1
|
Ferramola FF, Marrassini C, Alonso MR, Mattar Dominguez MA, Vega AE, Anesini C. Origanum vulgare: peroxidase-, superoxide dismutase- and immunomodulatory activities on macrophages activated with Helicobacter pylori derivatives. Nat Prod Res 2024; 38:3941-3949. [PMID: 37830772 DOI: 10.1080/14786419.2023.2269593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
Helicobacter pylori, invades the gastric mucosa and is one of the causative agents of stomach cancer and peptic ulcers. Origanum vulgare, is a flavouring herb used worldwide. But little is known about the effects of extracts prepared by maceration in cold PBS. This study was aimed at determining the superoxide dismutase (SOD)- and peroxidase (Px)-like antioxidant activities as well as the immunomodulatory activity (anti-inflammatory/pro-inflammatory) of an aqueous extract of O. vulgare by evaluating the production of nitric oxide (NO) in macrophages stimulated with H. pylori derivatives. The cold extract presented SOD-like and Px-like activities with effective concentration 50 (EC50) values of Px = 489.7 ± 48 µg/ml and SOD= 384.7 ± 30 µg/ml. The extract was also capable of modulating the production of NO in macrophages stimulated by H. pylori derivatives by exerting a pro-inflammatory activity at high concentrations and an anti-inflammatory activity at low concentrations.
Collapse
Affiliation(s)
- Florencia Fátima Ferramola
- Immunology Laboratory, Microbiology and Immunology Area, Department of Biochemistry, Faculty of Chemistry Biochemistry and Pharmacy, National University of SanLuis, San Luis, Argentina
| | - Carla Marrassini
- National Council for Scientific and Technical Research (CONICET), Institute of Chemistry and Drug Metabolism (IQUIMEFA), Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - María Rosario Alonso
- National Council for Scientific and Technical Research (CONICET), Institute of Chemistry and Drug Metabolism (IQUIMEFA), Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - María Aida Mattar Dominguez
- Immunology Laboratory, Microbiology and Immunology Area, Department of Biochemistry, Faculty of Chemistry Biochemistry and Pharmacy, National University of SanLuis, San Luis, Argentina
| | - Alba Edith Vega
- Immunology Laboratory, Microbiology and Immunology Area, Department of Biochemistry, Faculty of Chemistry Biochemistry and Pharmacy, National University of SanLuis, San Luis, Argentina
| | - Claudia Anesini
- National Council for Scientific and Technical Research (CONICET), Institute of Chemistry and Drug Metabolism (IQUIMEFA), Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
Al Kamaly O, Drioiche A, Remok F, Saidi S, El Imache A, El Makhoukhi F, Alsfouk BA, Zair T. Identification of compounds from Origanum compactum and Origanum elongatum using HPLC/UV-ESI-MS and comparative analysis of their antioxidant, antimicrobial, anticoagulant, and antidiabetic properties. Saudi Pharm J 2024; 32:102184. [PMID: 39420992 PMCID: PMC11483316 DOI: 10.1016/j.jsps.2024.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024] Open
Abstract
The aim was to assess the phytochemical composition, phenolic component levels, and biological properties of the flowering tops of Origanum compactum and Origanum elongatum. The study employed phytochemical assays, spectrophotometric techniques for quantitative analysis of polyphenols, flavonoids, and tannins, and compound identification using HPLC/UV-ESI-MS. The antimicrobial, antioxidant, anticoagulant, and antidiabetic properties were examined both in vitro and in vivo. The results showed that the O. compactum extract had significantly high levels of total polyphenols, measuring 47.368 mg gallic acid equivalents per gram, and flavonoids, measuring 14.839 mg quercetin equivalents per gram. The phytochemical examination of O. compactum revealed that lithospermic acid accounted for 36.82 % of the chemicals detected, followed by salvianolic acid C at 12.57 % and ros-marinic acid at 6.01 %. The main constituents of O. elongatum are salvianolic acid C (14.46 %), luteolin-3-O-glucuronide (13.51 %), salvianolic acid B (12.24 %), rosmarinic acid (7.83 %), and rutin (6.18 %). The results demonstrated different levels of effectiveness against the investigated microorganisms, with the extract from O. compactum exhibiting better activity, particularly against Gram-negative bacteria, certain yeasts, and the fungus Aspergillus niger. The aqueous extracts of both Origanum species demonstrate significant antioxidant activity. O. compactum has a higher total antioxidant capacity (IC50 of 35.083 μg/mL) compared to O. elongatum (IC50 of 77.080 μg/mL). However, O. elongatum has a higher reducing power (35.697 μg/mL) compared to O. compactum (42.563 μg/mL). In vivo evaluations revealed that the aqueous extracts of O. compactum and O. elongatum possess significant antihyperglycemic and anticoagulant properties. The extracts demonstrated a marked reduction in blood glucose levels during the oral glucose tolerance test (OGTT) in Wistar rats and effectively prolonged both prothrombin time (PT) and activated partial thromboplastin time (aPTT), highlighting their ability to inhibit coagulation pathways. Moreover, their comparable efficacy to standard antihyperglycemic medications and absence of severe toxicity, even at high doses, underscore their therapeutic potential for safe and effective treatment applications. Between the two species, O. compactum exhibited superior efficacy in key biological activities such as antioxidant, antimicrobial, and anticoagulant properties, making it a strong candidate for therapeutic applications. This study underscores the value of Origanum species as a rich source of bioactive compounds, offering significant potential in pharmaceuticals, nutraceuticals, and agri-food industries. The findings pave the way for further exploration of their diverse applications.
Collapse
Affiliation(s)
- Omkulthom Al Kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman. University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Aziz Drioiche
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201 Zitoune, Meknes 50070, Morocco
- Higher Institute of Nursing Professions and Health Techniques of Fez, Regional Health Directorate Fez-Meknes, EL Ghassani Hospital, 30000 Fez, Morocco
| | - Firdaous Remok
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201 Zitoune, Meknes 50070, Morocco
| | - Soukaina Saidi
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201 Zitoune, Meknes 50070, Morocco
| | - Ahde El Imache
- Laboratory of Innovative Technologies, Process Engineering Department, Higher School of Technology Fez, USMBA, Fes, Morocco
| | - Fadoua El Makhoukhi
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201 Zitoune, Meknes 50070, Morocco
| | - Bshra A. Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman. University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Touriya Zair
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201 Zitoune, Meknes 50070, Morocco
| |
Collapse
|
3
|
Zejli H, Metouekel A, Zouirech O, Maliki I, El Moussaoui A, Lfitat A, Bousseraf FZ, Almaary KS, Nafidi HA, Khallouki F, Bourhia M, Taleb M, Abdellaoui A. Phytochemical Analysis, Antioxidant, Analgesic, Anti-Inflammatory, Hemagglutinin and Hemolytic Activities of Chemically Characterized Extracts from Origanum grosii (L.) and Thymus pallidus (L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:385. [PMID: 38337918 PMCID: PMC10857174 DOI: 10.3390/plants13030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Origanum grosii (L.) and Thymus pallidus (L.) are medicinal plants recognized for their uses in traditional medicine. In this context, the aim of this article is to highlight the results of a phytochemical analysis (HPLC), with particular emphasis on the antioxidant (DPPH, TAC, and FRAP), analgesic, anti-inflammatory, haemagglutinin-test-related, and hemolytic activities of the total extracts of these plants. Phytochemical analysis via HPLC revealed that licoflavone C (30%) is the main compound in Origanum grosii, while hesperidin (43%) is found in T. pallidus. Evaluation of the antioxidant capacity of Origanum grosii and Thymus pallidus using the DPPH, TAC, and FRAP methods revealed an IC50 of the order of 0.085 mg/mL and 0.146 mg/mL, an EC50 of the order of 0.167 mg/mL and 0.185 mg/mL, and a total antioxidant capacity of between 750 mg EQ/g and 900 mg EQ/g, respectively. Analgesic evaluations revealed writhes inhibition of the order of 97.83% for O. grosii and 90% for T. pallidus. In addition, both plant extracts showed limited hemolytic activity, not exceeding 30% at a concentration of 100 mg/mL. Evaluation of the anti-inflammatory potential showed edema inhibition of the order of 94% (800 mg/kg) for O. grosii and 86% (800 mg/kg) for T. pallidus. These results highlight the potential applications of these extracts in pharmacological research.
