1
|
Li Y, Guo Z, Li P, Guo J, Wang H, Pan W, Wu F, Li J, Zhou J, Ma Z. Tanshinone T1/T2A inhibits non-small cell lung cancer through Lin28B-let-7-BORA/MYC regulatory network. Gene 2025; 935:149058. [PMID: 39481768 DOI: 10.1016/j.gene.2024.149058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/08/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related deaths worldwide. Tanshinones are a group of compounds in Salvia miltiorrhiza. Although the effects of tanshinone I (T1) and tanshinone IIA (T2A) are widely concerned, the mechanisms of T1 and T2A in lung cancer is rarely studied. EXPERIMENTAL PROCEDURE Xenograft tumor growth was performed to detect the role of T1/T2A in vivo. Next-generation sequencing of miRNA expression profiles in T1/T2A-treated A549 cells showed that T1/T2A upregulated the expression of the let-7 family. Then, let-7a-5p and its downstream target gene BORA were identified as the research objects in this paper. Mechanistically, we examined the interplay between miR-let-7 and BORA through the dual-luciferase reporter assay. Finally, the potential regulatory role of T1/T2A on Lin28B and MYC was explored. RESULTS This study found that the let-7 family was significantly up-regulated via "Next-generation" sequencing (NGS) in the T1/T2A-treated A549 cell line, while BORA was downregulated. BORA was confirmed as a direct target of let-7. LncRNA MYCLo-5 was up-regulated after treatment with tanshinones. Knockdown of MYCLo-5 promoted the cell cycle and proliferation of non-small cell lung cancer (NSCLC) cells. CONCLUSIONS This study explored the effects of tanshinone T1 and T2A on NSCLC in vitro and in vivo, revealing the T1/T2A-let-7/BORA/MYCLo-5 regulatory pathway, which provided new insights for lung cancer treatment.
Collapse
Affiliation(s)
- Yanli Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Ziyi Guo
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Ping Li
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jing Guo
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Huimin Wang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Wei Pan
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Fan Wu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jingjing Li
- School of Pharmaceutical Engineering, Zhejiang Pharmaceutical College, Ningbo, China.
| | - Jinrong Zhou
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center Harvard Medical School, USA.
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China.
| |
Collapse
|
2
|
Shao C, Huang R, Okyere SK, Muhammad Y, Wang S, Wang J, Wang X, Hu Y. Study on the chronic inflammatory injury caused by Ageratina adenophora on goat liver using metabolomics. Toxicon 2024; 239:107610. [PMID: 38218385 DOI: 10.1016/j.toxicon.2024.107610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Ageratina adenophora (A. adenophora) is an invasive plant that is harmful to animals. The plants toxic effects on the liver have been studied in detail, however, the inflammation aspects of the hepatotoxicity are rarely discussed in literature. Therefore, in this study, we investigated the level of inflammation and the associated changes in liver metabolism caused by A. adenophora ingestion. Goat were fed with A. adenophora powder which accounts for 40% of the forage for 90 d. After the feeding period, the liver tissues were collected and the level of inflammation was detected using H & E staining and the changes in metabolites by LC-MS/MS. The results indicated that A. adenophora changes the liver metabolites, The test group shown 153 different metabolites in liver of which 71 were upregulated and 82 down regulated. We also found two differential metabolic pathways: neuroactive ligand-receptor interaction and pyrimidine metabolism. The changes in the pathway suggested an association with inflammation and with pathological processes such as oxidative stress and apoptosis. In addition, we observed an increase in the levels of serum liver function indexes (AST and ALT), indicating the liver injury. Furthermore, inflammatory cell infiltration and cell degeneration were observed in histopathological sections. In conclusion, this study reveals that A. adenophora causes chronic inflammation and upregulate metabolites related to inflammation in the liver. The study complements the research content of A. adenophora hepatotoxicity and provides a basis for further research by analyzing changes in the liver metabolites.
Collapse
Affiliation(s)
- Chenyang Shao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ruya Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Samuel Kumi Okyere
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Department of Pharmaceutical Sciences, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Yousif Muhammad
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shu Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jianchen Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoxuan Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
3
|
Pei M, Xu D, Wu L. Editorial: Bone and Cartilage Diseases - The Role and Potential of Natural Products, Volume II. Front Pharmacol 2023; 14:1194875. [PMID: 37201019 PMCID: PMC10185899 DOI: 10.3389/fphar.2023.1194875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/21/2023] [Indexed: 05/20/2023] Open
Affiliation(s)
- Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, United States
| | - Daohua Xu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Longhuo Wu
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| |
Collapse
|
4
|
Chen S, Wang Y, Liu Y, Bai L, Li F, Wu Y, Xie X, Zhang N, Zeng C, Zhang L, Wang X. Investigating the effect of dehydromiltirone on septic AKI using a network pharmacology method, molecular docking, and experimental validation. Front Pharmacol 2023; 14:1145675. [PMID: 37007048 PMCID: PMC10050741 DOI: 10.3389/fphar.2023.1145675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Acute kidney injury (AKI) is a severe and frequent complication of sepsis that occurs in intensive care units with inflammation and rapid decline in renal function as the main pathological features. Systemic inflammation, microvascular dysfunction, and tubule injury are the main causes of sepsis-induced AKI (SI-AKI). The high prevalence and death rate from SI-AKI is a great challenge for clinical treatment worldwide. However, in addition to hemodialysis, there is no effective drug to improve renal tissue damage and alleviate the decline in kidney function. We conducted a network pharmacological analysis of Salvia miltiorrhiza (SM), a traditional Chinese medicine, which is widely used for the treatment of kidney disease. Then, we combined molecular docking and a dynamics simulation to screen for the active monomer dehydromiltirone (DHT) that has therapeutic effects on SI-AKI and investigated its potential mechanism of action through experimental validation. The components and targets of SM were obtained by searching the database, and 32 overlapping genes were screened by intersection analysis with AKI targets. GO and KEGG data showed that the functions of a common gene were closely related to oxidative stress, mitochondrial function, and apoptosis. The molecular docking results combined with molecular dynamics simulations provide evidence for a binding model between DHT and cyclooxygenase-2 (COX2), both of which are mainly driven by van der Waals interactions and a hydrophobic effect. In vivo, we found that mice pretreated with an intraperitoneal injection of DHT (20 mg/kg/d) for 3 days ameliorated CLP surgery-induced renal function loss and renal tissue damage and inhibited inflammatory mediators IL-6, IL-1β, TNF-α, and MCP-1 production. In vitro, the DHT pretreatment decreased LPS-induced expression of COX2, inhibited cell death and oxidative stress, alleviated mitochondrial dysfunction, and restrained apoptosis in HK-2 cells. Our research indicates that the renal preventive effect of DHT is related to maintaining mitochondrial dynamic balance, restoring mitochondrial oxidative phosphorylation, and inhibiting cell apoptosis. The findings in this study provide a theoretical basis and a novel method for the clinical therapy of SI-AKI.
