1
|
Zayed HM, Kheir El Din NH, Abu-Seida AM, Abo Zeid AA, Ezzatt OM. Gingival-derived mesenchymal stem cell therapy regenerated the radiated salivary glands: functional and histological evidence in murine model. Stem Cell Res Ther 2024; 15:46. [PMID: 38365799 PMCID: PMC10874004 DOI: 10.1186/s13287-024-03659-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/07/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Radiotherapy in head and neck cancer management causes degeneration of the salivary glands (SG). This study was designed to determine the potential of gingival mesenchymal stem cells (GMSCs) as a cell-based therapy to regenerate irradiated parotid SG tissues and restore their function using a murine model. METHODS Cultured isolated cells from gingival tissues of 4 healthy guinea pigs at passage 3 were characterized as GMSCSs using flow cytometry for surface markers and multilineage differentiation capacity. Twenty-one Guinea pigs were equally divided into three groups: Group I/Test, received single local irradiation of 15 Gy to the head and neck field followed by intravenous injection of labeled GMSCs, Group II/Positive control, which received the same irradiation dose followed by injection of phosphate buffer solution (PBS), and Group III/Negative control, received (PBS) injection only. Body weight and salivary flow rate (SFR) were measured at baseline, 11 days, 8-, 13- and 16-weeks post-irradiation. At 16 weeks, parotid glands were harvested for assessment of gland weight and histological and immunohistochemical analysis. RESULTS The injected GMSCs homed to degenerated glands, with subsequent restoration of the normal gland histological acinar and tubular structure associated with a significant increase in cell proliferation and reduction in apoptotic activity. Subsequently, a significant increase in body weight and SFR, as well as an increase in gland weight at 16 weeks in comparison with the irradiated non-treated group were observed. CONCLUSION The study provided a new potential therapeutic strategy for the treatment of xerostomia by re-engineering radiated SG using GMSCs.
Collapse
Affiliation(s)
- Hagar M Zayed
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Ain Shams University, 20 Organization of African Union St., Cairo, 1156, Egypt
- Central Lab of Stem Cells and Biomaterial Applied Research (CLSBAR), Faculty of Dentistry, Ain-Shams University, Cairo, Egypt
| | - Nevine H Kheir El Din
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Ain Shams University, 20 Organization of African Union St., Cairo, 1156, Egypt
| | - Ashraf M Abu-Seida
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Cairo University, Cairo, 13736, Egypt
| | - Asmaa A Abo Zeid
- Department of Histology, and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo, 11591, Egypt
| | - Ola M Ezzatt
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Ain Shams University, 20 Organization of African Union St., Cairo, 1156, Egypt.
- Central Lab of Stem Cells and Biomaterial Applied Research (CLSBAR), Faculty of Dentistry, Ain-Shams University, Cairo, Egypt.
| |
Collapse
|
2
|
Kumar VP, Wuddie K, Tsioplaya A, Weaver A, Holmes-Hampton GP, Ghosh SP. Development of a Multi-Organ Radiation Injury Model with Precise Dosimetry with Focus on GI-ARS. Radiat Res 2024; 201:19-34. [PMID: 38014611 DOI: 10.1667/rade-23-00068.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/23/2023] [Indexed: 11/29/2023]
Abstract
The goal of this study was to establish a model of partial-body irradiation (PBI) sparing 2.5% of the bone marrow (BM2.5-PBI) that accurately recapitulates radiological/nuclear exposure scenarios. Here we have reported a model which produces gastrointestinal (GI) damage utilizing a clinical linear accelerator (LINAC) with precise dosimetry, which can be used to develop medical countermeasures (MCM) for GI acute radiation syndrome (ARS) under the FDA animal rule. The PBI model (1 hind leg spared) was developed in male and female C57BL/6 mice that received radiation doses ranging from 12-17 Gy with no supportive