Collapse
Affiliation(s)
- Hind Zejli
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; (H.Z.)
| | - Amira Metouekel
- Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes (UEMF), Meknes Road, Fez 30000, Morocco
| | - Otmane Zouirech
- Laboratories of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Imane Maliki
- Laboratory of Health and Environment, Department of Biology, Moulay Ismail University, Meknes 50050, Morocco;
| | - Abdelfattah El Moussaoui
- Plant Biotechnology Team, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan 93002, Morocco
| | - Aziza Lfitat
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; (H.Z.)
| | - Fatima Zahra Bousseraf
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; (H.Z.)
| | - Khalid S. Almaary
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Farid Khallouki
- Team of Ethnopharmacology and Pharmacognosy, Biology Department, Faculty of Sciences and Techniques, University Moulay Ismail, Errachidia 52000, Morocco
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco
| | - Mustapha Taleb
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; (H.Z.)
| | - Abdelfattah Abdellaoui
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; (H.Z.)
| |
Collapse
|
4
|
Hassanein EHM, Kamel EO, Gad-Elrab WM, Ahmed MA, Mohammedsaleh ZM, Ali FEM. Lansoprazole attenuates cyclophosphamide-induced cardiopulmonary injury by modulating redox-sensitive pathways and inflammation. Mol Cell Biochem 2023; 478:2319-2335. [PMID: 36717473 PMCID: PMC10520119 DOI: 10.1007/s11010-023-04662-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023]
Abstract
Cyclophosphamide (CPA) is a classical chemotherapeutic drug widely used as an anticancer and immunosuppressive agent. However, it is frequently associated with significant toxicities to the normal cells of different organs, including the lung and heart. Lansoprazole (LPZ), a proton pump inhibitor (PPI), possesses antioxidant and anti-inflammatory properties. The current study investigated how LPZ protects against CPA-induced cardiac and pulmonary damage, focusing on PPARγ, Nrf2, HO-1, cytoglobin, PI3K/AKT, and NF-κB signaling. Animals were randomly assigned into four groups: normal control group (received vehicle), LPZ only group (Rats received LPZ at a dose of 50 mg/kg/day P.O. for 10 days), CPA group (CPA was administered (200 mg/kg) as a single i.p. injection on the 7th day), and cotreatment group (LPZ plus CPA). Histopathological and biochemical analyses were conducted. Our results revealed that LPZ treatment revoked CPA-induced heart and lung histopathological alterations. Also, LPZ potently mitigated CPA-induced cardiac and pulmonary oxidative stress through the activation of PPARγ, Nrf2/HO-1, cytoglobin, and PI3K/AKT signaling pathways. Also, LPZ effectively suppressed inflammatory response as evidenced by down-regulating the inflammatory strategic controller NF-κB, MPO, and pro-inflammatory cytokines. The present findings could provide a mechanistic basis for understanding LPZ's role in CPA-induced cardiopulmonary injury through the alleviation of oxidative stress and inflammatory burden.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Esam O Kamel
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Wail M Gad-Elrab
- Department of Human Anatomy & Embryology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Mohammed A Ahmed
- Pathology Department, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Kingdom of Saudi Arabia
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| |
Collapse
|
5
|
Attallah NGM, Kabbash A, Negm WA, Elekhnawy E, Binsuwaidan R, Al-Fakhrany OM, Shaldam MA, Moglad E, Tarek M, Samir N, Fawzy HM. Protective Potential of Saussurea costus (Falc.) Lipsch. Roots against Cyclophosphamide-Induced Pulmonary Injury in Rats and Its In Vitro Antiviral Effect. Pharmaceuticals (Basel) 2023; 16:318. [PMID: 37259460 PMCID: PMC9959296 DOI: 10.3390/ph16020318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 10/29/2023] Open
Abstract
Diseases and infections of the respiratory tract are common global causes of morbidity and mortality. Our study attempts to elucidate a novel remedy for respiratory ailments, in addition to identifying and quantifying the metabolites of Saussurea costus root extract (SCRE) using HPLC. Then, in vitro antiviral and in vivo lung protective effects were elucidated. The in vitro antiviral potential of SCRE was analyzed via plaque assay against the low pathogenic human coronavirus (HCoV-229E) and human influenza virus (H1N1). The value of the half maximal inhibitory concentrations (IC50) of SCRE against HCoV-229E and H1N1 influenza virus were 23.21 ± 1.1 and 47.6 ± 2.3 µg/mL, respectively. SCRE showed a histological improvement, namely a decrease in inducible nitric oxide synthase (iNOS) and caspase-3 immunoexpression in in vivo cyclophosphamide (CP)-induced acute lung injury (ALI). Moreover, there was a considerable decline in microRNA-let-7a gene expression and a significant rise in heme oxygenase-1 (HO-1) gene expression, with a marked decrease in the malondialdehyde (MDA) level. Molecular docking studies revealed that the major constituents of SCRE have a good affinity for caspase-3, HO-1, and iNOS proteins. In conclusion, a traditional plant SCRE could be a promising source of novel therapeutic agents for treating and protecting respiratory tract diseases. More future investigations should be carried out to reveal its efficacy clinically.
Collapse
Affiliation(s)
| | - Amal Kabbash
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Engy Elekhnawy
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Reem Binsuwaidan
- Department of Pharmaceutical Science, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Omnia Momtaz Al-Fakhrany
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Moataz A. Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Marwa Tarek
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo 11865, Egypt
| | - Nehal Samir
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo 11865, Egypt
| | - Heba M. Fawzy
- Histology and Cell Biology Department, Faculty of Medicine, Ain Shams University, Cairo 11865, Egypt
| |
Collapse
|
6
|
Heidarizadi S, Rashidi Z, Jalili C, Gholami M. Overview of biological effects of melatonin on testis: A review. Andrologia 2022; 54:e14597. [PMID: 36168927 DOI: 10.1111/and.14597] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Infertility is a major global health issue and male factors account for half of all infertility cases. One of the causes of male infertility is the loss of spermatogonial stem cells, which may occur because of chemotherapy, radiotherapy or genetic defects. In numerous animal species, the evidence suggests the pineal gland and melatonin secretion in their reproductive activities are involved. Recently, considerable attention has pointed to the usage of melatonin in the treatment of diseases. Melatonin is associated with the regulation of circadian and seasonal rhythmic functions, immune system functions, retinal physiology, spermatogenesis and inhibition of tumour growth in different species. Several studies demonstrated that melatonin acts as an anti-apoptotic, anti-inflammatory, anticancer and antioxidant agent. Melatonin can also protect testicles and spermatogonia against oxidative damage, chemotherapy drugs, environmental radiation, toxic substances, hyperthermia, ischemia/reperfusion, diabetes-induced testicular damage, metal-induced testicular toxicity, improve sperm quality and it affects the testosterone secretion pathway by affecting Leydig cells. Therefore, the objective of this study is to investigate the biological effects of melatonin as a natural antioxidant on testicles and their disorders.