Collapse
Affiliation(s)
- Sijia Chen
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanzhe Wang
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuyuan Liu
- Department of Nephrology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Linnan Bai
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fengqin Li
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Wu
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinmiao Xie
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Zhang
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuchu Zeng
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Zhang
- Department of Obstetrics and Gynecology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- *Correspondence: Xiaoxia Wang, , Ling Zhang,
| | - Xiaoxia Wang
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoxia Wang, , Ling Zhang,
| |
Collapse
|
5
|
Gong X, Zhang F, Li Y, Peng C. Study on the mechanism of acute liver injury protection in Rhubarb anthraquinone by metabolomics based on UPLC-Q-TOF-MS. Front Pharmacol 2023; 14:1141147. [PMID: 36950014 PMCID: PMC10025310 DOI: 10.3389/fphar.2023.1141147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
As a traditional Chinese medicine, rhubarb has been used in a variety of liver diseases and it is widely used in clinic to prevent and treat acute liver injury. Anthraquinone, as the main medicinal component of rhubarb, can reverse the further development of liver fibrosis caused by acute liver injury. In this study, metabonomics was used to explore the mechanism of different doses of rhubarb anthraquinone on acute liver injury in rats. Rhubarb anthraquinone was administered intragastric to rats at doses of 3.9, 7.8 and 15.6 mg/kg, respectively, for 7 days, and then 30% CCl4 was injected intraperitoneally at the dose of 1 ml/kg to replicate the acute liver injury model. The biochemical indicators content of ALT, AST, ALP, γ-GT, TG, TC, LDL, HDL in serum and GSH, Hyp, SOD, TNF-α, IL-6 and IL-8 in liver tissue extract were tested respectively, and liver tissue was histopathologically analysis. At the same time, UPLC-Q-TOF-MS combined with non-targeted metabolomics were used to study the metabolites and metabolic pathways of rhubarb anthraquinone in treating acute liver injury. Compared with normal rats, the contents of ALT, AST, ALP, TG, TC, LDL, γ-GT in serum and Hyp, MDA, IL-6, IL-8, TNF-α in the liver tissue extract were significantly increased in model rats (p < 0.05, p < 0.01), and the content of HDL in the serum was significantly decreased (p < 0.05); the activities of GSH and SOD in liver tissue extract were also significantly decreased (p < 0.05). After administration of rhubarb anthraquinone, compared with the model group, with the increase of dosage, some biochemical indexes showed opposite changes, and gradually approached to normal rats. 12 different metabolites were identified by metabonomics, and the biosynthesis and metabolism of phenylalanine, tyrosine and tryptophan, the metabolism of amino sugars, nucleotide sugars and pyrimidines metabolism, and the biosynthesis of steroid hormone were identified based on the biomarker analysis. Based on the biochemical analysis and metabonomics analysis of rats with acute liver injury treated with different doses of rhubarb anthraquinone, combined with histopathological observation, the results show that the protective effect of rhubarb anthraquinone on acute liver injury is related to the dosage; Meanwhile, the metabolic pathway analysis suggested that rhubarb anthraquinone alleviate acute liver injury by regulating inflammation, oxidative stress and fibrosis disorders. This study explained the therapeutic effect of rhubarb anthraquinone on acute liver injury from both material basis and action pathway, and provided safe and effective research ideas for clinical application of rhubarb.
Collapse
Affiliation(s)
| | | | - Yunxia Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Ke L, Zhong C, Chen Z, Zheng Z, Li S, Chen B, Wu Q, Yao H. Tanshinone I: Pharmacological activities, molecular mechanisms against diseases and future perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154632. [PMID: 36608501 DOI: 10.1016/j.phymed.2022.154632] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/20/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Tanshinone I (Tan I) is known as one of the important active components in Salvia miltiorrhiza. In recent years, Tan I has received a substantial amount of attention from the research community for various studies being updated and has been shown to possess favorable activities including anti-oxidative stress, regulation of cell autophagy or apoptosis, inhibition of inflammation, etc. PURPOSE: To summarize the investigation progress on the anti-disease efficacy and effect mechanism of Tan I in recent years, and provide perspectives for future study on the active ingredient. METHOD Web of Science and PubMed databases were used to search for articles related to "Tanshinone I" published from 2010 to 2022. Proteins or genes and signaling pathways referring to Tan I against diseases were summarized and classified along with its different therapeutic actions. Protein-protein interaction (PPI) analysis was then performed, followed by molecular docking between proteins with high node degree and Tan I, as well as bioinformactic analysis including GO, KEGG and DO enrichment analysis with the collected proteins or genes. RESULTS Tan I shows multiple therapeutic effects, including protection of the cardiovascular system, anti-cancer, anti-inflammatory, anti-neurodegenerative diseases, etc. The targets (proteins or genes) affected by Tan I against diseases involve Bcl-2, Bid, ITGA2, PPAT, AURKA, VEGF, PI3K, AKT, PRK, JNK, MMP9, ABCG2, CASP3, Cleaved-caspase-3, AMPKα, PARP, etc., and the regulatory pathways refer to Akt/Nrf2, SAPK/JNK, PI3K/Akt/mTOR, JAK/STAT3, ATF-2/ERK, etc. What's more, AKT1, CASP3, and STAT3 were predicted as the key action targets for Tan I by PPI analysis combined with molecular docking, and the potential therapeutic effects mechanisms against diseases were also further predicted by bioinformatics analyses based on the reported targets, providing new insights into the future investigation and helping to facilitate the drug development of Tan I.
Collapse
Affiliation(s)
- Liyuan Ke
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Chenhui Zhong
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Zhijie Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Ziyao Zheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Shaoguang Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Bing Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Qiaoyi Wu
- Department of Trauma and Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, Chazhong Road, Fuzhou, 350004, China.
