1
|
Hu W, Meng X, Wu Y, Li X, Chen H. Terpenoids, a Rising Star in Bioactive Constituents for Alleviating Food Allergy: A Review about the Potential Mechanism, Preparation, and Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26599-26616. [PMID: 39570772 DOI: 10.1021/acs.jafc.4c09124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Food allergies affect approximately 2.5% of the global population, with a notable increase in prevalence observed each year. Terpenoids, a class of natural bioactive constituents, have been widely utilized in the management of immune- and inflammation-related disorders, and their potential in alleviating food allergies is increasingly being recognized. This article summarizes various terpenoids derived from plant, fungal, and marine sources. Among them, triterpenoids, such as oleanolic acid, ursolic acid, and lupeol, possess the highest proportion and bioactivity in alleviating food allergy. Additionally, the mechanisms by which terpenoids may mitigate allergic diseases were categorically outlined, focusing on their roles in epithelial mucosal barrier function, immunomodulatory effects during the sensitization phase, inhibition of effector cells, oxidative stress, and regulation of microbial homeostasis. Finally, the advantages and limitations of natural extraction and artificial synthesis methods were compared, and the application of terpenoids in the food industry were also discussed. This article serves as a useful reference for the development of methods or functional foods based on terpenoids, which could represent a promising avenue for alleviating food allergy.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Xuanyi Meng
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Yong Wu
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
2
|
Beigoli S, Boskabady MH. The molecular basis of the immunomodulatory effects of natural products: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156028. [PMID: 39276685 DOI: 10.1016/j.phymed.2024.156028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/21/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Natural products (NPs) have long been recognized for their potential to modulate the immune system, offering a natural and holistic approach to enhancing immune function. In recent years, the immunomodulation effects of various natural products have attained significant attention. PURPOSE This article provides an overview of the role of natural products in immunomodulation, exploring their mechanisms of action, common types of NPs with immunomodulation properties, clinical applications, as well as considerations for their safety and efficacy. METHODS Extensive research has been conducted to compile important discoveries on the immunomodulatory properties of NPs through thorough searches of multiple databases such as PubMed, Science Direct, and Scopus up until January 2024. RESULTS By decreasing the levels of Th2 cytokines and pro-inflammatory cytokines, the results suggested that NPs have the ability to modulate the immune system. Therefore, NPs alleviate inflammation in various disorders such as asthma and cancer. Furthermore, the observed increase in CD4 cells and IFN-ɣ/IL4 levels, along with an increased IFN-c/IL4 ratio, indicates a stimulatory effect of NPs on Th1 activity in various inflammatory conditions. Therefore, NPs regulate the immune system by inhibiting T-cells and decreasing the growth of young B-cell lymphoma cells. CONCLUSION Reviewing studies indicated that NPs have the potential to serve as immunomodulatory candidates for treating disorders characterized by immune dysregulation. However, additional experimental and clinical studies are necessary before these agents can be implemented in clinical settings.
Collapse
Affiliation(s)
- Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Najar M, Bouhtit F, Rahmani S, Bouali A, Melki R, Najimi M, Lewalle P, Merimi M. The immunogenic profile and immunomodulatory function of mesenchymal stromal / stem cells in the presence of Ptychotis verticillata. Heliyon 2024; 10:e24822. [PMID: 38317994 PMCID: PMC10838760 DOI: 10.1016/j.heliyon.2024.e24822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are considered to be a promising immunotherapeutic tool due to their easy accessibility, culture expansion possibilities, safety profile, and immunomodulatory properties. Although several studies have demonstrated the therapeutic effects of MSCs, their efficacy needs to be improved while also preserving their safety. It has been suggested that cell homeostasis may be particularly sensitive to plant extracts. The impact of natural compounds on immunity is thus a fascinating and growing field. Ptychotis verticillata and its bioactive molecules, carvacrol and thymol, are potential candidates for improving MSC therapeutic effects. They can be used as immunotherapeutic agents to regulate MSC functions and behavior during immunomodulation. Depending on their concentrations and incubation time, these compounds strengthened the immunomodulatory functions of MSCs while maintaining their immune-evasive profile. Incubating MSCs with carvacrol and thymol does not alter their hypoimmunogenicity, as no induction of the allogeneic immune response was observed. MSCs also showed enhanced abilities to reduce the proliferation of activated T cells. Thus, MSCs are immunologically responsive to bioactive molecules derived from PV. The bioactivity may depend on the whole phyto-complex of the oil. These findings may contribute to the development of safe and efficient immunotherapeutic MSCs by using medicinal plant-derived active molecules.
