1
|
Wu M, Cai J, Yu Y, Hu S, Wang Y, Wu M. Therapeutic Agents for the Treatment of Temporomandibular Joint Disorders: Progress and Perspective. Front Pharmacol 2021; 11:596099. [PMID: 33584275 PMCID: PMC7878564 DOI: 10.3389/fphar.2020.596099] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/19/2020] [Indexed: 02/05/2023] Open
Abstract
Temporomandibular joint disorders (TMD) are a common health condition caused by the structural or functional disorders of masticatory muscles and the temporomandibular joint (TMJ). Abnormal mandibular movement in TMD patients may cause pain, chronic inflammation, and other discomfort, which could be relieved by a variety of drugs through various delivery systems. In this study, we summarized commonly used therapeutic agents in the management of TMD as well as novel bioactive molecules in preclinical stage and clinical trials. The emerging therapy strategies such as novel intra-TMJ delivery systems and implants based on tissue engineering are also discussed. This comprehensive review will strengthen our understanding of pharmacological approaches for TMD therapy.
Collapse
Affiliation(s)
- Mengjie Wu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Jingyi Cai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomato-logy, Sichuan University, Chengdu, China
| | - Yeke Yu
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sihui Hu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Yingnan Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Mengrui Wu
- College of Life Sciences, Zhejiang University, Zhejiang, China
| |
Collapse
|
2
|
Martinez RM, Hohmann MS, Longhi-Balbinot DT, Zarpelon AC, Baracat MM, Georgetti SR, Vicentini FTMC, Sassonia RC, Verri WA, Casagrande R. Analgesic activity and mechanism of action of a Beta vulgaris dye enriched in betalains in inflammatory models in mice. Inflammopharmacology 2020; 28:1663-1675. [PMID: 32141011 DOI: 10.1007/s10787-020-00689-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 02/04/2020] [Indexed: 01/27/2023]
Abstract
Evidence demonstrates the pronounced anti-inflammatory activity of a beetroot (Beta vulgaris) dye enriched in betalains obtained using precipitation with ethanol. Herein, we expand upon our previous observations and demonstrate the analgesic and antioxidant effect of betalains. Betalains [10-1000 mg/kg; intraperitoneal route (i.p.)] diminished acetic acid- and PBQ-induced abdominal contortions, and the overt pain-like behaviour induced by complete Freund`s adjuvant (CFA) and formalin (intraplantar; i.pl.) injection. Moreover, betalains (100 mg/kg) administered by various routes [i.p. or subcutaneous (s.c.)] or as a post-treatment reduced carrageenin- or CFA-induced hyperalgesia. Mechanistically, betalains mitigated carrageenin-induced tumour necrosis factor-alpha (TNF-α), interleukin (IL)-1β, superoxide anion levels, and lipid peroxidation. Betalains also stopped the depletion of reduced glutathione (GSH) levels and ferric reducing ability produced by carrageenin, as well as upregulated Nrf2 and Ho1 transcript expression in the plantar tissue of mice. Furthermore, betalains showed hydroxyl radical, 2,2'-azino-di-(3-ethylbenzthiazoline-6-sulphonic acid) radical (ABTS+), and 2,2-diphenyl-1-picryl-hydrazyl radical (DPPH•) scavenging ability and iron-chelating activity (bathophenantroline assay), and inhibited iron-independent and iron-dependent lipid peroxidation (LPO) in vitro. Finally, betalains-treated bone marrow-derived macrophages exhibited lower levels of cytokines (TNF-α and IL-1β), and superoxide anion levels and nuclear factor kappa B (NF-κB) activation following lipopolysaccharide (LPS) stimulation. Therefore, this betalain-rich dye extracted using a novel precipitation approach presents prominent analgesic effect in varied models of pain by mechanisms targeting cytokines and oxidative stress.