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
7
|
Li H, Hu P, Zou Y, Yuan L, Xu Y, Zhang X, Luo X, Zhang Z. Tanshinone IIA and hepatocellular carcinoma: A potential therapeutic drug. Front Oncol 2023; 13:1071415. [PMID: 36798821 PMCID: PMC9928209 DOI: 10.3389/fonc.2023.1071415] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023] Open
Abstract
Because of its high prevalence and poor long-term clinical treatment effect, liver disease is regarded as a major public health problem around the world. Among them, viral hepatitis, fatty liver, cirrhosis, non-alcoholic fatty liver disease (NAFLD), and autoimmune liver disease are common causes and inducements of liver injury, and play an important role in the occurrence and development of hepatocellular carcinoma (HCC). Tanshinone IIA (TsIIA) is a fat soluble polyphenol of Salvia miltiorrhiza that is extracted from Salvia miltiorrhiza. Because of its strong biological activity (anti-inflammatory, antioxidant), it is widely used in Asia to treat cardiovascular and liver diseases. In addition, TsIIA has shown significant anti-HCC activity in previous studies. It not only has significant anti proliferation and pro apoptotic properties. It can also play an anti-cancer role by mediating a variety of signal pathways, including phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/rapamycin (mTOR), mitogen-activated protein kinase (MAPK), and nuclear factor kappa-B (NF-κB). This review not only reviews the existing evidence and molecular mechanism of TsIIA's anti-HCC effect but also reviews the liver-protective effect of TsIIA and its impact on liver fibrosis, NAFLD, and other risk factors for liver cancer. In addition, we also conducted network pharmacological analysis on TsIIA and HCC to further screen and explore the possible targets of TsIIA against hepatocellular carcinoma. It is expected to provide a theoretical basis for the development of anti-HCC-related drugs based on TsIIA.
Collapse
Affiliation(s)
- Hu Li
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Pengbo Hu
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China,Institute of Medical Science of Binzhou Medical University, Yantai, China
| | - Yajun Zou
- Emergency Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lijuan Yuan
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Yucheng Xu
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Xiaohui Zhang
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Xiaoyan Luo
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Zhiqiang Zhang
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China,Institute of Medical Science of Binzhou Medical University, Yantai, China,*Correspondence: Zhiqiang Zhang,
| |
Collapse
|
8
|
Deng W, Huang Y, Li H, Chen C, Lin Y, Wang M, Huang H, Liu T, Qin Q, Shao Y, Tang Y, Yuan K, Ding J, Xu L, Li Y, Zhang S. Dehydromiltirone inhibits osteoclast differentiation in RAW264.7 and bone marrow macrophages by modulating MAPK and NF-κB activity. Front Pharmacol 2022; 13:1015693. [PMID: 36210855 PMCID: PMC9533194 DOI: 10.3389/fphar.2022.1015693] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Osteoporosis is a type of systematic metabolic bone disease caused by the decrease in osteogenic activity or excessive resorption of bone with the relative enhancement of osteoclast function. As osteoporosis seriously affects the quality of patients’ life, effective drugs are needed to treat this disease. Based on the combination of network pharmacology and cellular studies, this study aimed to investigate the probable mechanism of Dehydromiltirone (DHT) in the treatment of osteoporosis. Method: The targets of DHT in osteoporosis were searched using the PharmGKB, OMIM, and Genecard platforms. The PPI core targets, and the GO and KEGG enrichment analysis results were obtained using Cytoscape software, and the David and Metascape databases, respectively. The network pharmacology results were also verified via in vitro cellular experiments. Results: Through network pharmacology and docking analysis, we found DHT was involved in peptide tyrosine phosphorylation, cell surface receptor tyrosine kinase signaling pathways, and MAPK signaling pathways. According to the molecular docking results, the binding of DHT to MAPK14 was more stable than other proteins, which suggests that DHT may affect osteoclast formation through the MAPK signaling pathway. Moreover, DHT was found to inhibit the expression of osteoclast-associated genes, including NFATc1, CTSK, c-Fos, Acp5, and MMP9; as well as the phosphorylation of P38, ERK, and JNK of the MAPK signaling pathway; and the degradation of IκB-α of NF-κB signaling pathway. Conclusion: DHT exhibited an anti-osteoclastogenesis effect by reducing the expression of related genes, ultimately inhibiting bone resorption in vitro.
Collapse
Affiliation(s)
- Wei Deng
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - YanBo Huang
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - HaiShang Li
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - ChiWei Chen
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - YueWei Lin
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Wang
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - HuaSheng Huang
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Teng Liu
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - QiuLi Qin
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Shao
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - YongChao Tang
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai Yuan
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - JinYong Ding
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - LiangLiang Xu
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: LiangLiang Xu, ; YongXian Li, ; ShunCong Zhang,
| | - YongXian Li
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: LiangLiang Xu, ; YongXian Li, ; ShunCong Zhang,
| | - ShunCong Zhang
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: LiangLiang Xu, ; YongXian Li, ; ShunCong Zhang,
| |
Collapse
|
9
|
Molecular mechanism of the anti-inflammatory effects of Sophorae Flavescentis Aiton identified by network pharmacology. Sci Rep 2021; 11:1005. [PMID: 33441867 PMCID: PMC7806711 DOI: 10.1038/s41598-020-80297-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022] Open
Abstract
Inflammation, a protective response against infection and injury, involves a variety of biological processes. Sophorae Flavescentis (Kushen) is a promising Traditional Chinese Medicine (TCM) for treating inflammation, but the pharmacological mechanism of Kushen’s anti-inflammatory effect has not been fully elucidated. The bioactive compounds, predicted targets, and inflammation-related targets of Kushen were obtained from open source databases. The “Component-Target” network and protein–protein interaction (PPI) network were constructed, and hub genes were screened out by topological analysis. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on genes in the PPI network. Furthermore, nitric oxide (NO) production analysis, RT-PCR, and western blot were performed to detect the mRNA and protein expression of hub genes in LPS-induced RAW264.7 cells. An immunofluorescence assay found that NF-κB p65 is translocated. A total of 24 bioactive compounds, 465 predicted targets, and 433 inflammation-related targets were identified and used to construct “Component-Targets” and PPI networks. Then, the five hub genes with the highest values-IL-6, IL-1β, VEGFA, TNF-α, and PTGS2 (COX-2)- were screened out. Enrichment analysis results suggested mainly involved in the NF-κB signaling pathway. Moreover, experiments were performed to verify the predicted results. Kushen may mediate inflammation mainly through the IL-6, IL-1β, VEGFA, TNF-α, and PTGS2 (COX-2), and the NF-κB signaling pathways. This finding will provide clinical guidance for further research on the use of Kushen to treat inflammation.
Collapse
|
10
|
Pharmacological basis of tanshinone and new insights into tanshinone as a multitarget natural product for multifaceted diseases. Biomed Pharmacother 2020; 130:110599. [PMID: 33236719 DOI: 10.1016/j.biopha.2020.110599] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/18/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Drug development has long included the systematic exploration of various resources. Among these, natural products are one of the most important resources from which novel agents are developed due to the multiple pharmacologic effects of these natural products on diseases. Tanshinone, a representative natural product, is the main compound extracted from the dried root and rhizome of Salvia miltiorrhiza Bge. Research on tanshinone began in the early 1930s. With the in-depth investigation of an increasing number of identified analogs, tanshinone has demonstrated a wide variety of bioactivities and contradicted the saying, 'You can't teach an old dog new tricks'. This review is focused on the pharmacological action of tanshinone and status of research on tanshinone in recent years. The mechanism of tanshinone has also drawn much attention, with the findings of representative targets and pathways of tanshinone. The most recent studies have comprehensively shown that tanshinone can be used to treat leukemia and solid carcinoma, protect against cardiovascular and cerebrovascular diseases, and alleviate liver- and kidney-related diseases, among its other effects. Multiple signaling pathways, including antiproliferative, antiapoptotic, anti-inflammatory, and antioxidative stress pathways, are involved in its actions.