care. GI pathophysiology was assessed by crypt cell loss and correlated with peak lethality between days 4 and 10 after PBI. The radiation dose resulting in 50% mortality in 30 days (LD50/30) was determined by probit analysis. Differential blood cell counts in peripheral blood, colony forming units (CFU) in bone marrow, and sternal megakaryocytes were analyzed between days 1-30, to assess the extent of hematopoietic ARS (H-ARS) injury. Radiation-induced GI damage was also assessed by measuring: 1. bacterial load (16S rRNA) by RT-PCR on days 4 and 7 after PBI in liver, spleen and jejunum, 2. liposaccharide binding protein (LBP) levels in liver, and 3. fluorescein isothiocyanate (FITC)-dextran, E-selectin, sP-selectin, VEGF, FGF-2, MMP-9, citrulline, and serum amyloid A (SAA) levels in serum. The LD50/30 of male mice was 14.3 Gy (95% confidence interval 14.1-14.7 Gy) and of female mice was 14.5 Gy (95% confidence interval 14.3-14.7 Gy). Secondary endpoints included loss of viable crypts, higher bacterial loads in spleen and liver, higher LBP in liver, increased FITC-dextran and SAA levels, and decreased levels of citrulline and endothelial biomarkers in serum. The BM2.5-PBI model, developed for the first time with precise dosimetry, showed acute radiation-induced GI damage that is correlated with lethality, as well as a response to various markers of inflammation and vascular damage. Sex-specific differences were observed with respect to radiation dose response. Currently, no MCM is available as a mitigator for GI-ARS. This BM2.5-PBI mouse model can be regarded as the first high-throughput PBI model with precise dosimetry for developing MCMs for GI-ARS under the FDA animal rule.
Collapse
Affiliation(s)
- Vidya P Kumar
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Kefale Wuddie
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Alena Tsioplaya
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Alia Weaver
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Gregory P Holmes-Hampton
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Sanchita P Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| |
Collapse
|
3
|
Wan Z, zhang Y, Lv J, Yuan Y, Guo W, Leng Y. Exosomes derived from bone marrow mesenchymal stem cells regulate pyroptosis via the miR-143-3p/myeloid differentiation factor 88 axis to ameliorate intestinal ischemia-reperfusion injury. Bioengineered 2023; 14:2253414. [PMID: 37674357 PMCID: PMC10486297 DOI: 10.1080/21655979.2023.2253414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/02/2022] [Accepted: 08/20/2022] [Indexed: 09/08/2023] Open
Abstract
Intestinal ischemia-reperfusion (I/R) injury is a condition in which tissue injury is aggravated after ischemia due to recovery of blood supply. Bone marrow mesenchymal stem cell-derived exosome (BMSC-exo) showed a protective effect on I/R injury. This study aimed to investigate the possible mechanisms by which BMSC-exos ameliorate intestinal I/R injury. We isolated mouse BMSC-exos by super-centrifugation and found that they effectively increased cell viability in a cell model, alleviated intestinal barrier injury in a mouse model, and downregulated the expression of inflammatory cytokines and pyroptosis-related proteins, suggesting that BMSC-exos may alleviate intestinal I/R injury in vitro and in vivo by regulating pyroptosis. We identified miR-143-3p as a differentially expressed miRNA by microarray sequencing. Bioinformatic analysis predicted a binding site between miR-143-3p and myeloid differentiation factor 88 (MyD88); a dual-luciferase reporter assay confirmed that miR-143-3p could directly regulate the expression of MyD88. Our findings suggest that miR-143-3p regulates pyroptosis by regulating NOD-like receptor thermal protein domain associated protein 3 (NLRP3) through the toll-like receptor (TLR)-4/MyD88/nuclear factor kappa-B (NF-кB) pathway. This study describes a potential strategy for the treatment of intestinal I/R injury using BMSC-exos that act by regulating pyroptosis through the miR-143-3p mediated TLR4/MyD88/NF-кB pathway.