Collapse
Affiliation(s)
- Renata M Martinez
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Miriam S Hohmann
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Daniela T Longhi-Balbinot
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Ana C Zarpelon
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Marcela M Baracat
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Sandra R Georgetti
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Fabiana T M C Vicentini
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rogério Côrte Sassonia
- Centro de Ciências Integradas, Universidade Federal do Tocantins, Araguaína, Tocantins, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
3
|
Yamaguchi M, Levy RM. The combination of catechin, baicalin and β-caryophyllene potentially suppresses the production of inflammatory cytokines in mouse macrophages in vitro. Exp Ther Med 2019; 17:4312-4318. [PMID: 31007758 DOI: 10.3892/etm.2019.7452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
It has been demonstrated that the combination of three botanical factors of (+)-catechin, baicalin and β-caryophyllene, which exhibit anti-inflammatory effects, with comparatively lower concentrations of each factor, demonstrating a potent synergistic-suppressive effect on the growth of mouse macrophage RAW264.7 cells in vitro, and suggesting it may function as a pharmacologic tool for managing inflammatory diseases. The present study was undertaken to determine the suppressive effects of (+)-catechin, baicalin or β-caryophyllene on the production of inflammatory cytokines, including TNF-α, IL-6 and IL-1β, which was enhanced by lipopolysaccharide (LPS) in RAW264.7 cells in vitro. The cells were cultured for 3 days without botanical factors, followed by incubation for 5 h in the presence of either vehicle, (+)-catechin [1 µg/ml (3.45 µM)], baicalin [1 µg/ml (2.24 µM)], or β-caryophyllene [1 µg/ml (5 µM)] with or without LPS (100 ng/ml); this did not have significant effects on the number of RAW264.7 cells. The production of TNF-α, IL-6 and IL-1β was not altered by the addition of (+)-catechin, baicalin, β-caryophyllene, or the three combined factors in RAW264.7 cells without LPS. LPS treatment caused a marked production of TNF-α, IL-6, and IL-1β. This enhancement was suppressed by the addition of (+)-catechin, baicalin or β-caryophyllene. Of note, the production of these cytokines was additively suppressed by the combination of the three factors in macrophages. Thus, the combination of (+)-catechin, baicalin and β-caryophyllene was found to reveal a potent suppressive effect on cytokine production in macrophages in vitro. This composition may be a useful tool as a potent anti-inflammatory agent.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-1732, USA
| | - Robert M Levy
- Department of Clinical Development, Primus Pharmaceuticals, Inc., Scottsdale, AZ 85251, USA
| |
Collapse
|
4
|
Xiang HC, Lin LX, Hu XF, Zhu H, Li HP, Zhang RY, Hu L, Liu WT, Zhao YL, Shu Y, Pan HL, Li M. AMPK activation attenuates inflammatory pain through inhibiting NF-κB activation and IL-1β expression. J Neuroinflammation 2019; 16:34. [PMID: 30755236 PMCID: PMC6373126 DOI: 10.1186/s12974-019-1411-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/22/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Chronic pain is a major clinical problem with limited treatment options. Previous studies have demonstrated that activation of adenosine monophosphate-activated protein kinase (AMPK) can attenuate neuropathic pain. Inflammation/immune response at the site of complete Freund's adjuvant (CFA) injection is known to be a critical trigger of the pathological changes that produce inflammatory pain. However, whether activation of AMPK produces an analgesic effect through inhibiting the proinflammatory cytokines, including interleukin-1β (IL-1β), in inflammatory pain remains unknown. METHODS Inflammatory pain was induced in mice injected with CFA. The effects of AICAR (5-aminoimidazole-4-carboxyamide ribonucleoside, an AMPK activator), Compound C (an AMPK inhibitor), and IL-1ra (an IL-1 receptor antagonist) were tested at day 4 after CFA injection. Inflammatory pain was assessed with von Frey filaments and hot plate. Immunoblotting, hematoxylin and eosin (H&E) staining, and immunofluorescence were used to assess inflammation-induced biochemical changes. RESULTS The AMPK activator AICAR produced an analgesic effect and inhibited the level of proinflammatory cytokine IL-1β in the inflamed skin in mice. Moreover, activation of AMPK suppressed CFA-induced NF-κB p65 translocation from the cytosol to the nucleus in activated macrophages (CD68+ and CX3CR1+) of inflamed skin tissues. Subcutaneous injection of IL-1ra attenuated CFA-induced inflammatory pain. The AMPK inhibitor Compound C and AMPKα shRNA reversed the analgesic effect of AICAR and the effects of AICAR on IL-1β and NF-κB activation in inflamed skin tissues. CONCLUSIONS Our study provides new information that AMPK activation produces the analgesic effect by inhibiting NF-κB activation and reducing the expression of IL-1β in inflammatory pain.