Collapse
|
11
|
Li CL, Zhou WJ, Ji G, Zhang L. Natural products that target macrophages in treating non-alcoholic steatohepatitis. World J Gastroenterol 2020; 26:2155-2165. [PMID: 32476782 PMCID: PMC7235205 DOI: 10.3748/wjg.v26.i18.2155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/26/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is the progressive subtype of non-alcoholic fatty liver disease and potentiates risks for both hepatic and metabolic diseases. Although the pathophysiology of NASH is not completely understood, recent studies have revealed that macrophage activation is a major contributing factor for the disease progression. Macrophages integrate the immune response and metabolic process and have become promising targets for NASH therapy. Natural products are potential candidates for NASH treatment and have multifactorial underlying mechanisms. Macrophage involvement in the development of steatosis and inflammation in NASH has been widely investigated. In this review, we assess the evidence for natural products or their active ingredients in the modulation of macrophage activation, recruitment, and polarization, as well as the metabolic status of macrophages. Our work may highlight the possible natural products that target macrophages as potential treatment options for NASH.
Collapse
Affiliation(s)
- Chun-Lin Li
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Wen-Jun Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
12
|
Kong LZ, Chandimali N, Han YH, Lee DH, Kim JS, Kim SU, Kim TD, Jeong DK, Sun HN, Lee DS, Kwon T. Pathogenesis, Early Diagnosis, and Therapeutic Management of Alcoholic Liver Disease. Int J Mol Sci 2019; 20:ijms20112712. [PMID: 31159489 PMCID: PMC6600448 DOI: 10.3390/ijms20112712] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 02/08/2023] Open
Abstract
Alcoholic liver disease (ALD) refers to the damages to the liver and its functions due to alcohol overconsumption. It consists of fatty liver/steatosis, alcoholic hepatitis, steatohepatitis, chronic hepatitis with liver fibrosis or cirrhosis, and hepatocellular carcinoma. However, the mechanisms behind the pathogenesis of alcoholic liver disease are extremely complicated due to the involvement of immune cells, adipose tissues, and genetic diversity. Clinically, the diagnosis of ALD is not yet well developed. Therefore, the number of patients in advanced stages has increased due to the failure of proper early detection and treatment. At present, abstinence and nutritional therapy remain the conventional therapeutic interventions for ALD. Moreover, the therapies which target the TNF receptor superfamily, hormones, antioxidant signals, and MicroRNAs are used as treatments for ALD. In particular, mesenchymal stem cells (MSCs) are gaining attention as a potential therapeutic target of ALD. Therefore, in this review, we have summarized the current understandings of the pathogenesis and diagnosis of ALD. Moreover, we also discuss the various existing treatment strategies while focusing on promising therapeutic approaches for ALD.
Collapse
Affiliation(s)
- Ling-Zu Kong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea.
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Nisansala Chandimali
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea.
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Ying-Hao Han
- Department of Disease Model Animal Research Center, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Dong-Ho Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk 56216, Korea.
| | - Ji-Su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk 56216, Korea.
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Chungcheongbuk-do 28116, Korea.
| | - Tae-Don Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Dong Kee Jeong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea.
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
| | - Hu-Nan Sun
- Department of Disease Model Animal Research Center, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
| | - Dong Sun Lee
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
- Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju 63243, Korea.
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk 56216, Korea.
| |
Collapse
|
13
|
Chang CM, Shih PH, Chen TJ, Ho WC, Yang CP. Integrated therapy decreases the mortality of patients with polymyositis and dermatomyositis: A Taiwan-wide population-based retrospective study. JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:70-81. [PMID: 30818007 DOI: 10.1016/j.jep.2019.02.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The issue of whether integrated treatment with conventional medicine (CM) and herbal medicine (HM) can reduce mortality in patients with polymyositis/dermatomyositis (PM/DM) had not been addressed. AIM OF THE STUDY In this study, we investigated the effect of integrated therapy on mortality in a retrospective PM/DM cohort in the Taiwan National Health Insurance Research Database (NHIRD). MATERIALS AND METHODS Patients with PM/DM were retrospectively enrolled from the PM/DM Registry of Catastrophic Illnesses cohort in the Taiwan NHIRD between 1997 and 2011. The patients were divided into an integrated medicine (IM) group that received CM and HM and a non-IM group that received CM alone. The Cox proportional hazards regression model and Kaplan-Meier method were used to evaluate the hazard ratio (HR) for mortality. RESULTS Three hundred and eighty-five of 2595 patients with newly diagnosed PM/DM had received IM and 99 had received non-IM. The adjusted HR for mortality was lower in the IM group than in the non-IM group (0.42, 95% confidence interval 0.26-0.68, p < 0.001). The adjusted HR for mortality was also lower in the IM group that had received CM plus HM than in the group that received CM alone (0.48, 95% confidence interval 0.28-0.84, p < 0.05). The core pattern of HM prescriptions integrated with methylprednisolone, methotrexate, azathioprine, or cyclophosphamide to decrease mortality included "San-Qi" (Panax notoginseng), "Bai-Ji" (Bletilla striata), "Chen-Pi" (Citrus reticulata), "Hou-Po" (Magnolia officinalis), and "Dan-Shan" (Salvia miltiorrhiza). CONCLUSION Integrated therapy has reduced mortality in patients with PM/DM in Taiwan. Further investigation of the clinical effects and pharmaceutical mechanism involved is needed.