Collapse
Affiliation(s)
- Mehdi Najar
- Faculty of Medicine, ULB721, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), University of Montreal, Montreal H2X 0A9, QC, Canada
| | - Fatima Bouhtit
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Saida Rahmani
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Abderrahim Bouali
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Rahma Melki
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Makram Merimi
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| |
Collapse
|
4
|
Yan C, Kuang W, Jin L, Wang R, Niu L, Xie C, Ding J, Liao Y, Wang L, Wan H, Ma G. Carvacrol protects mice against LPS-induced sepsis and attenuates inflammatory response in macrophages by modulating the ERK1/2 pathway. Sci Rep 2023; 13:12809. [PMID: 37550359 PMCID: PMC10406886 DOI: 10.1038/s41598-023-39665-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023] Open
Abstract
Macrophages play an important role in the development of life-threatening sepsis, which is characterized by multiorgan dysfunction, through their ability to produce inflammatory cytokines. Carvacrol is a phenolic compound that has been confirmed to possess strong anti‑inflammatory activity. In this study, we mainly investigated the effect of carvacrol on lipopolysaccharide (LPS)-induced macrophage proinflammatory responses and endotoxic shock. The results showed that carvacrol significantly reduced mouse body weight loss and ameliorated pathological damage to the liver, lung, and heart under LPS-induced sepsis. Carvacrol attenuated inflammatory responses by inhibiting the LPS-induced production of inflammatory cytokine interleukin-6 (IL-6) in vivo and in vitro. Mechanistically, carvacrol inhibited IL-6 production mainly through the ERK1/2 signalling pathway in macrophages. Furthermore, carvacrol improved the survival of septic mice. This study sheds light on the role of carvacrol in the pathogenesis of LPS-induced sepsis, and thus, its potential in treating sepsis patients may be considered.
Collapse
Affiliation(s)
- Chenghua Yan
- College of Traditional Chinese Medicine/College of Life Sciences, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Wendong Kuang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330029, China
- State Key Laboratory of Virology, Wuhan, 430071, China
| | - Liang Jin
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330029, China
| | - Rongliang Wang
- College of Traditional Chinese Medicine/College of Life Sciences, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Ling Niu
- College of Traditional Chinese Medicine/College of Life Sciences, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Chuanqi Xie
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330029, China
| | - Jian Ding
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yongcui Liao
- College of Traditional Chinese Medicine/College of Life Sciences, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Liyuan Wang
- College of Traditional Chinese Medicine/College of Life Sciences, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Hongjiao Wan
- College of Traditional Chinese Medicine/College of Life Sciences, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Guangqiang Ma
- College of Traditional Chinese Medicine/College of Life Sciences, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
5
|
Omeragic E, Dedic M, Elezovic A, Becic E, Imamovic B, Kladar N, Niksic H. Application of direct peptide reactivity assay for assessing the skin sensitization potential of essential oils. Sci Rep 2022; 12:7470. [PMID: 35523830 PMCID: PMC9076902 DOI: 10.1038/s41598-022-11171-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/13/2022] [Indexed: 11/24/2022] Open
Abstract
Plant-derived products are frequently found as ingredients in cosmetics. However, the current data show non-neglectable skin sensitizing potential of these preparations suggesting an urgent need for data regarding their health safety profile. The aim of this study was to assess the skin sensitization potential of commercial essential oils by selected Lamiaceae species (Lavandula angustifolia, Melissa officinalis, Mentha longifolia, Thymus vulgaris, Salvia officinalis, and Rosmarinus officinalis) using a chemistry-based Direct Peptide Reactivity Assay (DPRA) in order to predict their potential allergic properties. In the DPRA assay, nucleophile-containing synthetic peptides (cysteine peptide and lysine peptide) were incubated with the test substance for 24 h. Depletion of the peptide in the reaction mixture was measured by high-pressure liquid chromatography (HPLC) using UV detection and the average peptide depletion data for cysteine and lysine was then calculated. Menthae longifoliae aetheroleum showed no or minimal reactivity with 4.48% cysteine depletion, Rosmarini aetheroleum and Salviae aetheroleum showed low reactivity with the 12.79% and 15.34% of cysteine depletion, respectively, while the other analyzed essential oils showed moderate reactivity with the cysteine depletion between 23.21 and 48.43%. According to DPRA predictive analysis, only Menthae longifoliae aetheroleum can be classified as negative, while all other essential oils may be classified as positive, thus having the potential to cause skin sensitization.