Collapse
Affiliation(s)
- Hong-Chun Xiang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Li-Xue Lin
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Xue-Fei Hu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - He Zhu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Hong-Ping Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Ru-Yue Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Liang Hu
- Department of Pharmacology, School of Basic Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Wen-Tao Liu
- Department of Pharmacology, School of Basic Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Yi-Lin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Shu
- Department of Central Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, China
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Man Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
5
|
Hamann FR, Brusco I, de Campos Severo G, de Carvalho LM, Faccin H, Gobo L, Oliveira SM, Rubin MA. Mansoa alliacea extract presents antinociceptive effect in a chronic inflammatory pain model in mice through opioid mechanisms. Neurochem Int 2018; 122:157-169. [PMID: 30496767 DOI: 10.1016/j.neuint.2018.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/06/2018] [Accepted: 11/26/2018] [Indexed: 11/15/2022]
Abstract
In some chronic disorders, as in arthritis, the inflammatory pain persists beyond the inflammation control becoming pathological. Its treatment shows limited efficacy and adverse effects which compromises patients' quality of life. Mansoa alliacea, known as 'cipo alho', is popularly used as analgesic and others species of this genus show anti-inflammatory actions. We investigated the anti-inflammatory and antinociceptive potential of M. alliacea extract in an inflammatory pain model which presents inflammatory characteristics similar to those caused by arthritis, through of the intraplantar injection of complete Freund's adjuvant (CFA) in mice. The extract chromatographic analysis revealed the presence of ρ-coumaric, ferulic and chlorogenic acids, luteolin, and apigenin. The treatment with M. alliacea prevented and reversed the CFA-induced mechanical allodynia with maximum inhibition (Imax) of 100% and 90 ± 10%, respectively. The co-administration of M. alliacea extract plus morphine enhanced the anti-allodynic effect with Imax of 100%. The M. alliacea extract also reverted the CFA-induced thermal hyperalgesia with Imax of 3.6 times greater compared to the vehicle and reduced the thermal threshold under physiological conditions. However, M. alliacea extract did not reduce the CFA-induced edema and myeloperoxidase activity. Additionally, non-selective and δ-selective opioid receptor antagonists, but not κ-opioid, prevented extract anti-allodynic effect with Imax of 98 ± 2% and 93 ± 2%, respectively. Moreover, M. alliacea extract did not induce adverse effects commonly caused by opioids and other analgesic drugs, at least in the tested pharmacological doses after the acute treatment. M. alliacea extract presents antinociceptive activity in an inflammatory pain model, which presents inflammatory characteristics similar to those arthritis-induced, without causing adverse effects in tested pharmacological doses. These effects seem to be mediated mainly via δ-opioid receptors.
Collapse
Affiliation(s)
- Fernanda Regina Hamann
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Indiara Brusco
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gabriela de Campos Severo
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Leandro Machado de Carvalho
- Chemistry Graduate Program, Center of Exact and Natural Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Henrique Faccin
- Chemistry Graduate Program, Center of Exact and Natural Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Luciana Gobo
- Chemistry Graduate Program, Center of Exact and Natural Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Maribel Antonello Rubin
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil; Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
6
|
Rosas RF, Emer AA, Batisti AP, Ludtke DD, Turnes BL, Bobinski F, Cidral-Filho FJ, Martins DF. Far infrared-emitting ceramics decrease Freund's adjuvant-induced inflammatory hyperalgesia in mice through cytokine modulation and activation of peripheral inhibitory neuroreceptors. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2018; 16:396-403. [PMID: 30139655 DOI: 10.1016/j.joim.2018.