Collapse
Affiliation(s)
- Ching-Mao Chang
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Po-Hsuan Shih
- Department of Chinese Medicine, Cheng Hsin General Hospital, Taipei, Taiwan; Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Tzeng-Ji Chen
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Family Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Wen-Chao Ho
- Department of Public Health, China Medical University, Taichung, Taiwan.
| | - Chun-Pai Yang
- Department of Neurology, Kuang Tien General Hospital, Taichung, Taiwan; Department of Nutrition, Huang-Kuang University, Taichung, Taiwan.
| |
Collapse
|
14
|
Salvianolic acid B protects against ANIT-induced cholestatic liver injury through regulating bile acid transporters and enzymes, and NF-κB/IκB and MAPK pathways. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1169-1180. [PMID: 31098695 DOI: 10.1007/s00210-019-01657-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 04/24/2019] [Indexed: 02/06/2023]
Abstract
The purpose of this study was to investigate the pharmacological effects of salvianolic acid B (SA-B) on α-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury with the focus on bile acid homeostasis and anti-inflammatory pathways. Rats were randomly assigned into four groups. The control group was given normal saline (i.p.) for 7 consecutive days and on the 5th day was given the vehicle (i.g.). Model group was treated with normal saline (i.p.) for 7 days and administrated with ANIT (75 mg/kg, i.g.) on the 5th day. The SA-B groups were treated with SA-B (15 mg/kg and 30 mg/kg, i.p.) for 7 consecutive days as well as ANIT (75 mg/kg, i.g.) on the 5th day. We found that the serum levels of ALT, γ-GT, TBA, and other liver function indexes were found to be lower in the SA-B treatment groups than in the model group. SA-B also upregulated the transporters and enzymes involved in bile acid homeostasis such as Bsep, Oatp2, and Cyp3a2 in rats and BSEP, CYP3A4, and OATP2 in human cell lines. Moreover, SA-B suppressed NF-κB translocation into the nucleus, inhibited phosphorylation of p38 and JNK, and inhibited inflammation markers including IL-1β, IL-6, TGF-β, TNF-α, and COX-2 to extenuate cholestatic liver injury both in vivo and vitro. Taken together, our findings suggest that anti-cholestatic effects of SA-B may be associated with its ability to regulate NF-κB/IκB and MAPK inflammatory signaling pathways to inhibit inflammation and regulate transporters and enzymes to maintain bile acid homeostasis.
Collapse
|
15
|
In Vitro Anti-Inflammatory Effect of Salvia sagittata Ethanolic Extract on Primary Cultures of Porcine Aortic Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6829173. [PMID: 31210845 PMCID: PMC6532285 DOI: 10.1155/2019/6829173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/10/2019] [Accepted: 02/12/2019] [Indexed: 12/26/2022]
Abstract
The aim of the present research was to study the effects of an ethanolic extract of Salvia sagittata Ruiz & Pav (SSEE), an endemic Ecuadorian plant traditionally used to treat inflammation and different intestinal affections, on primary cultures of porcine aortic endothelial cells (pAECs). pAECs were cultured in the presence of different concentrations (1-200 μg/mL) of SSEE for 24 h, and cytotoxicity was evaluated by the MTT assay. SSEE did not negatively affect cellular viability at any concentration tested. Cell cycle was analyzed and no significant change was observed. Then, the anti-inflammatory effects of SSEE on pAECs were analyzed using a lipopolysaccharide (LPS) as the inflammatory stimulus. Different markers involved in the inflammatory process, such as cytokines and protective molecules, were evaluated by real-time quantitative PCR and Western blot. SSEE showed the ability to restore pAEC physiological conditions reducing interleukin-6 and increasing Heme Oxygenase-1 protein levels. The phytochemical composition of SSEE was also evaluated via HPLC-DAD and spectrophotometric assays. The presence of different phenolic acids and flavonoids was revealed, with rosmarinic acid as the most abundant component. SSEE possesses an interesting antioxidant activity, as assessed through both the Oxygen Radical Absorbance Capacity (ORAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. In conclusion, results suggest that SSEE is endowed with an in vitro anti-inflammatory effect. This represents the initial step in finding a possible scientific support for the traditional therapeutic use of this plant.
Collapse
|
16
|
Yang J, Zhu D, Wen L, Xiang X, Hu J. Gentianella turkestanerum Showed Protective Effects on Hepatic Injury by Modulating the Endoplasmic Reticulum Stress and NF-κB Signaling Pathway. Curr Mol Med 2019; 19:452-460. [PMID: 30987565 DOI: 10.2174/1566524019666190415124838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To investigate the protective effects of Gentianella turkestanerum extraction by butanol (designated as GBA) on hepatic cell line L02 injury induced by carbon tetrachloride (CCl4) and hydrogen peroxide (H2O2). METHODS L02 cells were incubated with 5 µg/mL, 10 µg/mL, 20 µg/mL, 40 µg/mL, 60 µg/mL, 80 µg/mL and 100 µg/mL GBA for 24 hours, and then MTT assay was used to screen the cytotoxicity for GBA. Cells were divided into blank control group, CCl4/H2O2 model group, treated by CCl4 (20 mmol/L) or H2O2 (100 µmol/L); silymarin+CCl4/H2O2 group, treated by CCl4 (20 mmol/L) or H2O2 (100 µmol/L) and 5 µg/mL silymarin; GBA+CCl4/H2O2 group, treated by CCl4 (20 mmol/L) or H2O2 (100 µmol/L) and GBA (5 µg/mL, 10 µg/mL and 20 µg/mL). MTT assay was performed to determine the cellular activity. Malondialdehyde (MDA) content was determined using a commercial kit. The alanine transaminase (ALT), aspartate transaminase (AST) in the supernatant was determined. PE-Annexin V/7-ADD method was utilized to determine the apoptosis of cells. RT-PCR was used to evaluate the expression of endoplasmic reticulum stressrelated genes (CHOP, PERK, IRE1 and ATF6) mRNA. Western blot analysis was performed to determine the expression of CHOP, Caspase 12 and NF-κB protein. RESULTS Cellular survival after GBA (5 µg/mL, 10 µg/mL and 20 µg/mL) incubation was ≥ 75%. After GBA incubation, levels of ALT and AST showed a significant decrease (P < 0.05), while that of the MDA showed a significant decrease (P < 0.05). The apoptosis in the CCl4 or H2O2 group showed a significant increase compared to the control group (P < 0.05). In contrast, GBA-preincubation could attenuate the cellular apoptosis compared to the CCl4 or H2O2 group, which displayed a dose-dependent manner (P < 0.05). The expression of CHOP, PERK, IRE1 and ATF6 mRNA was significantly up-regulated in the presence of CCl4 or H2O2 (P < 0.05). Whereas, GBA induced a significant decrease in these mRNA thereafter (P < 0.05), together with a decrease in CHOP and Caspase 12 proteins (P < 0.05). Besides, it could attenuate the expression of NF-κB p65 in nuclear protein. CONCLUSION G. turkestanerum could inhibit the lipid peroxidation and increase the antioxidant activity. Also, it could inhibit the cellular apoptosis through down-regulating the transcriptional level of ERS related genes and proteins. This process was associated with the nuclear translocation of NF-κB p65 protein.