Collapse
Affiliation(s)
- Zhanhai Wan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Yan zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Jipeng Lv
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Yuan Yuan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Wenwen Guo
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Yufang Leng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Orzechowska-Licari EJ, Bialkowska AB, Yang VW. Sonic Hedgehog and WNT Signaling Regulate a Positive Feedback Loop Between Intestinal Epithelial and Stromal Cells to Promote Epithelial Regeneration. Cell Mol Gastroenterol Hepatol 2023; 16:607-642. [PMID: 37481204 PMCID: PMC10470419 DOI: 10.1016/j.jcmgh.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND AND AIMS Active intestinal stem cells are prone to injury by ionizing radiation. We previously showed that upon radiation-induced injury, normally quiescent reserve intestinal stem cells (rISCs) (marked by BMI1) are activated by Musashi-1 (MSI1) and exit from the quiescent state to regenerate the intestinal epithelium. This study aims to further establish the mechanism that regulates activation of Bmi1-CreER;Rosa26eYFP (Bmi1-CreER) rISCs following γ radiation-induced injury. METHODS Bmi1-CreER mice were treated with tamoxifen to initiate lineage tracing of BMI1 (eYFP+) cells and exposed to 12 Gy of total body γ irradiation or sham. Intestinal tissues were collected and analyzed by immunofluorescence, Western blot, reverse-transcription quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and chromatin immunoprecipitation real-time polymerase chain reaction. RESULTS After irradiation, increased expression of Msi1 in eYFP+ cells was accompanied by increased expression of Axin2, a WNT marker. Promoter studies of the Msi1 gene indicated that Msi1 is a WNT target gene. Coculture of stromal cells isolated from irradiated mice stimulated Bmi1-CreER-derived organoid regeneration more effectively than those from sham mice. Expression of WNT ligands, including Wnt2b, Wnt4, Wnt5a, and Rspo3, was increased in irradiated stromal cells compared with sham-treated stromal cells. Moreover, expression of the Sonic hedgehog (SHH) effector Gli1 was increased in stromal cells from irradiated mice. This was correlated with an increased expression of SHH in epithelial cells postirradiation, indicating epithelial-stromal interaction. Finally, preinjury treatment with SHH inhibitor cyclopamine significantly reduced intestinal epithelial regeneration and Msi1 expression postirradiation. CONCLUSIONS Upon ionizing radiation-induced injury, intestinal epithelial cells increase SHH secretion, stimulating stromal cells to secrete WNT ligands. WNT activators induce Msi1 expression in the Bmi1-CreER cells. This stromal-epithelial interaction leads to Bmi1-CreER rISCs induction and epithelial regeneration.
Collapse
Affiliation(s)
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York.
| | - Vincent W Yang
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York; Department of Physiology and Biophysics, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York.
| |
Collapse
|
5
|
Kim WH, Yoo JH, Yoo IK, Kwon CI, Hong SP. Effects of Mesenchymal Stem Cells Treatment on Radiation-Induced Proctitis in Rats. Yonsei Med J 2023; 64:167-174. [PMID: 36825342 PMCID: PMC9971437 DOI: 10.3349/ymj.2022.0342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 02/25/2023] Open
Abstract
PURPOSE There are no effective treatment methods with which to control complications of radiation proctitis with fistula or recurrent bleeding following radiation treatment for prostate, cervical, or rectal cancer. Mesenchymal stem cells (MSCs) can induce immune modification, resulting in tissue repair and regeneration. Therefore, we used a rat model of radiation-induced proctitis and observed the effects of using human placenta-derived (PD) and adipose tissue-derived (AD) MSCs. MATERIALS AND METHODS Female Sprague Dawley rats were irradiated at the pelvic area with 25 Gy. We injected 1×106 cells of human PD-MSCs, human AD-MSCs, human foreskin fibroblasts, and control media into the rectal submucosa following irradiation. We sacrificed rats for pathologic evaluation. RESULTS Fibrosis on the rectum was reduced in both MSC groups, compared to the control group. Mucosal Ki-67 indices of both MSC injected groups were higher than those in the control group. Although caspase-3 positive cells in the mucosa gradually increased and decreased in the control group, those in both MSC injected groups increased rapidly and decreased thereafter. CONCLUSION We demonstrated the effects of regional MSC injection treatment for radiation-induced proctitis in rats. MSC injection reduced fibrosis and increased proliferation in rat mucosa. Human AD-MSCs and PD-MSCs had similar effectiveness.