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/22/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The present study aimed to evaluate the analgesic and anti-inflammatory effects of far infrared-emitting ceramics (cFIRs) in a model of persistent inflammatory hyperalgesia and to elucidate the possible mechanisms of these effects. METHODS Mice were injected with complete Freund's adjuvant (CFA) and treated with cFIRs via placement on a pad impregnated with cFIRs on the bottom of the housing unit for different periods of time. Mice underwent mechanical hyperalgesia and edema assessments, and tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-10 levels were measured. Twenty-four hours after CFA injection and 30 min before cFIR treatment, mice were pretreated with a nonselective adenosinergic antagonist, caffeine, the selective adenosine receptor A1 antagonist, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), the selective cannabinoid receptor type 1 antagonist, AM281, the selective cannabinoid receptor type 2 antagonist, AM630, or the nonselective opioid receptor antagonist, naloxone, and mechanical hyperalgesia was assessed. RESULTS cFIRs statistically (P < 0.05) decreased CFA-induced mechanical hyperalgesia ((82.86 ± 5.21)% in control group vs (56.67 ± 9.54)% in cFIR group) and edema ((1699.0 ± 77.8) μm in control group vs (988.7 ± 107.6) μm in cFIR group). cFIRs statistically (P < 0.05) reduced TNF-α ((0.478 ± 0.072) pg/mg of protein in control group vs (0.273 ± 0.055) pg/mg of protein in cFIR group) and IL-1β ((95.81 ± 3.95) pg/mg of protein in control group vs (80.61 ± 4.71) pg/mg of protein in cFIR group) levels and statistically (P < 0.05) increased IL-10 ((18.32 ± 0.78) pg/mg of protein in control group vs (25.89 ± 1.23) pg/mg of protein in cFIR group) levels in post-CFA-injected paws. Peripheral pre-administration of inhibitory neuroreceptor antagonists (caffeine, DPCPX, AM281, AM630 and naloxone) prevented the analgesic effects of cFIRs (P < 0.05). CONCLUSION These data provide additional support for the use of cFIRs in the treatment of painful inflammatory conditions and contribute to our understanding of the neurobiological mechanisms of the therapeutic effects of cFIRs.
Collapse
Affiliation(s)
- Ralph Fernando Rosas
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça 88137-272, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça 88137-272, Santa Catarina, Brazil
| | - Aline Armiliato Emer
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça 88137-272, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça 88137-272, Santa Catarina, Brazil
| | - Ana Paula Batisti
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça 88137-272, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça 88137-272, Santa Catarina, Brazil
| | - Daniela Dero Ludtke
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça 88137-272, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça 88137-272, Santa Catarina, Brazil
| | - Bruna Lenfers Turnes
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça 88137-272, Santa Catarina, Brazil; Laboratory of Bioenergetics and Oxidative Stress (LABOX), Federal University of Santa Catarina, Florianópolis 88049-000, Santa Catarina, Brazil
| | - Franciane Bobinski
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça 88137-272, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça 88137-272, Santa Catarina, Brazil
| | - Francisco José Cidral-Filho
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça 88137-272, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça 88137-272, Santa Catarina, Brazil
| | - Daniel Fernandes Martins
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça 88137-272, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça 88137-272, Santa Catarina, Brazil.
| |
Collapse
|
7
|
Zignego AL, Ramos-Casals M, Ferri C, Saadoun D, Arcaini L, Roccatello D, Antonelli A, Desbois AC, Comarmond C, Gragnani L, Casato M, Lamprecht P, Mangia A, Tzioufas AG, Younossi ZM, Cacoub P. International therapeutic guidelines for patients with HCV-related extrahepatic disorders. A multidisciplinary expert statement. Autoimmun Rev 2017; 16:523-541. [PMID: 28286108 DOI: 10.1016/j.autrev.2017.03.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 02/26/2017] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) is both hepatotrophic and lymphotropic virus that causes liver as well extrahepatic manifestations including cryoglobulinemic vasculitis, the most frequent and studied condition, lymphoma, and neurologic, cardiovascular, endocrine-metabolic or renal diseases. HCV-extrahepatic manifestations (HCV-EHMs) may severely affect the overall prognosis, while viral eradication significantly reduces non-liver related deaths. Different clinical manifestations may coexist in the same patient. Due to the variety of HCV clinical manifestations, a multidisciplinary approach along with appropriate therapeutic strategies are required. In the era of interferon-free anti-HCV treatments, international recommendations for the therapeutic management of HCV-EHMs are needed. This implies the need to define the best criteria to use antivirals and/or other therapeutic approaches. The present recommendations, based on qualified expert experience and specific literature, will focus on etiological (antiviral) therapies and/or traditional pathogenetic treatments that still maintain their therapeutic utility.