Collapse
Affiliation(s)
- Somayeh Heidarizadi
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Rashidi
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Cyrus Jalili
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammadreza Gholami
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
Uclaray CC, Vidallon MLP, Almeda RA, Cumagun CJR, Reyes CT, Rodriguez EB. Encapsulation of wild oregano, Plectranthus amboinicus (Lour.) Spreng, phenolic extract in baker's yeast for the postharvest control of anthracnose in papaya. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4657-4667. [PMID: 35178723 DOI: 10.1002/jsfa.11826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/08/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Anthracnose caused by Colletotrichum gloeosporioides is considered as a major postharvest disease affecting many fruits. This plant disease is traditionally managed with synthetic fungicides, which are generally toxic and are linked to pathogen resistance. Recently, microencapsulated bioactives have been developed as potential alternative strategies to these methods, while utilizing natural fungicides and other phytochemicals. Wild oregano, Plectranthus amboinicus (Lour.) Spreng, contains potent antimicrobial phenolics, but these compounds are volatile and relatively unstable, which limits their efficacy during application. Herein, a baker's yeast microencapsulation system was applied to improve the stability of wild oregano phenolic extract (WOPE) and enhance its antifungal activity against anthracnose. RESULTS Encapsulation of WOPE in plasmolyzed yeast cells afforded a high encapsulation efficiency (93%) and yielded WOPE-loaded yeast microcapsules (WLYMs) with an average diameter of 2.65 μm. Storage stability studies showed WLYMs are stable for at least 4 months. A 24 -h in vitro release experiment showed that WLYMs had an initial burst release upon redispersion in water, followed by a controlled release to about 80% of the loaded WOPE. Upon application as a spray-type postharvest treatment for papaya, WLYMs exhibited a significantly improved mycelial inhibitory action against C. gloeosporioides and greatly reduced the anthracnose symptoms in papaya fruits. CONCLUSION This study presented a yeast microencapsulation system that can effectively stabilize WOPE and enhance its antifungal activity, making this microparticle formulation a promising environmentally safe postharvest treatment option to combat anthracnose symptoms in papaya fruits. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cristina C Uclaray
- Institute of Chemistry, College of Arts and Science, University of the Philippines, Los Baños, Philippines
| | - Mark Louis P Vidallon
- Institute of Chemistry, College of Arts and Science, University of the Philippines, Los Baños, Philippines
- School of Chemistry, Monash University, Clayton, VIC, Australia
| | - Ronaniel A Almeda
- Institute of Agricultural and Bio-Systems Engineering, College of Engineering and Agro-Industrial Technology, University of the Philippines, Los Baños, Philippines
| | - Christian Joseph R Cumagun
- Institute of Weed Science, Entomology and Plant Pathology, College of Agriculture and Food Science, University of the Philippines, Los Baños, Philippines
- University of Idaho, Parma Research and Extension Center, 29603 U of I Lane, Parma, Idaho, USA
| | - Charisse T Reyes
- School of Chemistry, Monash University, Clayton, VIC, Australia
- Faculty of Education, University of the Philippines Open University, Los Baños, Philippines
| | - Evelyn B Rodriguez
- Institute of Chemistry, College of Arts and Science, University of the Philippines, Los Baños, Philippines
| |
Collapse
|
8
|
Saadat S, Beigoli S, Khazdair MR, Amin F, Boskabady MH. Experimental and Clinical Studies on the Effects of Natural Products on Noxious Agents-Induced Lung Disorders, a Review. Front Nutr 2022; 9:867914. [PMID: 35662950 PMCID: PMC9158561 DOI: 10.3389/fnut.2022.867914] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/16/2022] [Indexed: 12/27/2022] Open
Abstract
The harmful effects of various noxious agents (NA) are well-known and there are reports regarding the induction of various lung disorders due to exposure to these agents both in animal and human studies. In addition, various studies have shown the effects of natural products (NP) on NA-induced lung disorders. The effects of various NP, including medicinal plants and their derivatives, on lung injury induced by NA, were reviewed in this study. The improving effects of various NP including medicinal plants, such as Aloe vera, Anemarrhena asphodeloides, Avena sativa, Crocus sativus, Curcuma longa, Dioscorea batatas, Glycyrrhiza glabra, Gentiana veitchiorum, Gentiopicroside, Houttuynia cordata, Hibiscus sabdariffa, Hochu-ekki-to, Hippophae rhamnoides, Juglans regia, Melanocarpa fruit juice, Mikania glomerata, Mikania laevigata, Moringa oleifera, Myrtus communis L., Lamiaceae, Myrtle, Mosla scabra leaves, Nectandra leucantha, Nigella sativa, Origanum vulgare L, Pulicaria petiolaris, Paulownia tomentosa, Pomegranate seed oil, Raphanus sativus L. var niger, Rosa canina, Schizonepeta tenuifolia, Thymus vulgaris, Taraxacum mongolicum, Tribulus Terrestris, Telfairia occidentalis, Taraxacum officinale, TADIOS, Xuebijing, Viola yedoensis, Zataria multiflora, Zingiber officinale, Yin-Chiao-San, and their derivatives, on lung injury induced by NA were shown by their effects on lung inflammatory cells and mediators, oxidative stress markers, immune responses, and pathological changes in the experimental studies. Some clinical studies also showed the therapeutic effects of NP on respiratory symptoms, pulmonary function tests (PFT), and inflammatory markers. Therefore, the results of this study showed the possible therapeutic effects of various NP on NA-induced lung disorders by the amelioration of various features of lung injury. However, further clinical studies are needed to support the therapeutic effects of NP on NA-induced lung disorders for clinical practice purposes.