Collapse
Affiliation(s)
- Won Hee Kim
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Jun Hwan Yoo
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - In Kyung Yoo
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Chang Il Kwon
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Sung Pyo Hong
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, Seongnam, Korea.
| |
Collapse
|
6
|
Fooladi M, Shirazi A, Sheikhzadeh P, Amirrashedi M, Ghahramani F, Cheki M, Khoobi M. Investigating the attenuating effect of telmisartan against radiation-induced intestinal injury using 18F-FDG micro-PET imaging. Int J Radiat Biol 2022; 99:446-458. [PMID: 35930426 DOI: 10.1080/09553002.2022.2110295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
BACKGROUND AND OBJECTIVE This study was aimed to investigate the ability of 18F-Fluro-deoxy-glucose (18F-FDG)-based micro-positron emission tomography (microPET) imaging to evaluate the efficacy of telmisartan, a highly selective angiotensin II receptor antagonist (ARA), in intestinal tissue recovery process after in vivo irradiation. METHODS Male Balb/c mice were randomly divided into four groups of control, telmisartan, irradiation, and telmisartan + irradiation. A solution of telmisartan in phosphate-buffered saline (PBS) was administered orally at 12 mg/kg body weight for seven consecutive days prior to whole body exposing to a single sub-lethal dose of 5 Gy X-rays. The mice were imaged using 18F-FDG microPET at 9 and 30 days post-irradiation. The 18F-FDG uptake in jejunum was determined according to the mean standardized uptake value (SUVmean) index. Tissues were also processed in similar time points for histological analysis. RESULTS The 18F-FDG microPET imaging confirmed the efficacy of telmisartan as a potent attenuating agent for ionizing radiation-induced injury of intestine in mice model. The results were also in line with the histological analysis indicating that pretreatment with telmisartan reduced damage to the villi, crypts, and intestinal mucosa compared with irradiated and non-treated group from day 9 to 30 after irradiation. CONCLUSION The results revealed that 18F-FDG microPET imaging could be a good candidate to replace time-consuming and invasive biological techniques for screening of radioprotective agents. These findings were also confirmed by histological examinations which indicated that telmisartan can effectively attenuates radiation injury caused by ionizing-irradiation.
Collapse
Affiliation(s)
- Masoomeh Fooladi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Shirazi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyman Sheikhzadeh
- Department of Nuclear Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Amirrashedi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghahramani
- Radiotherapy-Oncology Center, Yas Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Cheki
- Department of Medical Imaging and Radiation Sciences, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Khoobi
- Biomaterials Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Maurya DK, Bandekar M, Sandur SK. Soluble factors secreted by human Wharton’s jelly mesenchymal stromal/stem cells exhibit therapeutic radioprotection: A mechanistic study with integrating network biology. World J Stem Cells 2022; 14:347-361. [PMID: 35722198 PMCID: PMC9157603 DOI: 10.4252/wjsc.v14.i5.347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/25/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Human Wharton’s jelly-derived mesenchymal stromal/stem cells (hWJ-MSCs) have gained considerable attention in their applications in cell-based therapy due to several advantages offered by them. Recently, we reported that hWJ-MSCs and their conditioned medium have significant therapeutic radioprotective potential. This finding raised an obvious question to identify unique features of hWJ-MSCs over other sources of stem cells for a better understanding of its radioprotective mechanism.
AIM To understand the radioprotective mechanism of soluble factors secreted by hWJ-MSCs and identification of their unique genes.
METHODS Propidium iodide staining, endogenous spleen colony-forming assay, and survival study were carried out for radioprotection studies. Homeostasis-driven proliferation assay was performed for in vivo lymphocyte proliferation. Analysis of RNAseq data was performed to find the unique genes of WJ-MSCs by comparing them with bone marrow mesenchymal stem cells, embryonic stem cells, and human fibroblasts. Gene enrichment analysis and protein-protein interaction network were used for pathway analysis.
RESULTS Co-culture of irradiated murine splenic lymphocytes with WJ-MSCs offered significant radioprotection to lymphocytes. WJ-MSC transplantation increased the homeostasis-driven proliferation of the lymphocytes. Neutralization of WJ-MSC conditioned medium with granulocyte-colony stimulating factor antibody abolished therapeutic radioprotection. Transcriptome analysis showed that WJ-MSCs share several common genes with bone marrow MSCs and embryonic stem cells and express high levels of unique genes such as interleukin (IL)1-α, IL1-β, IL-6, CXCL3, CXCL5, CXCL8, CXCL2, CCL2, FLT-1, and IL-33. It was also observed that WJ-MSCs preferentially modulate several cellular pathways and processes that handle the repair and regeneration of damaged tissues compared to stem cells from other sources. Cytokine-based network analysis showed that most of the radiosensitive tissues have a more complex network for the elevated cytokines.