Collapse
Affiliation(s)
- Anna Linda Zignego
- Interdepartmental Center for Systemic Manifestations of Hepatitis Viruses (MaSVE), Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | - Manuel Ramos-Casals
- Department of Autoimmune Diseases, ICMiD Josep Font Autoimmune Lab, CELLEX-IDIBAPS, Hospital Clinic, Barcelona, Spain
| | - Clodoveo Ferri
- Chair and Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico di Modena, 41124 Modena, Italy
| | - David Saadoun
- Sorbonne University, UPMC Univ Paris 06, UMR 7211, and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France; INSERM, UMR S 959, Paris, France; CNRS, FRE3632, Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Internal Medicine and Clinical Immunology, Paris, France
| | - Luca Arcaini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Dario Roccatello
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Center of Research of Immunopathology and Rare Diseases, and Nephrology and Dialysis Unit, San G. Bosco Hospital and University of Turin, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, Pisa 56126, Italy
| | - Anne Claire Desbois
- Sorbonne University, UPMC Univ Paris 06, UMR 7211, and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France; INSERM, UMR S 959, Paris, France; CNRS, FRE3632, Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Internal Medicine and Clinical Immunology, Paris, France
| | - Cloe Comarmond
- Sorbonne University, UPMC Univ Paris 06, UMR 7211, and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France; INSERM, UMR S 959, Paris, France; CNRS, FRE3632, Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Internal Medicine and Clinical Immunology, Paris, France
| | - Laura Gragnani
- Interdepartmental Center for Systemic Manifestations of Hepatitis Viruses (MaSVE), Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Milvia Casato
- Department of Clinical Medicine, Sapienza University of Rome, Viale dell'Università 37, 00185 Rome, Italy.
| | - Peter Lamprecht
- Klinik für Rheumatologie Oberarzt, Ratzeburger Allee 160 (Haus 40), 23538 Lübeck, Germany.
| | - Alessandra Mangia
- Liver Unit, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy.
| | - Athanasios G Tzioufas
- Department of Pathophysiology, School of Medicine, University of Athens, 75 M. Asias st, Building 16, Room, 32 11527 Athens, Greece.
| | - Zobair M Younossi
- Center for Liver Diseases, Department of Medicine, Inova Fairfax Hospital, Falls Church, VA, USA; Beatty Liver and Obesity Program, Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA, USA
| | - Patrice Cacoub
- Sorbonne University, UPMC Univ Paris 06, UMR 7211, and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France; INSERM, UMR S 959, Paris, France; CNRS, FRE3632, Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Internal Medicine and Clinical Immunology, Paris, France
| |
Collapse
|
8
|
Yamaguchi M, Levy RM. The combination of β-caryophyllene, baicalin and catechin synergistically suppresses the proliferation and promotes the death of RAW267.4 macrophages in vitro. Int J Mol Med 2016; 38:1940-1946. [DOI: 10.3892/ijmm.2016.2801] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/04/2016] [Indexed: 11/05/2022] Open
|
9
|
Yamaguchi M, Levy RM. β-Caryophyllene promotes osteoblastic mineralization, and suppresses osteoclastogenesis and adipogenesis in mouse bone marrow cultures in vitro. Exp Ther Med 2016; 12:3602-3606. [PMID: 28105093 PMCID: PMC5228512 DOI: 10.3892/etm.2016.3818] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/20/2016] [Indexed: 12/16/2022] Open
Abstract
Osteoporosis is induced by the reduction in bone mass through decreased osteoblastic osteogenesis and increased osteoclastic bone resorption, and it is associated with obesity and diabetes. Osteoblasts and adipocytes are derived from bone marrow mesenchymal stem cells. The prevention of osteoporosis is an important public health concern in aging populations. β-caryophyllene, a component of various essential oils, is a selective agonist of the cannabinoid receptor type 2 and exerts cannabimimetic anti-inflammatory effects in animals. The present study aimed to identify the effect of β-caryophyllene on adipogenesis, osteoblastic mineralization and osteoclastogenesis in mouse bone marrow cell cultures in vitro. Bone marrow cells obtained from mouse femoral tissues were cultured in the presence of β-caryophyllene (0.1-100 µM) in vitro. The results revealed that β-caryophyllene stimulated osteoblastic mineralization, and suppressed adipogenesis and osteoclastogenesis. Thus, β-caryophyllene may be used as a therapeutic agent for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Robert M Levy
- Department of Clinical Development, Primus Pharmaceuticals, Inc, Scottsdale, AZ 85253, USA