Collapse
Affiliation(s)
- Jianhua Yang
- Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi 830011, China
| | - Dandan Zhu
- Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi 830011, China
| | - Limei Wen
- Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi 830011, China.,College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Xueying Xiang
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Junping Hu
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| |
Collapse
|
17
|
Shi MJ, Dong BS, Yang WN, Su SB, Zhang H. Preventive and therapeutic role of Tanshinone ⅡA in hepatology. Biomed Pharmacother 2019; 112:108676. [DOI: 10.1016/j.biopha.2019.108676] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 12/13/2022] Open
|
18
|
Xu MB, Rong PQ, Jin TY, Zhang PP, Liang HY, Zheng GQ. Chinese Herbal Medicine for Wilson's Disease: A Systematic Review and Meta-Analysis. Front Pharmacol 2019; 10:277. [PMID: 31001112 PMCID: PMC6455065 DOI: 10.3389/fphar.2019.00277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
Wilson's disease (WD) is a rare autosomal recessive inherited disorder of chronic copper toxicosis. Currently, Chinese herbal medicines (CHM) is widely used for WD. Here, we conducted an updated systematic review to investigate the efficacy and safety of CHM for WD and its possible mechanisms. Randomized-controlled clinical trials (RCTs), which compared CHM with Western conventional medicine or placebo for WD, were searched in six databases from inception to July 2017. The methodological quality was assessed using 7-item criteria from the Cochrane's collaboration tool. All the data were analyzed using Rev-Man 5.3 software. Eighteen studies involving 1,220 patients were identified for the final analyses. A score of study quality ranged from 2/7 to 4/7 points. Meta-analyses showed that CHM could significantly increase 24-h urinary copper excretion and improve liver function and the total clinical efficacy rate for WD compared with control (p < 0.05). Additionally, CHM was well tolerated in patients with WD. The underlying mechanisms of CHM for WD are associated with reversing the ATP7B mutants, exerting anti-oxidation, anti-inflammation, and anti-hepatic fibrosis effects. In conclusion, despite the apparent positive results, the present evidence supports, to a limited extent because of the methodological flaws and CHM heterogeneity, that CHM paratherapy can be used for patients with WD but could not be recommended as monotherapy in WD. Further rigorous RCTs focusing on individual CHM formula for WD are warranted.
Collapse
Affiliation(s)
| | | | | | | | | | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
19
|
Hepatoprotective Effects of a Functional Formula of Three Chinese Medicinal Herbs: Experimental Evidence and Network Pharmacology-Based Identification of Mechanism of Action and Potential Bioactive Components. Molecules 2018; 23:molecules23020352. [PMID: 29414910 PMCID: PMC6017312 DOI: 10.3390/molecules23020352] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/27/2018] [Accepted: 02/05/2018] [Indexed: 12/20/2022] Open
Abstract
Various Chinese herbal medicines (CHMs) have shown beneficial liver protection effects. Jian-Gan-Bao (JGB), a functional herbal formula, consists of three famous CHMs, including Coriolus versicolor, Salvia miltiorrhiza and Schisandra chinensis, which has been used as a folk medicine for several chronic liver diseases. In the present study, we aim systemically to evaluate the effects of JGB on acute and chronic alcoholic liver diseases (ALD) as well as non-alcoholic fatty liver disease (NAFLD) in mouse models, and identify its potential bioactive components and mechanism of action. JGB showed preventive effects for acute and chronic ALD as well as NAFLD, while post-treatment of JGB showed no significant effect, suggesting the nature of JGB as a health supplement rather than a drug. Furthermore, a compound-target network was constructed to identify the potential bioactive compounds and pathways that regulate its hepatoprotective effects. There are 40 bioactive compounds and 15 related targets that have been identified via this network pharmacology study. Among them are miltirone, neocryptotanshinone II and deoxyshikonin, with desirable pharmaceutical properties. Pathways relating to inflammation, fatty acid oxidation, tumor necrosis factor (TNF) production and cell proliferation were predicted as bioactive compounds and potential underlying mechanisms, which should be the focus of study in this field in the future.
Collapse
|
20
|
Song T, Guo X, Shao L, Sun M, Romeiro FG, Han D, Bao W, Qi X. A systematic review and meta-analysis of treatment for hepatorenal syndrome with traditional Chinese medicine. Transl Gastroenterol Hepatol 2018; 3:57. [PMID: 30225390 PMCID: PMC6131225 DOI: 10.21037/tgh.2018.08.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/09/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hepatorenal syndrome (HRS) is a life-threatening complication of end-stage liver diseases. It has been reported that traditional Chinese medicine (TCM) may improve liver function, delay disease progression, alleviate symptoms, and improve quality of life in HRS patients. The study aims to systematically review the efficacy of TCM for the treatment of HRS. METHODS Publications were searched electronically from China National Knowledge Infrastructure (CNKI), Wanfang, VIP, PubMed, and EMBASE databases. Odds ratio (OR) and standardized mean difference (SMD) with 95% confidence interval (CI) were calculated. Heterogeneity was assessed. The Cochrane Collaboration's tool was used to assess the risk of bias. RESULTS Fourteen randomized controlled trials involving 788 patients with HRS were included. Random generation sequence was reported in only two studies. Blinding was not used in any study. Compared to conventional treatment without TCM, TCM led to a significant survival benefit during hospitalization (OR: 0.18; 95% CI: 0.08-0.39; P<0.0001), a significantly higher complete response (OR: 3.20; 95% CI: 2.06-4.97; P<0.00001), and a significantly lower no response (OR: 0.20; 95% CI: 0.14-0.30; P<0.00001). Partial response was not significantly different between the two groups (OR: 1.39; 95% CI: 0.90-2.15; P=0.14). Regardless of TCM, blood urea nitrogen and abdominal circumference were significantly decreased, and urine volume was significantly increased after treatment. Compared to conventional treatment without TCM, TCM led to a significantly lower serum creatinine, blood urea nitrogen, bilirubin, plasma ammonia, and abdominal circumference and significantly higher urine volume after treatment. There was significant heterogeneity. CONCLUSIONS TCM might have a better survival and a higher complete response in patients with HRS. However, the quality of published studies was unsatisfactory.