CONCLUSION Systemic infusion of WJ-MSC conditioned media will have significant potential for treating accidental radiation exposed victims.
Collapse
Affiliation(s)
- Dharmendra Kumar Maurya
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Mayuri Bandekar
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
- University of Mumbai, Kalina, Mumbai 400098, India
| | - Santosh Kumar Sandur
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
8
|
Therapeutic Potential of Mesenchymal Stromal Cells and Extracellular Vesicles in the Treatment of Radiation Lesions-A Review. Cells 2021; 10:cells10020427. [PMID: 33670501 PMCID: PMC7922519 DOI: 10.3390/cells10020427] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/08/2021] [Accepted: 02/13/2021] [Indexed: 12/14/2022] Open
Abstract
Ionising radiation-induced normal tissue damage is a major concern in clinic and public health. It is the most limiting factor in radiotherapy treatment of malignant diseases. It can also cause a serious harm to populations exposed to accidental radiation exposure or nuclear warfare. With regard to the clinical use of radiation, there has been a number of modalities used in the field of radiotherapy. These includes physical modalities such modified collimators or fractionation schedules in radiotherapy. In addition, there are a number of pharmacological agents such as essential fatty acids, vasoactive drugs, enzyme inhibitors, antioxidants, and growth factors for the prevention or treatment of radiation lesions in general. However, at present, there is no standard procedure for the treatment of radiation-induced normal tissue lesions. Stem cells and their role in tissue regeneration have been known to biologists, in particular to radiobiologists, for many years. It was only recently that the potential of stem cells was studied in the treatment of radiation lesions. Stem cells, immediately after their successful isolation from a variety of animal and human tissues, demonstrated their likely application in the treatment of various diseases. This paper describes the types and origin of stem cells, their characteristics, current research, and reviews their potential in the treatment and regeneration of radiation induced normal tissue lesions. Adult stem cells, among those mesenchymal stem cells (MSCs), are the most extensively studied of stem cells. This review focuses on the effects of MSCs in the treatment of radiation lesions.
Collapse
|
9
|
Mesenchymal Stem Cells Enhance Therapeutic Effect and Prevent Adverse Gastrointestinal Reaction of Methotrexate Treatment in Collagen-Induced Arthritis. Stem Cells Int 2021; 2021:8850820. [PMID: 33505476 PMCID: PMC7814936 DOI: 10.1155/2021/8850820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/04/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by articular destruction and functional loss. Methotrexate (MTX) is effective in RA treatment. However, MTX induces several adverse events and 20%-30% of patients do not respond to MTX. Thus, it is urgent to enhance the therapeutic effects and reduce the side effects of MTX. Recent studies showed that mesenchymal stem cells (MSCs) were participants in anti-inflammation, immunoregulation, and tissue regeneration. However, whether the combined application of MSCs and MTX promotes the therapeutic effects and reduces the side effects of MTX has not been studied. In this study, we used bovine type II collagen to induce rheumatoid arthritis in mice (collagen-induced arthritis, CIA). Then, CIA mice were subjected to MTX or MSC treatment, or both. The therapeutic effect and adverse events of different treatments on RA were evaluated with micro-CT, HE staining, and immunohistochemistry in vivo. Apoptosis and proliferation of MODE-K cells were measured after treated with MTX or/and cocultured with UCs. To test M2 polarization, Raw264.7 macrophages were stimulated by MTX with different concentrations or cocultured with UCs. We found that the combined application of MSCs and MTX increased the therapeutic effects on RA, as evidenced by decreased arthritis score, inflammatory responses, and mortality. Moreover, in this combination remedy, MTX prefers to suppress inflammation by facilitating macrophage polarization to M2 type while UCs prefer to eliminate gastrointestinal side effects of MTX via mitigating the apoptosis of intestinal epithelial cells. Thus, a combination of MTX and UCs is a promising strategy for RA treatment.