Collapse
Affiliation(s)
- Saeideh Saadat
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Amin
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- *Correspondence: Mohammad Hossein Boskabady ;
| |
Collapse
|
9
|
Armandeh M, Bameri B, Samadi M, Heidari S, Foroumad R, Abdollahi M. A systematic review of nonclinical studies on the effect of curcumin in chemotherapy-induced cardiotoxicity. Curr Pharm Des 2022; 28:1843-1853. [PMID: 35570565 DOI: 10.2174/1381612828666220513125312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/31/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Various anticancer drugs are effective therapeutic agents for cancer treatment; however, they cause severe toxicity in body organs. Cardiotoxicity is one of the most critical side effects of these drugs. Based on various findings, turmeric extract has positive effects on cardiac cells. OBJECTIVE This study aims to evaluate how curcumin as the main component of turmeric may affect chemotherapy-induced cardiotoxicity. METHOD Database search was performed up to April 2021 using "curcumin OR turmeric OR Curcuma longa" and "chemotherapy-induced cardiac disease," including all their equivalents and similar terms. After screening the total articles obtained from the electronic databases, 25 relevant articles were included in this systematic review. RESULTS The studies demonstrate lower body weight and increased mortality rates due to doxorubicin administration. Besides, cancer therapeutic agents induced various morphological and biochemical abnormalities compared to the non-treated groups. Based on most of the obtained results, curcumin at nontoxic doses can protect the cardiac cells mainly through modulating antioxidant capacity, regulation of cell death, and anti-inflammatory effects. Nevertheless, according to a minority of findings, curcumin increases the susceptibility of the rat cardiomyoblast cell line (H9C2) to apoptosis triggered by doxorubicin. CONCLUSION According to most nonclinical studies, curcumin can have the potential of cardioprotective effects against cardiotoxicity induced by chemotherapy. However, based on limited, contradictory findings demonstrating the function of curcumin in potentiating doxorubicin-induced cardiotoxicity, well-designed studies are needed to evaluate the safety and effectiveness of treatment with new formulations of this compound during cancer therapy.
Collapse
Affiliation(s)
- Maryam Armandeh
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Tehran University of Medical Sciences, Tehran, Iran
| | - Behnaz Bameri
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Tehran University of Medical Sciences, Tehran, Iran
| | - Mahedeh Samadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shima Heidari
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Roham Foroumad
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Alsemeh AE, Abdullah DM. Protective effect of alogliptin against cyclophosphamide-induced lung toxicity in rats: Impact on PI3K/Akt/FoxO1 pathway and downstream inflammatory cascades. Cell Tissue Res 2022; 388:417-438. [PMID: 35107620 PMCID: PMC9035424 DOI: 10.1007/s00441-022-03593-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/19/2022] [Indexed: 12/16/2022]
Abstract
Cyclophosphamide (CP)-induced lung toxicity is a remaining obstacle against the beneficial use of this chemotherapeutic agent. More considerations were given to the role of Alogliptin (ALO) in ameliorating CP-induced toxicities in many tissues. We designed this study to clarify the protective potential of ALO against CP-induced lung toxicity in rats. ALO was administered for 7 days. Single-dose CP was injected on the 2nd day (200 mg/kg: i.p.) to induce lung toxicity. Rats were divided into four groups: control, ALO-treated, CP-treated and ALO + CP-treated group. Leucocytic count, total proteins, LDH activity, TNF-α, and IL-6 were estimated in the bronchoalveolar lavage fluid (BALF). The oxidative/antioxidants (MDA, Nrf2, TAO and GSH), inflammatory (NFκB), fibrotic (TGF-β1) and apoptotic (PI3K/Akt/FoxO1) markers in pulmonary homogenates were biochemically evaluated. Rat lung sections were examined histologically (light and electron microscopic examination) and immunohistochemically (for iNOS and CD68 positive alveolar macrophages). CP significantly increased oxidative stress, inflammation, fibrosis, and apoptosis markers as well as deteriorated the histopathological pulmonary architecture. These hazardous effects were significantly ameliorated by ALO treatment. ALO protected against CP-induced lung toxicity by mitigating the oxidative, inflammatory and fibrotic impacts making it a promising pharmacological therapy for mitigating CP-induced lung toxicity.
Collapse
Affiliation(s)
- Amira Ebrahim Alsemeh
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Doaa M Abdullah
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
11
|
Ethnobotanical treatment of respiratory diseases in the central Middle Atlas (Morocco): Qualitative and quantitative approach. Eur J Integr Med 2021. [DOI: 10.1016/j.eujim.2021.101358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Liaqat I, Mahreen A, Arshad M, Arshad N. Antimicrobial and toxicological evaluation of Origanum vulgare: an in vivo study. BRAZ J BIOL 2021; 83:e244551. [PMID: 34378661 DOI: 10.1590/1519-6984.244551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/14/2021] [Indexed: 11/22/2022] Open
Abstract
Origanum vulgare has been of great interest in academia and pharma industry due to its antioxidant, antifungal and antitumor properties. The present study aimed to find the anti-MRSA potential and in vivo toxicity assessments of O. vulgare. O. vulgare extract was used to monitor anti-MRSA activity in mice. Following MRSA established infection in mice (Mus musculus), treatment with O. vulgare was continued for 7 days. Autopsies were performed and re-isolation, gross lesion scoring and bacterial load in various organs were measured. Additionally, blood sample was analysed for hematological assays. Toxicity assessment of O. vulgare potential as medicine was done at 200 mg/kg and 400 mg/kg by evaluating liver and kidney functions. Bacterial load and gross lesion in lungs and heart were significantly low compared to positive control following O. vulgare treatment. Likewise, O. vulgare treated groups had hematological, neutrophil and TLC values similar to control groups. Increased AST, ALP and total bilirubin alongwith marked hepatocellular degeneration and distortion around the central vein, inflammatory cell infiltration, and cytoplasmic vacuolization of hepatic cells was observed at higher dose. It is concluded that crude extract of O. vulgare may contain beneficial secondary metabolites and in future may be explored for curing infectious diseases.
Collapse
Affiliation(s)
- I Liaqat
- GC University, Department of Zoology, Microbiology Lab, Lahore, Pakistan
| | - A Mahreen
- University of Lahore, Institute of Molecular Biology and Biotechnology, Department of Zoology, Lahore, Pakistan
| | - M Arshad
- University of Education, Department of Zoology, Lahore, Pakistan
| | - N Arshad
- University of Lahore, Institute of Molecular Biology and Biotechnology, Department of Zoology, Lahore, Pakistan
| |
Collapse
|
13
|
Zhaorigetu, Farrag IM, Belal A, Badawi MHA, Abdelhady AA, Galala FMAA, El-Sharkawy A, EL-Dahshan AA, Mehany ABM. Antiproliferative, Apoptotic Effects and Suppression of Oxidative Stress of Quercetin against Induced Toxicity in Lung Cancer Cells of Rats: In vitro and In vivo Study. J Cancer 2021; 12:5249-5259. [PMID: 34335941 PMCID: PMC8317526 DOI: 10.7150/jca.52088] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 06/05/2021] [Indexed: 11/19/2022] Open
Abstract
In the present study, quercetin was examined against lung human cancer cells using A549 and H69 cancer cell lines in addition to normal non cancer cells (W138). Two genes Bax and Bcl-2 that play an important role in apoptosis pathways were investigated. Also Immunohistochemical study for caspase-3 which is considered as indicator for apoptosis was performed. Quercetin showed good anti proliferative activity against tested lung cancer cell lines, IC50 values on A549 are 8.65, 7.96 and 5.14 µg/ml at 24, 48 and 72h respectively. Also significant effects of quercetin on Bax, Bcl-2 and caspase-3 were observed, that can prove its ability to induce apoptosis. On the other hand quercetin showed good therapeutic effects against cyclophosphamide induced lung toxicity that were observed in the histopathology study. In vitro studies were also performed such as cell cycle analysis through flowcytometry. The obtained results from all these performed analysis proved that quercetin can induce apoptosis in human lung cancer cells, additionally quercetin showed ability to reduce MDA and increase SOD and GSHP levels which indicates its ability in suppressing oxidative stress, Quercetin has played a therapeutic role in cyclophosphamide induced lung toxicity as it has improved restoring of the damaged lung tissue as discussed in this research work.