Collapse
Affiliation(s)
- Tingxue Song
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Shenyang Military Area, Shenyang 110016, China
- Department of Gastroenterology, No. 463 Hospital of Chinese PLA, Shenyang 110000, China
| | - Xiaozhong Guo
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Shenyang Military Area, Shenyang 110016, China
| | - Lichun Shao
- Department of Gastroenterology, No. 463 Hospital of Chinese PLA, Shenyang 110000, China
| | - Mingyu Sun
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | | | - Dan Han
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Shenyang Military Area, Shenyang 110016, China
| | - Wenchun Bao
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Shenyang Military Area, Shenyang 110016, China
| | - Xingshun Qi
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Shenyang Military Area, Shenyang 110016, China
| |
Collapse
|
21
|
Shen L, Lou Z, Zhang G, Xu G, Zhang G. Diterpenoid Tanshinones, the extract from Danshen (Radix Salviae
Miltiorrhizae) induced apoptosis in nine human cancer cell lines. J TRADIT CHIN MED 2017; 36:514-21. [PMID: 28459519 DOI: 10.1016/s0254-6272(16)30069-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To identify the active anti-tumor constituents
in the extract from Danshen (Radix Salviae
Miltiorrhizae) and investigate the mechanisms underlying
the actions. METHODS First, we introduced a two-step counter-
current chromatography to extract the therapeutically
active diterpenoid, tanshinone from
Danshen (Radix Salviae Miltiorrhizae). The cholecystokinin
(CCK-8) method was used to evaluate
the inhibitory effect of diterpenoid tanshinone in
liver cancer QGY-7703, lung cancer PC9, lung cancer
A549, gastric cancer MKN-45, gastric cancer
HGC-27, colon cancer HCT116, myeloma cellU266/
RPMI8226, and human breast cancer MCF-7 in vitro.
Fluorescence staining was used to observe
the cytotoxicity ofditerpenoid tanshinone on PC9
cells. The Western blot was used to detect apoptosis-
related protein poly ADP-ribose polymerase
(PARP), cysteinyl aspartate specific proteinase3/9
(caspase3/9), and cleaved-cysteinyl aspartate specific
proteinase3/9 (cleaved-caspase3/9). The endoplasmic
reticulum stress-related activating transcription factor 4 (ATF4), phosphorylated eukaryotic
initiation factor 2α (p-eIF2α), and phosphorylated
jun amino-terminal kinase (p-JNK), and caspase-
12 were also analyzed using the Western
blot. RESULTS Diterpenoid tanshinone inhibited the
nine human tumor cell lines, with an IC50 of
4.37-29 μg/mL, with the PC9 and MCF-7 displaying
the lowest values. Fluorescence staining showed a
lethal effect of diterpenoid tanshinone on PC9
cells. The Western blot showed that the expression
of caspase3/9 protein and ATF-4 protein decreased
gradually. However, the PARP, cleaved-caspase 3/9
and the expression of p-eIF2 α, P-JNK, and caspase-
12 increased gradually, in a dose-dependent fashion. CONCLUSION We successfully introduced a
two-step counter-current chromatography method
to extract diterpenoid tanshinone, and demonstrated
its antitumor activity. Diterpenoid tanshinone
can induce apoptosis in nine human cancer cell lines.
Collapse
|
22
|
Hong M, Li S, Wang N, Tan HY, Cheung F, Feng Y. A Biomedical Investigation of the Hepatoprotective Effect of Radix salviae miltiorrhizae and Network Pharmacology-Based Prediction of the Active Compounds and Molecular Targets. Int J Mol Sci 2017; 18:ijms18030620. [PMID: 28335383 PMCID: PMC5372635 DOI: 10.3390/ijms18030620] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 02/07/2023] Open
Abstract
Radix salviae miltiorrhizae (Danshen in Chinese), a classic traditional Chinese medicine (TCM) herb, has been used for centuries to treat liver diseases. In this study, the preventive and curative potential of Danshen aqueous extract on acute/chronic alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) was studied. The in vivo results indicated that Danshen could alleviate hepatic inflammation, fatty degeneration, and haptic fibrogenesis in ALD and NAFLD models. In the aspect of mechanism of action, the significant reduction in MDA levels in both ALD and NAFLD models implies the decreased levels of oxidative stress by Danshen. However, Danshen treatment could not activate the internal enzymatic antioxidant system in ALD and NAFLD models. To further explore the hepatoprotective mechanism of Danshen, an in silico-based network pharmacology approach was employed in the present study. The pharmacological network analysis result revealed that six potential active ingredients such as tanshinone iia, salvianolic acid b, and Danshensu may contribute to the hepatoprotective effects of Danshen on ALD and NAFLD. The action mechanism may relate with regulating the intracellular molecular targets such as PPARα, CYP1A2, and MMP2 for regulation of lipid metabolism, antioxidant and anti-fibrogenesis by these potential active ingredients. Our studies suggest that the combination of network pharmacology strategy with in vivo experimental study may provide a forceful tool for exploring the mechanism of action of traditional Chinese medicine (TCM) herb and developing novel bioactive ingredients.
Collapse
Affiliation(s)
- Ming Hong
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Hor-Yue Tan
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Fan Cheung
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
23
|
Lu C, Zeng YQ, Liu H, Xie Q, Xu S, Tu K, Dou C, Dai Z. Tanshinol suppresses cardiac allograft rejection in a murine model. J Heart Lung Transplant 2016; 36:227-236. [PMID: 27574736 DOI: 10.1016/j.healun.2016.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/23/2016] [Accepted: 07/24/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Achieving long-term cardiac allograft survival without continuous immunosuppression is highly desired in organ transplantation. Studies have shown that Salvia miltiorrhiza, an herb also known as danshen, improves microcirculation and is highly effective in treating coronary heart disease. Our objective is to determine whether tanshinol, an ingredient of danshen, improves cardiac allograft survival. METHODS Fully vascularized heterotopic heart transplantation was performed using BALB/c mice as donors and C57BL/6 mice as recipients, which were then treated with tanshinol and rapamycin. CD4+FoxP3+ regulatory T cells (Tregs) were quantified by flow analyses, whereas CCL22 was measured by real-time polymerase chain reaction and Western blotting. RESULTS We found that tanshinol significantly delayed cardiac allograft rejection. It promoted long-term allograft survival induced by rapamycin, a mammalian target-of-rapamycin (mTOR) inhibitor. Tanshinol increased CD4+FoxP3+ Treg numbers in cardiac allografts, but not spleens and lymph nodes, of recipient mice by enhancing chemokine CCL22 expression in cardiac allografts, especially cardiac dendritic cells. In contrast, rapamycin increased Treg numbers in both lymphoid organs and allografts, suggesting that it generally expands Tregs. Moreover, Tregs induced by rapamycin plus tanshinol were more potent in suppressing T-cell proliferation in vitro than those from untreated recipients. Neutralizing CCL22 hindered CD4+FoxP3+ Treg migration to cardiac allografts and reversed long-term allograft survival induced by tanshinol plus rapamycin. CONCLUSIONS Tanshinol suppresses cardiac allograft rejection by recruiting CD4+FoxP3+ Tregs to the graft, whereas rapamycin does so via expanding the Tregs. Thus, tanshinol cooperates with rapamycin to further extend cardiac allograft survival.