| |
Collapse
|
10
|
Martinez RM, Zarpelon AC, Domiciano TP, Georgetti SR, Baracat MM, Moreira IC, Andrei CC, Verri WA, Casagrande R. Antinociceptive Effect of Tephrosia sinapou Extract in the Acetic Acid, Phenyl-p-benzoquinone, Formalin, and Complete Freund's Adjuvant Models of Overt Pain-Like Behavior in Mice. SCIENTIFICA 2016; 2016:8656397. [PMID: 27293981 PMCID: PMC4880680 DOI: 10.1155/2016/8656397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/13/2016] [Accepted: 04/21/2016] [Indexed: 06/06/2023]
Abstract
Tephrosia toxicaria, which is currently known as Tephrosia sinapou (Buc'hoz) A. Chev. (Fabaceae), is a source of compounds such as flavonoids. T. sinapou has been used in Amazonian countries traditional medicine to alleviate pain and inflammation. The purpose of this study was to evaluate the analgesic effects of T. sinapou ethyl acetate extract in overt pain-like behavior models in mice by using writhing response and flinching/licking tests. We demonstrated in this study that T. sinapou extract inhibited, in a dose (1-100 mg/kg) dependent manner, acetic acid- and phenyl-p-benzoquinone- (PBQ-) induced writhing response. Furthermore, it was active via intraperitoneal, subcutaneous, and peroral routes of administration. T. sinapou extract also inhibited formalin- and complete Freund's adjuvant- (CFA-) induced flinching/licking at 100 mg/kg dose. In conclusion, these findings demonstrate that T. sinapou ethyl acetate extract reduces inflammatory pain in the acetic acid, PBQ, formalin, and CFA models of overt pain-like behavior. Therefore, the potential of analgesic activity of T. sinapou indicates that it deserves further investigation.
Collapse
Affiliation(s)
- Renata M. Martinez
- Department of Pharmaceutical Sciences, Health Science Centre, University Hospital, Londrina State University, Londrina, PR, Brazil
| | - Ana C. Zarpelon
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Talita P. Domiciano
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Sandra R. Georgetti
- Department of Pharmaceutical Sciences, Health Science Centre, University Hospital, Londrina State University, Londrina, PR, Brazil
| | - Marcela M. Baracat
- Department of Pharmaceutical Sciences, Health Science Centre, University Hospital, Londrina State University, Londrina, PR, Brazil
| | | | - Cesar C. Andrei
- Laboratório de Pesquisa em Moléculas Bioativas, Departamento de Química, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Waldiceu A. Verri
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Health Science Centre, University Hospital, Londrina State University, Londrina, PR, Brazil
| |
Collapse
|
11
|
Hirano K, Chen WS, Chueng ALW, Dunne AA, Seredenina T, Filippova A, Ramachandran S, Bridges A, Chaudry L, Pettman G, Allan C, Duncan S, Lee KC, Lim J, Ma MT, Ong AB, Ye NY, Nasir S, Mulyanidewi S, Aw CC, Oon PP, Liao S, Li D, Johns DG, Miller ND, Davies CH, Browne ER, Matsuoka Y, Chen DW, Jaquet V, Rutter AR. Discovery of GSK2795039, a Novel Small Molecule NADPH Oxidase 2 Inhibitor. Antioxid Redox Signal 2015; 23:358-74. [PMID: 26135714 PMCID: PMC4545375 DOI: 10.1089/ars.2014.6202] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIMS The NADPH oxidase (NOX) family of enzymes catalyzes the formation of reactive oxygen species (ROS). NOX enzymes not only have a key role in a variety of physiological processes but also contribute to oxidative stress in certain disease states. To date, while numerous small molecule inhibitors have been reported (in particular for NOX2), none have demonstrated inhibitory activity in vivo. As such, there is a need for the identification of improved NOX inhibitors to enable further evaluation of the biological functions of NOX enzymes in vivo as well as the therapeutic potential of NOX inhibition. In this study, both the in vitro and in vivo pharmacological profiles of GSK2795039, a novel NOX2 inhibitor, were characterized in comparison with other published NOX inhibitors. RESULTS GSK2795039 inhibited both the formation of ROS and the utilization of the enzyme substrates, NADPH and oxygen, in a variety of semirecombinant cell-free and cell-based NOX2 assays. It inhibited NOX2 in an NADPH competitive manner and was selective over other NOX isoforms, xanthine oxidase, and endothelial nitric oxide synthase enzymes. Following systemic administration in mice, GSK2795039 abolished the production of ROS by activated NOX2 enzyme in a paw inflammation model. Furthermore, GSK2795039 showed activity in a murine model of acute pancreatitis, reducing the levels of serum amylase triggered by systemic injection of cerulein. INNOVATION AND CONCLUSIONS GSK2795039 is a novel NOX2 inhibitor that is the first small molecule to demonstrate inhibition of the NOX2 enzyme in vivo.