Collapse
Affiliation(s)
- Elma Omeragic
- University of Sarajevo-Faculty of Pharmacy, Zmaja od Bosne 8, 71 000, Sarajevo, Bosnia and Herzegovina.
| | - Mirza Dedic
- University of Sarajevo-Faculty of Pharmacy, Zmaja od Bosne 8, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Alisa Elezovic
- University of Sarajevo-Faculty of Pharmacy, Zmaja od Bosne 8, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Ervina Becic
- University of Sarajevo-Faculty of Pharmacy, Zmaja od Bosne 8, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Belma Imamovic
- University of Sarajevo-Faculty of Pharmacy, Zmaja od Bosne 8, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Nebojsa Kladar
- University of Novi Sad-Faculty of Medicine, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
| | - Haris Niksic
- University of Sarajevo-Faculty of Pharmacy, Zmaja od Bosne 8, 71 000, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
6
|
Li H, Wu R, Yu H, Zheng Q, Chen Y. Bioactive Herbal Extracts of Traditional Chinese Medicine Applied with the Biomaterials: For the Current Applications and Advances in the Musculoskeletal System. Front Pharmacol 2021; 12:778041. [PMID: 34776987 PMCID: PMC8581265 DOI: 10.3389/fphar.2021.778041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/15/2021] [Indexed: 02/05/2023] Open
Abstract
Traditional Chinese medicine (TCM) has demonstrated superior therapeutic effect for musculoskeletal diseases for thousands of years. Recently, the herbal extracts of TCM have received rapid advances in musculoskeletal tissue engineering (MTE). A literature review collecting both English and Chinese references on bioactive herbal extracts of TCM in biomaterial-based approaches was performed. This review provides an up-to-date overview of application of TCMs in the field of MTE, involving regulation of multiple signaling pathways in osteogenesis, angiogenesis, anti-inflammation, and chondrogenesis. Meanwhile, we highlight the potential advantages of TCM, opening the possibility of its extensive application in MTE. Overall, the superiority of traditional Chinese medicine turns it into an attractive candidate for coupling with advanced additive manufacturing technology.
Collapse
Affiliation(s)
- Haotao Li
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Rongjie Wu
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Haiyang Yu
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Qiujian Zheng, ; Yuanfeng Chen,
| | - Yuanfeng Chen
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Research Department of Medical Science, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Qiujian Zheng, ; Yuanfeng Chen,
| |
Collapse
|
7
|
Mousavi S, Schmidt AM, Escher U, Kittler S, Kehrenberg C, Thunhorst E, Bereswill S, Heimesaat MM. Carvacrol ameliorates acute campylobacteriosis in a clinical murine infection model. Gut Pathog 2020; 12:2. [PMID: 31921356 PMCID: PMC6947993 DOI: 10.1186/s13099-019-0343-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The prevalence of human infections with the zoonotic pathogen Campylobacter jejuni is rising worldwide. Therefore, the identification of compounds with potent anti-pathogenic and anti-inflammatory properties for future therapeutic and/or preventive application to combat campylobacteriosis is of importance for global health. Results of recent studies suggested carvacrol (4-isopropyl-2-methylphenol) as potential candidate molecule for the treatment of campylobacteriosis in humans and for the prevention of Campylobacter colonization in farm animals. RESULTS To address this in a clinical murine infection model of acute campylobacteriosis, secondary abiotic IL-10-/- mice were subjected to synthetic carvacrol via the drinking water starting 4 days before peroral C. jejuni challenge. Whereas at day 6 post-infection placebo treated mice suffered from acute enterocolitis, mice from the carvacrol cohort not only harbored two log orders of magnitude lower pathogen loads in their intestines, but also displayed significantly reduced disease symptoms. Alleviated campylobacteriosis following carvacrol application was accompanied by less distinct intestinal apoptosis and pro-inflammatory immune responses as well as by higher numbers of proliferating colonic epithelial cells. Remarkably, the inflammation-ameliorating effects of carvacrol treatment were not restricted to the intestinal tract, but could also be observed in extra-intestinal organs such as liver, kidneys and lungs and, strikingly, systemically as indicated by lower IFN-γ, TNF, MCP-1 and IL-6 serum concentrations in carvacrol versus placebo treated mice. Furthermore, carvacrol treatment was associated with less frequent translocation of viable C. jejuni originating from the intestines to extra-intestinal compartments. CONCLUSION The lowered C. jejuni loads and alleviated symptoms observed in the here applied clinical murine model for human campylobacteriosis highlight the application of carvacrol as a promising novel option for both, the treatment of campylobacteriosis and hence, for prevention of post-infectious sequelae in humans, and for the reduction of C. jejuni colonization in the intestines of vertebrate lifestock animals.