Collapse
|
10
|
Luo Y, Wang B, Liu J, Ma F, Luo D, Zheng Z, Lu Q, Zhou W, Zheng Y, Zhang C, Wang Q, Sha W, Chen H. Ginsenoside RG1 enhances the paracrine effects of bone marrow-derived mesenchymal stem cells on radiation induced intestinal injury. Aging (Albany NY) 2020; 13:1132-1152. [PMID: 33293477 PMCID: PMC7835034 DOI: 10.18632/aging.202241] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
UNLABELLED Content and aims: Ginsenoside RG1 (RG1) is thought to enhance proliferation and differentiation of stem cell, however, its role on paracrine efficacy of stem cell remains unclear. Here we examined if and how RG1 enhances the paracrine effects of bone marrow-derived mesenchymal stem cells (BM-MSCs) on radiation induced intestinal injury (RIII). METHOD Irradiated rats randomly received intraperitoneal injection of conditioned medium (CM) derived from non-activated BM-MSCs (MSC-CM) or BM-MSCs pre-activated by RG-1 (RG1-MSC-CM). Intestinal samples were collected, followed by the evaluation of histological and functional change, apoptosis, proliferation, inflammation, angiogenesis and stem cell regeneration. The effects of heme oxygenase-1 (HO-1) were investigated using HO-1 inhibitor or siRNA. RESULT RG1 enhanced the paracrine efficacy of BM-MSCs partially through upregulation of HO-1. RG1-MSC-CM rather than MSC-CM significantly improved the survival and intestinal damage of irradiated rats via improvement of intestinal proliferation/apoptosis, inflammation, angiogenesis and stem cell regeneration in a HO-1 dependent mechanism. The mechanism for the superior paracrine efficacy of RG1-MSC-CM is related to a higher release of two pivotal cytokines VEGF and IL-6. CONCLUSION Our study revealed that RG1 enhances paracrine effects of BM-MSCs on RIII, providing a novel method for maximizing the paracrine potential of MSCs.
Collapse
Affiliation(s)
- Yujun Luo
- Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, P.R. China
| | - Beibei Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, P.R. China
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, P.R. China
| | - Jianhua Liu
- Department of Oncology, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, P.R. China
| | - Faxin Ma
- Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
- Department of Gastroenterology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, Guangdong, P.R. China
| | - Dongling Luo
- Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, P.R. China
| | - Zhongwen Zheng
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, P.R. China
| | - Quan Lu
- Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, P.R. China
| | - Weijie Zhou
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, P.R. China
| | - Yue Zheng
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, P.R. China
| | - Chen Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, P.R. China
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, P.R. China
| | - Qiyi Wang
- Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, P.R. China
| | - Weihong Sha
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, P.R. China
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, P.R. China
| | - Hao Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, P.R. China
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, P.R. China
| |
Collapse
|
11
|
Kim YH, Han SH, Kim H, Lee SJ, Joo HW, Kim MJ, Shim S, Kim K, Lee J, Jang WS, Park S, Jang H, Lee SB. Evaluation of the radiation response and regenerative effects of mesenchymal stem cell-conditioned medium in an intestinal organoid system. Biotechnol Bioeng 2020; 117:3639-3650. [PMID: 32833232 DOI: 10.1002/bit.27543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 11/10/2022]
Abstract
Intestinal organoids have recently emerged as an in vitro model relevant to the gut system owing to their recapitulation of the native intestinal epithelium with crypt-villus architecture. However, it is unclear whether intestinal organoids reflect the physiology of the in vivo stress response. Here, we systemically investigated the radiation response in organoids and animal models using mesenchymal stem cell-conditioned medium (MSC-CM), which contains secreted paracrine factors. Irradiated organoids exhibited sequential induction of viability loss and regrowth after irradiation (within 12 days), similar to the response of the native intestinal epithelium. Notably, treatment with MSC-CM facilitated the reproliferation of intestinal stem cells (ISCs) and restoration of damaged crypt-villus structures in both models. Furthermore, Wnt/Notch signaling pathways were commonly upregulated by MSC-CM, but not radiation, and pharmacologically selective inhibition of Wnt or Notch signaling attenuated the enhanced recovery of irradiated organoids, with increases in ISCs, following MSC-CM treatment. Interestingly, the expression of Wnt4, Wnt7a, and active β-catenin was increased, but not notch family members, in MSC-CM-treated organoid after irradiation. Treatment of recombinant mouse Wnt4 and Wnt7a after irradiation improved to some extent intestinal epithelial regeneration both in vitro and in vivo. Overall, these results suggested that intestinal organoids recapitulated the physiological stress response of the intestinal epithelium in vivo. Thus, our findings provided important insights into the physiology of intestinal organoids and may contribute to the development of strategies to enhance the functional maturation of engineered organoids.
