1
|
Wettersten N, Mital R, Cushman M, Howard G, Judd SE, Howard VJ, Safford MM, Hartmann O, Bergmann A, Struck J, Maisel A. Growth hormone concentration and risk of all-cause and cardiovascular mortality: The REasons for Geographic And Racial Disparities in Stroke (REGARDS) study. Atherosclerosis 2022; 359:20-26. [PMID: 36155327 PMCID: PMC11427131 DOI: 10.1016/j.atherosclerosis.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/23/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND AIMS Identifying individuals at elevated risk for mortality, especially from cardiovascular disease, may help guide testing and treatment. Risk factors for mortality differ by sex and race. We investigated the association of growth hormone (GH) with all-cause and cardiovascular mortality in a racially diverse cohort in the United States. METHODS Among an age, sex and race stratified subgroup of 1046 Black and White participants from the REasons for Geographic And Racial Disparities in Stroke (REGARDS) study, 881 had GH available; values were log2 transformed. Associations with all-cause and cardiovascular mortality were assessed in the whole subgroup, and by sex and race, using multivariable Cox-proportional hazard models and C-index. RESULTS The mean age was 67.4 years, 51.1% were women, and 50.2% were Black participants. The median GH was 280 (interquartile range 79-838) ng/L. There were 237 deaths and 74 cardiovascular deaths over a mean of 8.0 years. In multivariable Cox analysis, GH was associated with higher risk of all-cause mortality per doubling (hazard ratio [HR] 1.17, 95% confidence interval [CI] 1.09-1.25) and cardiovascular mortality (HR 1.21, 95% CI 1.06-1.37). The association did not differ by sex or race (interaction p > 0.05). The addition of GH to a model of clinical variables significantly improved the C-index compared to clinical model alone for all-cause and cardiovascular death. CONCLUSIONS Higher fasting GH was associated with higher risk of all-cause and cardiovascular mortality and improved risk prediction, regardless of sex or race.
Collapse
Affiliation(s)
- Nicholas Wettersten
- Division of Cardiovascular Medicine, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA; Division of Cardiovascular Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Rohit Mital
- Department of Cardiovascular Diseases, Mayo Clinic, Scottsdale, AZ, USA
| | - Mary Cushman
- Departments of Medicine and Pathology & Laboratory Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT, USA
| | - George Howard
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Suzanne E Judd
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Virginia J Howard
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Monika M Safford
- Division of General Internal Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Oliver Hartmann
- SphingoTec GmbH, Neuendorfstr. 15 A, 16761 Hennigsdorf, Germany
| | | | - Joachim Struck
- SphingoTec GmbH, Neuendorfstr. 15 A, 16761 Hennigsdorf, Germany
| | - Alan Maisel
- Division of Cardiovascular Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
Sonkar R, Berry R, Latimer MN, Prabhu SD, Young ME, Frank SJ. Augmented Cardiac Growth Hormone Signaling Contributes to Cardiomyopathy Following Genetic Disruption of the Cardiomyocyte Circadian Clock. Front Pharmacol 2022; 13:836725. [PMID: 35250583 PMCID: PMC8888912 DOI: 10.3389/fphar.2022.836725] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/21/2022] [Indexed: 11/25/2022] Open
Abstract
Circadian clocks regulate numerous biological processes, at whole body, organ, and cellular levels. This includes both hormone secretion and target tissue sensitivity. Although growth hormone (GH) secretion is time-of-day-dependent (increased pulse amplitude during the sleep period), little is known regarding whether circadian clocks modulate GH sensitivity in target tissues. GH acts in part through induction of insulin-like growth factor 1 (IGF1), and excess GH/IGF1 signaling has been linked to pathologies such as insulin resistance, acromegaly, and cardiomyopathy. Interestingly, genetic disruption of the cardiomyocyte circadian clock leads to cardiac adverse remodeling, contractile dysfunction, and reduced lifespan. These observations led to the hypothesis that the cardiomyopathy observed following cardiomyocyte circadian clock disruption may be secondary to chronic activation of cardiac GH/IGF1 signaling. Here, we report that cardiomyocyte-specific BMAL1 knockout (CBK) mice exhibit increased cardiac GH sensitivity, as evidenced by augmented GH-induced STAT5 phosphorylation (relative to littermate controls) in the heart (but not in the liver). Moreover, Igf1 mRNA levels are approximately 2-fold higher in CBK hearts (but not in livers), associated with markers of GH/IGF1 signaling activation (e.g., p-ERK, p-mTOR, and p-4EBP1) and adverse remodeling (e.g., cardiomyocyte hypertrophy and interstitial fibrosis). Genetic deletion of one allele of the GH receptor (GHR) normalized cardiac Igf1 levels in CBK hearts, associated with a partial normalization of adverse remodeling. This included attenuated progression of cardiomyopathy in CBK mice. Collectively, these observations suggest that excessive cardiac GH/IGF1 signaling contributes toward cardiomyopathy following genetic disruption of the cardiomyocyte circadian clock.
Collapse
Affiliation(s)
- Ravi Sonkar
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ryan Berry
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mary N. Latimer
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sumanth D. Prabhu
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Cardiology Section, Birmingham VAMC Medical Service, Birmingham, AL, United States
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Martin E. Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Stuart J. Frank
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Endocrinology Section, Birmingham VAMC Medical Service, Birmingham, AL, United States
| |
Collapse
|