Collapse
Affiliation(s)
- Zhaorigetu
- Thoracic Surgery, Inner Mongolia People's Hospital, Hohhot City, Inner Mongolia Autonomous Region, 010020, China
| | - Islam M Farrag
- Forensic Medicine & Clinical Toxicology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099,Taif 21944, Saudi Arabia
| | - Manal H. Al Badawi
- Department of anatomy, Faculty of Medicine, Helwan University, Helwan, Egypt
| | | | | | - Abdou El-Sharkawy
- Department of anatomy, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Asmaa A. EL-Dahshan
- Department of zoology Faculty of science (Girls branch), Al-Azhar University, Cairo, Egypt
| | - Ahmed B. M. Mehany
- Department of zoology Faculty of science, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
14
|
Berköz M, Yalın S, Özkan-Yılmaz F, Özlüer-Hunt A, Krośniak M, Francik R, Yunusoğlu O, Adıyaman A, Gezici H, Yiğit A, Ünal S, Volkan D, Yıldırım M. Protective effect of myricetin, apigenin, and hesperidin pretreatments on cyclophosphamide-induced immunosuppression. Immunopharmacol Immunotoxicol 2021; 43:353-369. [PMID: 33905277 DOI: 10.1080/08923973.2021.1916525] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
Aim: Major side effects of cyclophosphamide administration are immunosuppression and myelosuppression. The immunomodulatory effects of plant bioactive compounds on chemotherapy drug-induced immunosuppression may have significant effects in cancer treatment. For this reason, we investigated the immunomodulatory effect of myricetin, apigenin, and hesperidin in cyclophosphamide-induced immunosuppression in rats.Methods: In our study, a total of 64 rats were used, and divided into eight equal groups. These groups were: control, cyclophosphamide, cyclophosphamide + myricetin (100 mg/kg), cyclophosphamide + myricetin (200 mg/kg), cyclophosphamide + apigenin (100 mg/kg), cyclophosphamide + apigenin (200 mg/kg), cyclophosphamide + hesperidin (100 mg/kg), and cyclophosphamide + hesperidin (200 mg/kg). Myricetin, apigenin, and hesperidin pretreatments were performed for 14 d, while cyclophosphamide application (200 mg/kg) was performed only on the 4th day of the study. Levels of humoral antibody production, quantitative hemolysis, macrophage phagocytosis, splenic lymphocyte proliferation, and natural killer cell cytotoxicity were determined. In addition, we measured pro-inflammatory cytokines, and followed lipid peroxidation and antioxidant markers and examined the histology of bone marrow, liver and spleen in all groups.Results: During cyclophosphamide treatment, all three phytochemicals increased the levels of humoral antibody production, quantitative hemolysis, macrophage phagocytosis, splenic lymphocyte proliferation, antioxidant markers, and natural killer cell cytotoxicity. Moreover, the agents decreased the levels of pro-inflammatory cytokines and mediators, reduced lipid peroxidation markers, and reduced tissue damage in liver, spleen, and bone marrow.Conclusion: Our study demonstrated that myricetin, apigenin, and hesperidin can reduce the immunosuppressive effect of cyclophosphamide by enhancing both innate and adaptive immune responses, and these compounds may be useful immunomodulatory agents during cancer chemotherapy.
Collapse
Affiliation(s)
- Mehmet Berköz
- Department of Biochemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Turkey
| | - Serap Yalın
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Ferbal Özkan-Yılmaz
- Department of Basic Sciences, Faculty of Fisheries, Mersin University, Mersin, Turkey
| | - Arzu Özlüer-Hunt
- Department of Aquaculture, Faculty of Fisheries, Mersin University, Mersin, Turkey
| | - Mirosław Krośniak
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Kraków, Poland
| | - Renata Francik
- Department of Bioorganic Chemistry, Medical College, Jagiellonian University, Kraków, Poland
| | - Oruç Yunusoğlu
- Department of Medical Pharmacology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Abdullah Adıyaman
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Turkey
| | - Hava Gezici
- Department of Biochemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Turkey
| | - Ayhan Yiğit
- Department of Biochemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Turkey
| | - Seda Ünal
- Department of Biochemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Turkey
| | - Davut Volkan
- Department of Biochemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Turkey
| | - Metin Yıldırım
- Department of Pharmacy Services, Vocational School of Health Services, Tarsus University, Mersin, Turkey
| |
Collapse
|
15
|
Ahmadi A. The Beneficial Roles of Herbal Medicine and Natural Product in CNS Disorders and Neurodegeneration. Curr Pharm Des 2021; 27:331. [PMID: 33596792 DOI: 10.2174/138161282703210204163640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
16
|
The role of taurine on chemotherapy-induced cardiotoxicity: A systematic review of non-clinical study. Life Sci 2020; 265:118813. [PMID: 33275984 DOI: 10.1016/j.lfs.2020.118813] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/13/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
AIMS Although chemotherapeutic agents have highly beneficial effects against cancer, they disturb the body's normal homeostasis. One of the critical side effects of chemotherapeutic agents is their deleterious effect on the cardiac system, which causes limitations of their clinical usage. Taurine constitutes more than 50% of the amino acids in the heart. The use of taurine might prevent chemotherapy-induced cardiotoxicity. This systematic study aims to evaluate the protective role of taurine against cardiotoxicity induced by chemotherapy. METHODS A systematic search was performed in databases up to November 2020, and the review is designed on PRISMA guidelines. The search keywords were selected based on our study target and were searched in the title and abstract. After the consecutive screening, out of a whole of 94 articles, 8 articles were included according to our inclusion and exclusion criteria. KEY FINDINGS According to the study results, chemotherapy decreases body and heart weight and increases mortality. Also, it induces some biochemical and histological changes compared to the control group. By co-administration of taurine with chemotherapy, alterations returned near to the average level. These protective effects of taurine are mediated through anti-oxidant, anti-inflammatory, and anti-apoptotic properties. SIGNIFICANCE Based on evaluated non-clinical studies, taurine ameliorates chemotherapy-induced cardiotoxicity, but its possible interaction with the efficacy of anti-cancer medicines that mostly act through induction of oxidants remains to be elucidated in the future. This needs conducting well-designed studies to assess the effectiveness and safety of this combination simultaneously.
Collapse
|
17
|
de Torre MP, Vizmanos JL, Cavero RY, Calvo MI. Improvement of antioxidant activity of oregano (Origanum vulgare L.) with an oral pharmaceutical form. Biomed Pharmacother 2020; 129:110424. [PMID: 32563980 DOI: 10.1016/j.biopha.2020.110424] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/26/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023] Open
Abstract
Aging-related diseases can be triggered by multiple factors such as oxidative stress. Oxidative stress is an imbalance between free radicals and antioxidants, so today, compounds capable of reducing or neutralizing free radicals are being studied for a therapeutic use. Origanum vulgare L. is a traditional medicinal plant used for a wide number of health problems due to its antimicrobial, carminative and antioxidant activities. However, when administered orally, gastrointestinal digestion can modify some of therapeutical properties. To avoid this, two different solid oral formulations have been designed for an O. vulgare extract evaluating their antioxidant behaviours in vitro and in vivo after a simulation of gastrointestinal digestion. The results showed that the divided powder has a lower antioxidant activity both in vitro and in vivo than the encapsulated extract. The quantitative difference of polyphenols found on HPLC-DAD (especially luteolin, apigenin and caffeic acid) may explain the differences in pharmacological activity. Thus, we propose that the best form to administrate O. vulgare extracts to maintain the antioxidant properties is the encapsulated form, that is, two capsules of 250 mg of a hydroalcoholic extract of O. vulgare with a minimum of 33 % of rosmarinic acid as a daily dose.