Collapse
Affiliation(s)
- Soraya Mousavi
- CC5, Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Anna-Maria Schmidt
- CC5, Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Ulrike Escher
- CC5, Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Sophie Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Justus-Liebig-University, Giessen, Germany
| | - Elisa Thunhorst
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Stefan Bereswill
- CC5, Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Markus M. Heimesaat
- CC5, Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| |
Collapse
|
8
|
Elbahnasawy AS, Valeeva ER, El-Sayed EM, Rakhimov II. The Impact of Thyme and Rosemary on Prevention of Osteoporosis in Rats. J Nutr Metab 2019; 2019:1431384. [PMID: 31049223 PMCID: PMC6462344 DOI: 10.1155/2019/1431384] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/26/2019] [Indexed: 12/19/2022] Open
Abstract
Osteoporosis poses an important public health problem which affects millions of people worldwide. There is a direct link between calcium deficiency in diet and induction of osteoporosis and bone loss. The current study was conducted to evaluate the protective effect of thyme (Thymus vulgaris L.) and rosemary (Rosmarinus officinalis L.) against osteoporosis in rats with low calcium intake. Essential oils of rosemary and thyme were analyzed. The experiment was carried out on growing male Sprague-Dawley rats; the experimental animals were divided into 5 groups: 1, control negative was fed standard balanced diet; 2, control positive was fed balanced diet with low calcium level (L Ca) (Ca 0.1% w/w); 3, (L Ca) + thyme powder (5% w/w); 4, (L Ca) + rosemary powder (5% w/w); 5, (L Ca) + orally administration with CaCO3 (27 mg/kg body weight). Blood samples were collected for different biochemical analyses in plasma (calcium (Ca), phosphorus (P), magnesium (Mg), tumor necrosis factor-alpha (TNF-α), C-reactive protein (CRP), malondialdehyde (MDA), parathyroid hormone (PTH), C-terminal telopeptide (CTX), and 1,25-(OH)2-vitamin D3). Femur mass, length, and bone mineral density (BMD) were recorded, and histopathological studies for femurs were examined. Low-calcium diet induced osteoporotic changes in positive control rats (decrease in Ca, vitamin D3, and BMD and increase in CTX, PTH, TNF-α, CRP, and MDA). Supplementation with thyme and rosemary inhibited significantly the development of bone loss, increased Ca and vitamin D3 in plasma, improved BMD, and also prevented the inflammation and oxidative stress (improved TNF-α, CRP and MDA) compared to the positive control. The histopathological examination of treated groups showed an improvement in bone histology and protection against bone loss. However, thyme powder showed more effective impact than rosemary. Our study demonstrates that thyme and rosemary effectively mitigated calcium deficiency-induced bone loss and maybe considered as promising candidates for preventing bone resorption and osteoporosis.
Collapse
Affiliation(s)
- Amr S. Elbahnasawy
- Department of Bioecology, Hygiene and Public Health, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Department of Nutrition and Food Sciences, National Research Centre, Dokki, Giza, Egypt
| | - E. R. Valeeva
- Department of Bioecology, Hygiene and Public Health, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Eman M. El-Sayed
- Department of Nutrition and Food Sciences, National Research Centre, Dokki, Giza, Egypt
| | - I. I. Rakhimov
- Department of Bioecology, Hygiene and Public Health, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
9
|
Huang CM, Lee TT. Immunomodulatory effects of phytogenics in chickens and pigs - A review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 31:617-627. [PMID: 29268586 PMCID: PMC5930271 DOI: 10.5713/ajas.17.0657] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/17/2017] [Accepted: 11/17/2017] [Indexed: 12/12/2022]
Abstract
Environmental stressors like pathogens and toxins may depress the animal immune system through invasion of the gastrointestinal tract (GIT) tract, where they may impair performance and production, as well as lead to increased mortality rates. Therefore, protection of the GIT tract and improving animal health are top priorities in animal production. Being natural-sourced materials, phytochemicals are potential feed additives possessing multiple functions, including: anti-inflammatory, anti-fungal, anti-viral and antioxidative properties. This paper focuses on immunity-related physiological parameters regulated by phytochemicals, such as carvacrol, cinnamaldehyde, curcumin, and thymol; many studies have proven that these phytochemicals can improve animal performance and production. On the molecular level, the impact of inflammatory gene expression on underlying mechanisms was also examined, as were the effects of environmental stimuli and phytochemicals in initiating nuclear factor kappa B and mitogen-activated protein kinases signaling pathways and improving health conditions.