Collapse
Affiliation(s)
- Chuanjian Lu
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| | - Yu-Qun Zeng
- Section of Nephrology, the Second Affiliated Hospital, Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huazhen Liu
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| | - Qingfeng Xie
- Center for Regenerative and Translational Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| | - Shengmei Xu
- Center for Regenerative and Translational Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi׳an, Shaanxi, China
| | - Changwei Dou
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi׳an, Shaanxi, China; Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Zhenhua Dai
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China.
| |
Collapse
|
24
|
Boye A, Yang Y, Asenso J, Wei W. Anti-fibro-hepatocarcinogenic Chinese herbal medicines: A mechanistic overview. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2016; 5:278-89. [PMID: 27366355 PMCID: PMC4927134 DOI: 10.5455/jice.20160530032814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/03/2016] [Indexed: 12/22/2022]
Abstract
Chinese herbal medicine (CHM) is an integral component of complementary/alternative medicine and it is increasingly becoming the preferred therapeutic modality for the treatment of liver fibrosis and hepatocellular carcinoma (HCC) worldwide. Accordingly, the World Health Organization (WHO) has attested to the popularity and efficacy of indigenous herbal therapies including CHM as a first line of treatment for some diseases including liver disorders. However, the WHO and drug discovery experts have always recommended that use of indigenous herbal remedies must go hand-in-hand with the requisite mechanistic elucidation so as to constitute a system of verification of efficacy within the ethnobotanical context of use. Although many CHM experts have advanced knowledge on CHM, nonetheless, more enlightenment is needed, particularly mechanisms of action of CHMs on fibro-hepato-carcinogenesis. We, herein, provide in-depth mechanisms of the action of CHMs which have demonstrated anti-fibro-hepatocarcinogenic effects, in pre-clinical and clinical studies as published in PubMed and other major scientific databases. Specifically, the review brings out the important signaling pathways, and their downstream targets which are modulated at multi-level by various anti-fibro-hepatocarcinogenic CHMs.
Collapse
Affiliation(s)
- Alex Boye
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
- Department of Pharmacology, Institute of Natural Medicine, Anhui Medical University, Hefei, Anhui Province, China
| | - Yan Yang
- Department of Pharmacology, Institute of Natural Medicine, Anhui Medical University, Hefei, Anhui Province, China
| | - James Asenso
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
25
|
Hou S, Wang J, Li Z, Wang Y, Wang Y, Yang S, Xu J, Zhu W. Five-descriptor model to predict the chromatographic sequence of natural compounds. J Sep Sci 2016; 39:864-72. [PMID: 26718117 DOI: 10.1002/jssc.201501016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/18/2015] [Accepted: 12/17/2015] [Indexed: 02/02/2023]
Abstract
Despite the recent introduction of mass detection techniques, ultraviolet detection is still widely applied in the field of the chromatographic analysis of natural medicines. Here, a neural network cascade model consisting of nine small artificial neural network units was innovatively developed to predict the chromatographic sequence of natural compounds by integrating five molecular descriptors as the input. A total of 117 compounds of known structure were collected for model building. The order of appearance of each compound was determined in gradient chromatography. Strong linear correlation was found between the predicted and actual chromatographic position orders (Spearman's rho = 0.883, p < 0.0001). Application of the model to the external validation set of nine natural compounds was shown to dramatically increase the prediction accuracy of the real chromatographic order of multiple compounds. A case study shows that chromatographic sequence prediction based on a neural network cascade facilitated compound identification in the chromatographic fingerprint of Radix Salvia miltiorrhiza. For natural medicines of known compound composition, our method provides a feasible means for identifying the constituents of interest when only ultraviolet detection is available.
Collapse
Affiliation(s)
- Shuying Hou
- Department of Pharmacy Intravenous Admixture Service, the First Affiliated Hospital of Harbin Medical University, Harbin, P. R., China
| | - Jinhua Wang
- Department of Pharmacy Intravenous Admixture Service, the First Affiliated Hospital of Harbin Medical University, Harbin, P. R., China
| | - Zhangming Li
- Department of Pharmacy Administration, Harbin Medical University, Harbin, P. R., China
| | - Yang Wang
- Department of Pharmacy Intravenous Admixture Service, the First Affiliated Hospital of Harbin Medical University, Harbin, P. R., China
| | - Ying Wang
- Department of Pharmacy Intravenous Admixture Service, the First Affiliated Hospital of Harbin Medical University, Harbin, P. R., China
| | - Songling Yang
- Department of Biology Pharmacy, Heilongjiang Vocational College of Biology Science and Technology, Harbin, P. R., China
| | - Jia Xu
- Department of Nephrology, the Fourth Affiliated Hospital, Harbin Medical University, Harbin, P. R., China
| | - Wenliang Zhu
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University, Harbin, P. R., China
| |
Collapse
|
26
|
Hong M, Li S, Tan HY, Wang N, Tsao SW, Feng Y. Current Status of Herbal Medicines in Chronic Liver Disease Therapy: The Biological Effects, Molecular Targets and Future Prospects. Int J Mol Sci 2015; 16:28705-45. [PMID: 26633388 PMCID: PMC4691073 DOI: 10.3390/ijms161226126] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 11/25/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023] Open
Abstract
Chronic liver dysfunction or injury is a serious health problem worldwide. Chronic liver disease involves a wide range of liver pathologies that include fatty liver, hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. The efficiency of current synthetic agents in treating chronic liver disease is not satisfactory and they have undesirable side effects. Thereby, numerous medicinal herbs and phytochemicals have been investigated as complementary and alternative treatments for chronic liver diseases. Since some herbal products have already been used for the management of liver diseases in some countries or regions, a systematic review on these herbal medicines for chronic liver disease is urgently needed. Herein, we conducted a review describing the potential role, pharmacological studies and molecular mechanisms of several commonly used medicinal herbs and phytochemicals for chronic liver diseases treatment. Their potential toxicity and side effects were also discussed. Several herbal formulae and their biological effects in chronic liver disease treatment as well as the underlying molecular mechanisms are also summarized in this paper. This review article is a comprehensive and systematic analysis of our current knowledge of the conventional medicinal herbs and phytochemicals in treating chronic liver diseases and on the potential pitfalls which need to be addressed in future study.
Collapse
Affiliation(s)
- Ming Hong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Hor Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Sai-Wah Tsao
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
27
|
Abstract
Arsenic exposure may cause liver injury, fibrosis and cirrhosis, and the main pathological changes include swelling, degeneration and necrosis of hepatocytes, inflammatory cell infiltration in portal area and different degrees of fibrosis. The mechanisms by which arsenic causes liver fibrosis are complicated. Many kinds of cytokines which are closely related to oxidative stress injury, inflammation and liver fibrosis participate in the development and progression of arsenic induced liver fibrosis.
Collapse
|