Collapse
Affiliation(s)
- María Pilar de Torre
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Jose Luis Vizmanos
- IDISNA-Instituto de Investigación Biosanitaria de Navarra, 31008 Pamplona, Spain; Department of Biochemistry & Genetics, School of Sciences, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Rita Yolanda Cavero
- IDISNA-Instituto de Investigación Biosanitaria de Navarra, 31008 Pamplona, Spain; Department of Environmental Biology, School of Sciences, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - María Isabel Calvo
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; IDISNA-Instituto de Investigación Biosanitaria de Navarra, 31008 Pamplona, Spain.
| |
Collapse
|
18
|
Salama RM, Mohamed AM, Hamed NS, Ata RM, NourelDeen AS, Hassan MA. Alogliptin: a novel approach against cyclophosphamide-induced hepatic injury via modulating SIRT1/FoxO1 pathway. Toxicol Res (Camb) 2020; 9:561-568. [PMID: 32905193 DOI: 10.1093/toxres/tfaa059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/22/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022] Open
Abstract
Cyclophosphamide (CP) is one of the most potent alkylating agents and is widely used in the treatment of numerous neoplastic conditions, autoimmune diseases and following organ transplantation. Due to its ability to induce oxidative stress and subsequent apoptosis, CP is affiliated with many adverse effects with special emphasis on the highly prevalent hepatotoxicity. Dipeptidyl peptidase 4 (DDP-IV) inhibitors are being rediscovered for new biological effects due to their ability to target multiple pathways, among which is the phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) axis. This could offer protection to multiple organs against reactive oxygen species (ROS) through modulating sirtuin 1 (SIRT1) expression and, in turn, inactivation of forkhead box transcription factor of the O class 1 (FoxO1), thus inhibiting apoptosis. Accordingly, the current study aimed to investigate the potential therapeutic benefit of alogliptin (Alo), a DPP-IV inhibitor, against CP-induced hepatotoxicity through enhancing PI3K/Akt/SIRT1 pathway. Forty male Wistar rats were randomly divided into four groups. The CP-treated group received a single dose of CP (200 mg/kg; i.p.). The Alo-treated group received Alo (20 mg/kg; p.o.) for 7 days with single CP injection on Day 2. Alo successfully reduced hepatic injury as witnessed through decreased liver function enzymes, increased phospho (p)-PI3K, p-Akt, superoxide dismutase (SOD) levels, SIRT1 expression, p-FoxO1 and anti-apoptotic B-cell lymphoma 2 (Bcl-2). This resulted in decreased apoptosis, as witnessed through decreased caspase-3 levels and improved histopathological picture. In conclusion, the current study succeeded to elaborate, for the first time, the promising impact of Alo in ameliorating chemotherapy-induced liver injury.
Collapse
Affiliation(s)
- Rania M Salama
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Abdelkader M Mohamed
- Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Nada S Hamed
- Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Raneem M Ata
- Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Amira S NourelDeen
- Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Mohamed A Hassan
- Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| |
Collapse
|
19
|
The Applications of Origanum Vulgare and Its Derivatives in Human, Ruminant and Fish Nutrition – A Review. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
Origanum vulgare L. is an aromatic enduring herb that belongs to Lamiaceae family. The bioactive constituents of this herb, such as carvacrol and thymol possess several medicinal properties, such as antioxidant, antidiabetic, anti-inflammatory, antimicrobial, antiviral, antiparasitic, anti-neoplastic, and immune modulatory. Moreover, it is considered a standard natural, less toxic, and residue free feed additive, that is successfully used in livestock and fish. Additionally, in human, Origanum vulgare is extensively used with promising health benefits against respiratory, digestive and urinary disorders. This review casts light on description, chemical composition and structure of Origanum vulgare, as well as its therapeutic applications in human and its biological activities in ruminants and fish, data that will be possibly useful for physiologists, nutritionists and veterinarians.
Collapse
|
20
|
Azarbarz N, Shafiei Seifabadi Z, Moaiedi MZ, Mansouri E. Assessment of the effect of sodium hydrogen sulfide (hydrogen sulfide donor) on cisplatin-induced testicular toxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:8119-8128. [PMID: 31900777 DOI: 10.1007/s11356-019-07266-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Cisplatin (CIS) is an antineoplastic drug able to produce free radicals that are capable to induce various side effects in different tissues. Hydrogen sulfide (H2S) has notable antioxidant, anti-apoptotic, and anti-inflammatory effects in different systems but its role in male reproductive system is not fully understood. In the present research, the effect of sodium hydrosulfide (NaHS) on cisplatin-induced testicular toxicity in male rats was studied. Thirty-two Sprague-Dawley rats were equally divided into 4 groups. The control group was treated with normal saline by intraperitoneal injection. The NaHS group received NaHS (200 μg/kg/day) intraperitoneally for 15 days. The CIS group received single dose of cisplatin (5 mg/kg) intraperitoneally, while the combination of CIS and NaHS was given to the CIS+ NaHS group. At the end of the study, body and testicular weights, plasma testosterone level, histological and morphometrical alterations, inflammation via IL-1β protein, lipid peroxidation, and activity of antioxidant enzymes (including glutathione peroxidase, superoxide dismutase, and catalase) of testicular tissue were evaluated. CIS injection revealed a significant decrease (p < 0.01) in body and testis weights, plasma testosterone concentration, diameter of seminiferous tubules, germinal epithelium thickness, the number of Sertoli cells, spermatogonia and spermatocyte, Johnsen's testicular score, and testicular antioxidant enzymes, whereas it caused a significant increase (p < 0.01) in lumen diameter of the seminiferous tubules, level of lipid peroxidation, and IL-1β protein expression when compared with the control group. NaHS administration to CIS-treated rats provided marked improvement (p < 0.05) in all biochemical, histological, and morphometrical changes induced by CIS. The beneficial effects of NaHS were mediated, at least partly, by its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Nastaran Azarbarz
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Maasoumeh Zare Moaiedi
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Cellular and Molecular Research Center, Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 61335, Iran.
| |
Collapse
|
21
|
Kalantari H, Asadmasjedi N, Abyaz MR, Mahdavinia M, Mohammadtaghvaei N. Protective effect of inulin on methotrexate- induced liver toxicity in mice. Biomed Pharmacother 2019; 110:943-950. [DOI: 10.1016/j.biopha.2018.11.144] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 01/01/2023] Open
|
22
|
Sharifi-Rigi A, Heidarian E, Amini SA. Protective and anti-inflammatory effects of hydroalcoholic leaf extract of Origanum vulgare on oxidative stress, TNF-α gene expression and liver histological changes in paraquat-induced hepatotoxicity in rats. Arch Physiol Biochem 2019; 125:56-63. [PMID: 29425067 DOI: 10.1080/13813455.2018.1437186] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CONTEXT Toxicity with paraquat can lead to serious damages to the liver. OBJECTIVE The study investigates the protective effects of Origanum vulgare leaf extract against paraquat liver damage. MATERIAL AND METHODS Rats were divided into six groups. Group 1, the control group; group 2, rats that received paraquat only; group 3, rats that received paraquat plus silymarin; and groups 4, 5, and 6 were treated with paraquat and O. vulgare leaf extract. Then, the serum and tissue parameters of the oxidative stress were examined. RESULTS In group 2, paraquat caused a remarkable increase in the level of serum ALT, AST, ALP, lipid profiles, and liver TNF-α gene expression compared to group 1. The groups which received O. vulgare leaf extract exhibited significant ameliorations in abnormalities of paraquat-induced liver damage and serum biochemical parameters. CONCLUSION O. vulgare leaf extract has inhibitory effects on paraquat-induced liver damage due to its antioxidant properties.