Collapse
Affiliation(s)
- C. M. Huang
- Department of Animal Science, National Chung Hsing University, Taichung 402,
Taiwan
| | - T. T. Lee
- Department of Animal Science, National Chung Hsing University, Taichung 402,
Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402,
Taiwan
| |
Collapse
|
10
|
Lasarte-Cia A, Lozano T, Pérez-González M, Gorraiz M, Iribarren K, Hervás-Stubbs S, Sarobe P, Rabal O, Cuadrado-Tejedor M, García-Osta A, Casares N, Lasarte JJ. Immunomodulatory Properties of Carvone Inhalation and Its Effects on Contextual Fear Memory in Mice. Front Immunol 2018; 9:68. [PMID: 29422905 PMCID: PMC5788902 DOI: 10.3389/fimmu.2018.00068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/10/2018] [Indexed: 12/15/2022] Open
Abstract
A complex network of interactions exists between the immune, the olfactory, and the central nervous system (CNS). Inhalation of different fragrances can affect immunological reactions in response to an antigen but also may have effects on the CNS and cognitive activity. We performed an exploratory study of the immunomodulatory ability of a series of compounds representing each of the 10 odor categories or clusters described previously. We evaluated the impact of each particular odor on the immune response after immunization with the model antigen ovalbumin in combination with the TLR3 agonist poly I:C. We found that some odors behave as immunostimulatory agents, whereas others might be considered as potential immunosuppressant odors. Interestingly, the immunomodulatory capacity was, in some cases, strain-specific. In particular, one of the fragrances, carvone, was found to be immunostimulatory in BALB/c mice and immunosuppressive in C57BL/6J mice, facilitating or impairing viral clearance, respectively, in a model of a viral infection with a recombinant adenovirus. Importantly, inhalation of the odor improved the memory capacity in BALB/c mice in a fear-conditioning test, while it impaired this same capacity in C57BL/6J mice. The improvement in memory capacity in BALB/c was associated with higher CD3+ T cell infiltration into the hippocampus and increased local expression of mRNA coding for IL-1β, TNF-α, and IL-6 cytokines. In contrast, the memory impairment in C57BL/6 was associated with a reduction in CD3 numbers and an increase in IFN-γ. These data suggest an association between the immunomodulatory capacity of smells and their impact on the cognitive functions of the animals. These results highlight the potential of studying odors as therapeutic agents for CNS-related diseases.
Collapse
Affiliation(s)
- Aritz Lasarte-Cia
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Teresa Lozano
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Marta Pérez-González
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.,Anatomy Department, School of Medicine, University of Navarra, Pamplona, Spain
| | - Marta Gorraiz
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Kristina Iribarren
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Sandra Hervás-Stubbs
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Pablo Sarobe
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Obdulia Rabal
- Small Molecule Discovery Platform, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Mar Cuadrado-Tejedor
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.,Anatomy Department, School of Medicine, University of Navarra, Pamplona, Spain
| | - Ana García-Osta
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Noelia Casares
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Juan José Lasarte
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
11
|
Nagoor Meeran MF, Javed H, Al Taee H, Azimullah S, Ojha SK. Pharmacological Properties and Molecular Mechanisms of Thymol: Prospects for Its Therapeutic Potential and Pharmaceutical Development. Front Pharmacol 2017; 8:380. [PMID: 28694777 PMCID: PMC5483461 DOI: 10.3389/fphar.2017.00380] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/31/2017] [Indexed: 12/22/2022] Open
Abstract
Thymol, chemically known as 2-isopropyl-5-methylphenol is a colorless crystalline monoterpene phenol. It is one of the most important dietary constituents in thyme species. For centuries, it has been used in traditional medicine and has been shown to possess various pharmacological properties including antioxidant, free radical scavenging, anti-inflammatory, analgesic, antispasmodic, antibacterial, antifungal, antiseptic and antitumor activities. The present article presents a detailed review of the scientific literature which reveals the pharmacological properties of thymol and its multiple therapeutic actions against various cardiovascular, neurological, rheumatological, gastrointestinal, metabolic and malignant diseases at both biochemical and molecular levels. The noteworthy effects of thymol are largely attributed to its anti-inflammatory (via inhibiting recruitment of cytokines and chemokines), antioxidant (via scavenging of free radicals, enhancing the endogenous enzymatic and non-enzymatic antioxidants and chelation of metal ions), antihyperlipidemic (via increasing the levels of high density lipoprotein cholesterol and decreasing the levels of low density lipoprotein cholesterol and low density lipoprotein cholesterol in the circulation and membrane stabilization) (via maintaining ionic homeostasis) effects. This review presents an overview of the current in vitro and in vivo data supporting thymol's therapeutic activity and the challenges concerning its use for prevention and its therapeutic value as a dietary supplement or as a pharmacological agent or as an adjuvant along with current therapeutic agents for the treatment of various diseases. It is one of the potential candidates of natural origin that has shown promising therapeutic potential, pharmacological properties and molecular mechanisms as well as pharmacokinetic properties for the pharmaceutical development of thymol.
