathione peroxidase, catalase, glutathione S-transferases (GSTs) and lactate dehydrogenase in gills and digestive glands. The high GSTs activity and CE/AChE ratio suggests that R. decussatus has a great capacity for enduring pesticide exposure.
Collapse
Affiliation(s)
- Montserrat Solé
- Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | - Martina Bonsignore
- Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | | | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
10
|
Scarduelli L, Giacchini R, Parenti P, Migliorati S, Di Brisco AM, Vighi M. Natural variability of biochemical biomarkers in the macro-zoobenthos: Dependence on life stage and environmental factors. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017. [PMID: 28631839 PMCID: PMC7163492 DOI: 10.1002/etc.3893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Biomarkers are widely used in ecotoxicology as indicators of exposure to toxicants. However, their ability to provide ecologically relevant information remains controversial. One of the major problems is understanding whether the measured responses are determined by stress factors or lie within the natural variability range. In a previous work, the natural variability of enzymatic levels in invertebrates sampled in pristine rivers was proven to be relevant across both space and time. In the present study, the experimental design was improved by considering different life stages of the selected taxa and by measuring more environmental parameters. The experimental design considered sampling sites in 2 different rivers, 8 sampling dates covering the whole seasonal cycle, 4 species from 3 different taxonomic groups (Plecoptera, Perla grandis; Ephemeroptera, Baetis alpinus and Epeorus alpicula; Tricoptera, Hydropsyche pellucidula), different life stages for each species, and 4 enzymes (acetylcholinesterase, glutathione S-transferase, alkaline phosphatase, and catalase). Biomarker levels were related to environmental (physicochemical) parameters to verify any kind of dependence. Data were statistically elaborated using hierarchical multilevel Bayesian models. Natural variability was found to be relevant across both space and time. The results of the present study proved that care should be paid when interpreting biomarker results. Further research is needed to better understand the dependence of the natural variability on environmental parameters. Environ Toxicol Chem 2017;36:3158-3167. © 2017 SETAC.
Collapse
Affiliation(s)
- Lucia Scarduelli
- Department of Earth and Environmental SciencesUniversity of Milano BicoccaMilanItaly
| | - Roberto Giacchini
- Department of Earth and Environmental SciencesUniversity of Milano BicoccaMilanItaly
| | - Paolo Parenti
- Department of Earth and Environmental SciencesUniversity of Milano BicoccaMilanItaly
| | - Sonia Migliorati
- Department of EconomicsManagement and StatisticsUniversity of Milano BicoccaMilanItaly
| | | | - Marco Vighi
- Department of Earth and Environmental SciencesUniversity of Milano BicoccaMilanItaly
- IMDEA Water InstituteMadridSpain
| |
Collapse
|
11
|
Oaten JFP, Hudson MD, Jensen AC, Williams ID. Seasonal effects to metallothionein responses to metal exposure in a naturalised population of Ruditapes philippinarum in a semi-enclosed estuarine environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:1279-1290. [PMID: 27707664 DOI: 10.1016/j.scitotenv.2016.09.202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/24/2016] [Accepted: 09/25/2016] [Indexed: 06/06/2023]
Abstract
The Manila clam (Ruditapes philippinarum), an invasive species in Northern Europe, can be used as a bioindicator of metal pollution. Seasonal effects on metallothionein (MT) production have not been considered in this species at the northernmost extent of its European distribution. This study assesses the annual seasonal effects on MT and metal concentrations in R. philippinarum from Poole Harbour, UK. R. philippinarum were collected in winter, spring, summer, and autumn throughout 2015, and MT and metal concentrations, as well as biotic and abiotic variables, were quantified. During winter, linear regression analysis showed significant positive relationships between tissue metal and MT concentrations. However, during spring and summer, these relationships were mostly insignificant. MT concentrations during spring had significant positive relationships with tissue and whole weight. Significant positive relationships were also observed between MT and condition index, during summer. During spring and summer, biotic factors seem to override the role of MT as a detoxification mechanism for metal exposure in this species. This is probably due to an increase in MT concentration in spring caused by gametogenesis, associated with increased tissue weight as the gonads expand. A depletion of energy resources, or physical stressors such as heat, may be attributed to the reduced MT production in clams of poor body condition in summer. The evidence from this study suggests that MT may only be a useful biomarker of metal pollution during winter in R. philippinarum in the UK. This verifies the natural variability of MT in this species at high latitudes, and highlights the potential and limits to a widely available bioindicator of metal pollution.
Collapse
Affiliation(s)
- J F P Oaten
- Centre for Environmental Science, Faculty of Engineering and the Environment, University of Southampton, University Road, Highfield, Southampton, Hampshire SO17 1BJ, United Kingdom.
| | - M D Hudson
- Centre for Environmental Science, Faculty of Engineering and the Environment, University of Southampton, University Road, Highfield, Southampton, Hampshire SO17 1BJ, United Kingdom.
| | - A C Jensen
- Ocean and Earth Science, University of Southampton, Waterfront Campus, National Oceanography Centre, European Way, Southampton, Hampshire SO14 3ZH, United Kingdom.
| | - I D Williams
- Centre for Environmental Science, Faculty of Engineering and the Environment, University of Southampton, University Road, Highfield, Southampton, Hampshire SO17 1BJ, United Kingdom.
| |
Collapse
|
12
|
Zhao L, Zhang Y, Liang J, Xu X, Wang H, Yang F, Yan X. Environmental cadmium exposure impacts physiological responses in Manila clams. Biol Trace Elem Res 2014; 159:241-53. [PMID: 24771311 DOI: 10.1007/s12011-014-9975-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 04/08/2014] [Indexed: 11/29/2022]
Abstract
The physiological responses of marine bivalves to chronic cadmium (Cd) exposure at sub-lethal concentrations have been well documented. As of now, few studies have examined the effect of Cd exposure and subsequent recovery period at environmentally realistic concentrations. In this study, environmentally, Cd exposures were performed to assess the physiological responses of the Manila clam Ruditapes philippinarum. The clams were exposed to waterborne Cd at two environmentally realistic concentrations (4 and 40 μg L(-1)) for 35 days and then allowed to recover for another 35 days. The accumulation and elimination of Cd in R. philippinarum were tissue-specific and dose- and time-dependent. Cd accumulation increased sharply in the digestive gland, and Cd elimination was rapid in the gill. Major physiological responses, including clearance rate, absorption efficiency, respiration rate, excretion rate, oxygen to nitrogen ratio, and scope for growth, were significantly affected by Cd exposure. Yet, the clams exposed to 4-μg L(-1) Cd were able to quickly recover their normal physiological processes and clearly exhibited catch-up growth once they were transferred to clean seawater. Hence, R. philippinarum can exhibit good physiological plasticity when confronted with moderately environmental Cd exposure. All physiological responses measured exhibited a highly significant and generally predictable correlation with tissue Cd concentration, which in turn, reflected environmentally realistic exposure conditions. Our results further confirm that the measurement of physiological responses is a sensitive method for assessing stress at environmentally realistic metal concentrations.
Collapse
Affiliation(s)
- Liqiang Zhao
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | | | | | | | | | | | | |
Collapse
|