Collapse
Affiliation(s)
- Ali Sharifi-Rigi
- a Student Research Committee , Shahrekord University of Medical Sciences , Shahrekord , Iran
| | - Esfandiar Heidarian
- b Clinical Biochemistry Research Center, Basic Health Sciences Institute , Shahrekord University of Medical Sciences , Shahrekord , Iran
| | - Sayed Asadollah Amini
- c Medical Plants Research Center, Basic Health Sciences Institute , Shahrekord University of Medical Sciences , Shahrekord , Iran
| |
Collapse
|
23
|
Askari H, Abazari MF, Ghoraeian P, Torabinejad S, Nouri Aleagha M, Mirfallah Nassiri R, Tahmasebi F, Abedi N, Rajani SF, Salarian A, Belaran M, Elshiekh M, Sanadgol N. Ameliorative effects of hydrogen sulfide (NaHS) on chronic kidney disease-induced brain dysfunction in rats: implication on role of nitric oxide (NO) signaling. Metab Brain Dis 2018; 33:1945-1954. [PMID: 30090953 DOI: 10.1007/s11011-018-0301-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/01/2018] [Indexed: 12/20/2022]
Abstract
Chronic kidney disease (CKD) is a major public health problem worldwide and is associated with spatial learning deficits. The aim of the present study was to evaluate the protective effects of hydrogen sulfide (H2S) on CKD-mediated behavioral deficits with emphasis to the role of nitric oxide (NO) in these effects. Fifty rats were randomly allocated to five experimental groups including: sham, Five-sixth (5/6) nephrectomy (Nx), 5/6Nx + NaHS, 5/6Nx + NaHS+L-nitroarginine methyl ester (L-NAME), and 5/6Nx + NaHS+aminoguanidine (AMG). Twelve weeks after 5/6Nx, we evaluated proteinuria, creatinine clearance (CrCl), oxidative/antioxidant status, and hippocampus neuro-inflammation and NO synthase genes in all groups. Furthermore, training trials of all animals were conducted in the Morris water maze (MWM) task one day before animal euthanizing. As predicted, 5/6Nx induced several injuries, including enhancement of proteinuria and reduction of CCr, oxidant/antioxidant imbalance and up-regulation of TNF-α and IL-1β gene expressions in the hippocampus tissues. As predicted, 5/6Nx resulted in learning and memory impairments, and increased escape latency during acquisition trials in the MWM task. Interestingly, NaHS (H2S donor) improved behavioral deficits, renal dysfunction, accelerated anti-oxidant/anti-inflammatory responses and increased eNOS and decreased iNOS. Moreover, these effects of NaHS were prevented by L-NAME but not AMG co-administration. In conclusion, H2S ameliorates CKD-mediated brain dysfunctions, through interaction with NO signaling in the hippocampus.
Collapse
Affiliation(s)
- Hassan Askari
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Foad Abazari
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Pegah Ghoraeian
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Sepehr Torabinejad
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Nouri Aleagha
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | | | - Farshid Tahmasebi
- Faculty of Sports Science, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Nairi Abedi
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - Sulail Fatima Rajani
- Department of Physiology, School of Medicine, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Salarian
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Belaran
- Department of Physiology, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Mohammed Elshiekh
- Department of Physiology, Faculty of Medicine, University of Dongola, Dongola, Sudan
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran.
| |
Collapse
|
24
|
Singh C, Prakash C, Tiwari KN, Mishra SK, Kumar V. Premna integrifolia ameliorates cyclophosphamide-induced hepatotoxicity by modulation of oxidative stress and apoptosis. Biomed Pharmacother 2018; 107:634-643. [DOI: 10.1016/j.biopha.2018.08.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 10/28/2022] Open
|
25
|
Haghi-Aminjan H, Farhood B, Rahimifard M, Didari T, Baeeri M, Hassani S, Hosseini R, Abdollahi M. The protective role of melatonin in chemotherapy-induced nephrotoxicity: a systematic review of non-clinical studies. Expert Opin Drug Metab Toxicol 2018; 14:937-950. [PMID: 30118646 DOI: 10.1080/17425255.2018.1513492] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/15/2018] [Indexed: 12/18/2022]
Abstract
BSTRACT Introduction: The aim of this study was to investigate the potential role of melatonin in the prevention of chemotherapy-induced nephrotoxicity at the preclinical level. Areas to be covered: To illuminate the possible role of melatonin in preventing chemotherapy-related nephrotoxicity, Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline was followed. A comprehensive search strategy was developed to include PubMed, Web of Science, Scopus, and Embase electronic databases from their inception to May 2018. Based on a set of prespecified inclusion and exclusion criteria, 21 non-clinical articles were ultimately included in the study. Expert opinion: Our findings clearly demonstrate that melatonin has a protective role in the prevention of chemotherapy-induced nephrotoxicity which may be caused by different chemotherapy agents such as cyclophosphamide, cisplatin, doxorubicin, methotrexate, oxaliplatin, etoposide, and daunorubicin. On the basis of current review of non-clinical studies, this protective effect of melatonin is attributed to different mechanisms such as reduction of oxidative stress, apoptosis, and inflammation. The findings presented in this review are based on non-clinical studies and thus conducting appropriate clinical trials to evaluate the real effectiveness of the concurrent use of chemotherapy agents with melatonin in the cancer patients is necessary.