Collapse
Affiliation(s)
- Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Hayate Javed
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Hasan Al Taee
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Shreesh K. Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| |
Collapse
|
12
|
Gholijani N, Amirghofran Z. Effects of thymol and carvacrol on T-helper cell subset cytokines and their main transcription factors in ovalbumin-immunized mice. J Immunotoxicol 2016; 13:729-37. [DOI: 10.3109/1547691x.2016.1173134] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Nasser Gholijani
- Autoimmune Disease Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Amirghofran
- Department of Immunology and Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Gholijani N, Gharagozloo M, Kalantar F, Ramezani A, Amirghofran Z. Modulation of Cytokine Production and Transcription Factors Activities in Human Jurkat T Cells by Thymol and Carvacrol. Adv Pharm Bull 2015; 5:653-60. [PMID: 26793612 DOI: 10.15171/apb.2015.089] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 09/20/2015] [Accepted: 10/29/2015] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Thymol and carvacrol, two main components of thyme, have shown anti-inflammatory effects. The aim of this study was to assess the effects of these components on Jurkat leukemia cells as an in vitro T cell model and their molecular mechanisms of activity. METHODS Cells were cultured in the presence of components and subsequently stimulated with phorbol-12-myristate-13-acetate (PMA)/calcium ionophore for evaluating interleukin (IL)-2 and interferon (IFN)-γ production. The activation of T cell transcription factors that included nuclear factors of activated T cells (NFATs), activator protein-1 (AP-1; c-Jun/c-Fos), and nuclear factor (NF)-κB were examined by Western blot analysis. RESULTS Thymol and carvacrol at 25 µg/ml significantly reduced IL-2 levels from 119.4 ± 8pg/ml in control cells treated only with PMA/Calcium ionophore and the solvent to 66.9 ± 6.4pg/ml (thymol) and 32.3 ± 3.6pg/ml (carvacrol) and IFN-γ from 423.7 ± 19.7pg/ml in control cells to 311.9 ± 11.6pg/ml (thymol) and 293.5 ± 16.7pg/ml (carvacrol). Western blot analyses of nuclear extracts showed that the same concentrations of components significantly reduced NFAT-2 to 44.2 ± 2.7% (thymol) and 91.4 ± 2.3% (carvacrol) of the control (p<0.05), and c-Fos to 31.2 ± 6.2% (thymol) and 27.6 ± 3.1% (carvacrol) of the control (p<0.01). No effects on NFAT-1, c-Jun and phospho-NF-κBp65 levels were observed. CONCLUSION Thymol and carvacrol could contribute to modulation of T cell activity by reducing IL-2 and IFN-γ production possibly through down regulation of AP-1 and NFAT-2 transcription factors suggesting their potential usefulness for reduction of T cell overactivity in immune-mediated diseases.
Collapse
Affiliation(s)
- Nasser Gholijani
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marjan Gharagozloo
- Department of Immunology, Isfahan University of Medical Sciences, Isfahan, Iran. ; Department of Pediatrics, CR-CHUS, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke,Quebec,Canada
| | - Fathollah Kalantar
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Ramezani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technology, Shiraz University of Medical Sciences, Shiraz, Iran. ; Institute for Cancer Research, Shiraz University of Medical sciences, Shiraz, Iran
| | - Zahra Amirghofran
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran. ; Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|