Collapse
Affiliation(s)
- Kazufumi Hirano
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Woei Shin Chen
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Adeline L W Chueng
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Angela A Dunne
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Tamara Seredenina
- 2 Department of Pathology and Immunology, Medical School, Centre Médical Universitaire, University of Geneva , Geneva, Switzerland
| | - Aleksandra Filippova
- 2 Department of Pathology and Immunology, Medical School, Centre Médical Universitaire, University of Geneva , Geneva, Switzerland
| | - Sumitra Ramachandran
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Angela Bridges
- 3 Platform Technology & Sciences Department, GlaxoSmithKline , Stevenage, United Kingdom
| | - Laiq Chaudry
- 3 Platform Technology & Sciences Department, GlaxoSmithKline , Stevenage, United Kingdom
| | - Gary Pettman
- 3 Platform Technology & Sciences Department, GlaxoSmithKline , Stevenage, United Kingdom
| | - Craig Allan
- 3 Platform Technology & Sciences Department, GlaxoSmithKline , Stevenage, United Kingdom
| | - Sarah Duncan
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Kiew Ching Lee
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Jean Lim
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - May Thu Ma
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Agnes B Ong
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Nicole Y Ye
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Shabina Nasir
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Sri Mulyanidewi
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Chiu Cheong Aw
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Pamela P Oon
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Shihua Liao
- 4 Neuroimmunology Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Shanghai, China
| | - Dizheng Li
- 4 Neuroimmunology Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Shanghai, China
| | - Douglas G Johns
- 5 Metabolic Pathways and Cardiovascular Therapeutic Area, GlaxoSmithKline , King of Prussia, Pennsylvania
| | - Neil D Miller
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Ceri H Davies
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Edward R Browne
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Yasuji Matsuoka
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Deborah W Chen
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Vincent Jaquet
- 2 Department of Pathology and Immunology, Medical School, Centre Médical Universitaire, University of Geneva , Geneva, Switzerland
| | - A Richard Rutter
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| |
Collapse
|
12
|
Abstract
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
13
|
Martinez RM, Longhi-Balbinot DT, Zarpelon AC, Staurengo-Ferrari L, Baracat MM, Georgetti SR, Sassonia RC, Verri WA, Casagrande R. Anti-inflammatory activity of betalain-rich dye of Beta vulgaris: effect on edema, leukocyte recruitment, superoxide anion and cytokine production. Arch Pharm Res 2014; 38:494-504. [PMID: 25173360 DOI: 10.1007/s12272-014-0473-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 08/21/2014] [Indexed: 02/06/2023]
Abstract
We have recently developed betalain-rich beetroot (Beta vulgaris) dye (betalain) to be used in food products. Betalain (30-300 mg/kg) intraperitoneal (i.p.) treatment diminished carrageenan (100 µg/paw)-induced paw edema and neutrophil migration to the paw skin tissue. Betalain (100 mg/kg) treatment by subcutaneous or per oral routes also inhibited the carrageenan-induced paw edema. Importantly, the post-treatment with betalain (100 mg/kg, i.p.) significantly inhibited carrageenan- and complete Freund's adjuvant (10 µl/paw)-induced paw edema. Betalain (100 mg/kg) also reduced carrageenan (500 µg/cavity)-induced recruitment of total leukocytes, including mononuclear cells and neutrophils, as well as increasing vascular permeability in the peritoneal cavity. Furthermore, betalain significantly reduced carrageenan-induced superoxide anion, tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-1β levels in the peritoneal fluid, as well as augmenting IL-10 levels. Therefore, this compound presents prominent anti-inflammatory effect on carrageenan-induced paw edema and peritonitis by reducing the production of superoxide anion and the cytokines TNF-α and IL-1β, in addition to increasing IL-10 levels. These results suggest that betalain shows therapeutic potential that could be utilized in the treatment of inflammation-associated diseases.
Collapse
Affiliation(s)
- Renata M Martinez
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Estadual de Londrina, Londrina, Parana, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|