Collapse
Affiliation(s)
- Young-Heon Kim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea
| | - Sung-Hoon Han
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea
| | - Hyewon Kim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea
| | - Sun-Joo Lee
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea
| | - Hyun-Woo Joo
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea
| | - Min-Jung Kim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea
| | - Sehwan Shim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea
| | - Kyuchang Kim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea
| | - Janet Lee
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea
| | - Won-Suk Jang
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea
| | - Sunhoo Park
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea
| | - Hyosun Jang
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea
| | - Seung Bum Lee
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea
| |
Collapse
|
12
|
Prolyl hydroxylase 2 silencing enhances the paracrine effects of mesenchymal stem cells on necrotizing enterocolitis in an NF-κB-dependent mechanism. Cell Death Dis 2020; 11:188. [PMID: 32179740 PMCID: PMC7075868 DOI: 10.1038/s41419-020-2378-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
Treatment options for necrotizing enterocolitis (NEC) remain inadequate. Here we examined if and how prolyl hydroxylase 2 (PHD2) silencing enhances the paracrine effects of bone-marrow-derived mesenchymal stem cells (BM-MSCs) on NEC. In this study, BM-MSCs were transduced with lentiviruses containing GFP (GFP-MSC) or shPHD2-GFP constructs (PHDMSC), followed by intraperitoneal injection of the PHDMSC-conditioned medium (PHDMSC-CM) or the GFP-MSC-conditioned medium (MSC-CM) into a rat pup model of NEC. Our results showed that systemic infusion of PHDMSC-CM, but not MSC-CM, significantly improved intestinal damage and survival of NEC rats. Such benefits may involve the modulation of epithelial regeneration and inflammation, as indicated by the regeneration of intestinal epithelial/stem cells, the regulation of Treg cells function and pro-/anti-inflammatory cytokine balance. The mechanism for the superior paracrine efficacy of PHDMSC is related to a higher release of pivotal factor IGF-1 and TGF-β2. NF-κB activation was induced by PHD2 silencing to induce IGF-1 and TGF-β2 secretion via binding to IGF-1 and TGF-β2 gene promoter. Our work indicated that PHD2 silencing enhanced the paracrine effect of BM-MSCs on NEC via the NF-κB-dependent mechanism which may be a novel strategy for stem cell therapy on NEC.