Collapse
Affiliation(s)
- Hamed Haghi-Aminjan
- a Department of Toxicology and Pharmacology, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| | - Bagher Farhood
- b Departmentof Medical Physics and Radiology, Faculty of Paramedical Sciences , Kashan University of Medical Sciences , Kashan , Iran
| | - Mahban Rahimifard
- c Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS) , Tehran University of Medical Sciences , Tehran , Iran
| | - Tina Didari
- c Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS) , Tehran University of Medical Sciences , Tehran , Iran
| | - Maryam Baeeri
- c Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS) , Tehran University of Medical Sciences , Tehran , Iran
| | - Shokoufeh Hassani
- c Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS) , Tehran University of Medical Sciences , Tehran , Iran
| | - Rohollah Hosseini
- a Department of Toxicology and Pharmacology, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| | - Mohammad Abdollahi
- a Department of Toxicology and Pharmacology, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
- c Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS) , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
26
|
Askari H, Rajani SF, Poorebrahim M, Haghi-Aminjan H, Raeis-Abdollahi E, Abdollahi M. A glance at the therapeutic potential of irisin against diseases involving inflammation, oxidative stress, and apoptosis: An introductory review. Pharmacol Res 2018; 129:44-55. [PMID: 29414191 DOI: 10.1016/j.phrs.2018.01.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 01/22/2018] [Indexed: 12/19/2022]
Abstract
Irisin is a hormone-like molecule mainly released by skeletal muscles in response to exercise. Irisin induces browning of the white adipose tissue and has been shown to regulate glucose and lipid homeostasis. Keeping its energy expenditure and metabolic properties in view, numerous studies have focused on its therapeutic potential for the treatment of metabolic disorders like obesity and type 2 diabetes. Recently, the anti-inflammatory, anti-apoptotic and anti-oxidative properties of irisin have received a great deal of attention of the scientific society. These pathogenic processes are often associated with initiation, progression, and prognosis of numerous diseases like myocardial infarction, kidney diseases, cancer, lung injury, inflammatory bowel diseases, atherosclerosis, liver diseases, obesity and type 2 diabetes. In the current review, we present evidence regarding the anti-inflammatory, anti-apoptotic and anti-oxidative potential of irisin pertaining to various pathological conditions. Here, we explore multiple molecular pathways targeted by irisin therapy. Given the promising effects of irisin, many diseases with evident oxidative stress, inflammation and apoptosis can be targeted by irisin.
Collapse
Affiliation(s)
- Hassan Askari
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sulail Fatima Rajani
- Department of Physiology, School of Medicine, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansour Poorebrahim
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Haghi-Aminjan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Raeis-Abdollahi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Toxicology and Diseases Group, Pharmaceutical Sciences Research Centre, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Haghi-Aminjan H, Asghari MH, Farhood B, Rahimifard M, Hashemi Goradel N, Abdollahi M. The role of melatonin on chemotherapy-induced reproductive toxicity. J Pharm Pharmacol 2017; 70:291-306. [DOI: 10.1111/jphp.12855] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022]
Abstract
Abstract
Objectives
Reproductive malfunctions after chemotherapy still are a reason of reducing fertility and need specialized intensive care. The aim of this review was to investigate the effect of melatonin on the reproductive system under threatening with chemotherapeutic drugs.
Methods
To find the role of melatonin in the reproductive system during chemotherapy, a full systematic literature search was carried out based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines in the electronic databases up to 17 April 2017 using search terms in the titles and abstracts. A total of 380 articles are screened according to our inclusion and exclusion criteria. Finally, 18 articles were included in this study.
Key findings
It has been cleared that melatonin has bilateral effects on reproductive cells. Melatonin protects normal cells via mechanisms, including decrease in oxidative stress, apoptosis, inflammation and modulating mitochondrial function, and sexual hormones. Furthermore, melatonin with antiproliferative properties and direct effects on its receptors improves reproductive injury and function during chemotherapy. On the other hand, melatonin sensitizes the effects of chemotherapeutic drugs and enhances chemotherapy-induced toxicity in cancerous cells through increasing apoptosis, oxidative stress and mitochondrial malfunction.
Conclusions
The study provides evidence of the bilateral role of melatonin in the reproductive system during chemotherapy.
Collapse
Affiliation(s)
- Hamed Haghi-Aminjan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Asghari
- Department of Pharmacology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasser Hashemi Goradel
- Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Şengül E, Gelen V, Gedikli S, Özkanlar S, Gür C, Çelebi F, Çınar A. The protective effect of quercetin on cyclophosphamide-Induced lung toxicity in rats. Biomed Pharmacother 2017; 92:303-307. [DOI: 10.1016/j.biopha.2017.05.047] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/07/2017] [Accepted: 05/09/2017] [Indexed: 11/30/2022] Open
|
29
|
Habibi E, Shokrzadeh M, Chabra A, Naghshvar F, Keshavarz-Maleki R, Ahmadi A. Protective effects of Origanum vulgare ethanol extract against cyclophosphamide-induced liver toxicity in mice. PHARMACEUTICAL BIOLOGY 2015; 53:10-15. [PMID: 25026348 DOI: 10.3109/13880209.2014.908399] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
UNLABELLED Abstract Context: Despite its wide clinical use, cyclophosphamide (CP), an alkylating chemotherapeutic agent, possesses many adverse effects, including hepatotoxicity. Because Origanum vulgare L. (Lamiaceae) has antioxidative properties, it might protect against above-mentioned damage. OBJECTIVE This study evaluated the protective effects of O. vulgare extract on CP-induced liver toxicity. MATERIALS AND METHODS Mice were pretreated with aerial parts of O. vulgare ethanolic extract (intraperitoneally) at doses of 50, 100, 200, and 400 mg/kg for 7 consecutive days before the administration of a single 200 mg/kg intraperitoneal dose of CP 1 h after the last injection of O. vulgare. After 24 h, animals were anesthetized, blood samples and hepatic tissues were collected and used for biochemical and histological examination. RESULTS Serum levels of hepatic markers were increased after CP treatment but restored in the O. vulgare-pretreated groups. The serum ALT, AST, and ALP of the CP group were 196.49 ± 3.82, 143.78 ± 4.79, and 203.18 ± 3.81 IU/l, respectively. However, pretreatment with 400 mg/kg O. vulgare significantly decreased the serum ALT, AST, and ALP to 52.49 ± 2.18, 44.78 ± 2.06, and 65.62 ± 1.73 IU/l, respectively (p < 0.001). Histological examinations also confirmed the protective effects of O. vulgare against CP-induced liver toxicity. DISCUSSION AND CONCLUSION Our results reveal that O. vulgare with high amount of flavonoids and phenolic compounds induces potent hepatoprotective mechanisms against CP. Therefore, O. vulgare might help defend the body against the side effects, particularly hepatic damages induced by chemotherapeutic agents.
Collapse
Affiliation(s)
- Emran Habibi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy
| | | | | | | | | | | |
Collapse
|
30
|
Prophylactic efficacy of melatonin on cyclophosphamide-induced liver toxicity in mice. BIOMED RESEARCH INTERNATIONAL 2014; 2014:470425. [PMID: 25101283 PMCID: PMC4101226 DOI: 10.1155/2014/470425] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/13/2014] [Indexed: 11/22/2022]
Abstract
The current study aimed to evaluate the protective effects of melatonin, a pineal secretory product, against hepatotoxicity induced by cyclophosphamide (CP) in mice. Mice were pretreated with melatonin intraperitoneally for 7 consecutive days before the administration of a single intraperitoneal dose of 200 mg/kg CP. 24 hr after CP administration, the mice were anesthetized, blood was then removed, and serum toxicity enzymes activities were evaluated. After the blood sampling, all animals were killed, livers were then removed, and histological studies were conducted. Serum toxicity marker enzymes were significantly increased after CP treatment but restored in melatonin pretreated groups. In addition, administration of CP induced necrotic hepatocyte with small crushed nuclei, portal space with severe inflammation, and hepatocytes surrounded by lymphocytic infiltration in hepatic tissues. However, melatonin effectively protected against CP-induced histopathological abnormalities in the liver tissues. Our results reveal that melatonin produces a potent hepatoprotective mechanism against CP. Therefore, melatonin could be a potent candidate to use concomitantly as a supplement agent against hepatotoxicity of CP for the patients undergoing chemotherapy.
Collapse
|