Collapse
|
13
|
Zhang Y, Ma L, Su Y, Su L, Lan X, Wu D, Han S, Li J, Kvederis L, Corey S, Borlongan CV, Ji X. Hypoxia conditioning enhances neuroprotective effects of aged human bone marrow mesenchymal stem cell-derived conditioned medium against cerebral ischemia in vitro. Brain Res 2019; 1725:146432. [PMID: 31491422 DOI: 10.1016/j.brainres.2019.146432] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/27/2019] [Accepted: 09/01/2019] [Indexed: 12/24/2022]
Abstract
Therapeutic transplantation of autologous bone marrow mesenchymal stem cells (BMSCs) holds great promise for ischemic stroke, yet the efficacy is negatively impacted by aging. Here, we examined whether hypoxia conditioning could enhance aged human BMSCs-induced neuroprotection via secretome action. Primary cultured mouse neurons were exposed to oxygen glucose deprivation (OGD) to mimic ischemic stroke in vitro, then randomized into a hypoxia conditioned aged human BMSCs-conditioned medium (BMSC-hypoCM) versus normoxia conditioned (BMSC-norCM). After 22 h of reperfusion, cell viability was significantly increased in neurons treated with BMSC-hypoCM rather than BMSC-norCM. ELISA revealed that hypoxia conditioning enhanced vascular endothelial growth factor (VEGF) release into BMSC-derived CM. Blocking the VEGF receptor negated BMSC-hypoCM-induced protection for neurons against OGD insult. Altogether, our data indicates that hypoxia conditioning improves aged human BMSCs' therapeutic efficacy for neurons with ischemic challenge, in part via promoting secretion of VEGF.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Neurobiology, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing 100053, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Longhui Ma
- Department of Neurobiology, Capital Medical University, Beijing 100069, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Yuwen Su
- Department of Neurobiology, Capital Medical University, Beijing 100069, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Li Su
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiaoxi Lan
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Di Wu
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing 100053, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Song Han
- Department of Neurobiology, Capital Medical University, Beijing 100069, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Junfa Li
- Department of Neurobiology, Capital Medical University, Beijing 100069, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Lauren Kvederis
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Sydney Corey
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing 100053, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China; Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
14
|
Pinzur L, Akyuez L, Levdansky L, Blumenfeld M, Volinsky E, Aberman Z, Reinke P, Ofir R, Volk HD, Gorodetsky R. Rescue from lethal acute radiation syndrome (ARS) with severe weight loss by secretome of intramuscularly injected human placental stromal cells. J Cachexia Sarcopenia Muscle 2018; 9:1079-1092. [PMID: 30334381 PMCID: PMC6240751 DOI: 10.1002/jcsm.12342] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Most current cell-based regenerative therapies are based on the indirect induction of the affected tissues repair. Xenogeneic cell-based treatment with expanded human placenta stromal cells, predominantly from fetal origin (PLX-RAD cells), were shown to mitigate significantly acute radiation syndrome (ARS) following high dose irradiation in mice, with expedited regain of weight loss and haematopoietic function. The current mechanistic study explores the indirect effect of the secretome of PLX-RAD cells in the rescue of the irradiated mice. METHODS The mitigation of the ARS was investigated following two intramuscularly (IM) injected 2 × 106 PLX-RAD cells, 1 and 5 days following 7.7 Gy irradiation. The mice survival rate and their blood or bone marrow (BM) cell counts were followed up and correlated with multiplex immunoassay of a panel of related human proteins of PLX-RAD derived secretome, as well as endogenous secretion of related mouse proteins. PLX-RAD secretome was also tested in vitro for its effect on the induction of the migration of BM progenitors. RESULTS A 7.7 Gy whole body mice irradiation resulted in ~25% survival by 21 days. Treatment with two IM injections of 2 × 106 PLX-RAD cells on days 1 and 5 after irradiation mitigated highly significantly the subsequent lethal ARS, with survival rate increase to nearly 100% and fast regain of the initial weight loss (P < 0,0001). This was associated with a significant faster haematopoiesis recovery from day 9 onwards (P < 0.01). Nine out of the 65 human proteins tested were highly significantly elevated in the mouse circulation, peaking on days 6-9 after irradiation, relative to negligible levels in non-irradiated PLX-RAD injected mice (P < 0.01). The highly elevated proteins included human G-CSF, GRO, MCP-1, IL-6 and lL-8, reaching >500 pg/mL, while MCP-3, ENA, Eotaxin and fractalkine levels ranged between ~60-160pg/mL. The detected radiation-induced PLX-RAD secretome correlated well with the timing of the fast haematopoiesis regeneration. The radiation-induced PLX-RAD secretome seemed to reinforce the delayed high levels secretion of related mouse endogenous cytokines, including GCSF, KC, MCP-1 and IL-6. Additional supportive in vitro studies also confirmed the ability of cultured PLX-RAD secretome to induce accelerated migration of BM progenitors. CONCLUSIONS A well-regulated and orchestrated secretion of major pro-regenerative BM supporting secretome in high dose irradiated mice, treated with xenogeneic IM injected PLX-RAD cells, can explain the observed mitigation of ARS. This seemed to coincide with faster haematopoiesis regeneration, regain of severe weight loss and the increased survival rate. The ARS-related stress signals activating the IM injected PLX-RAD cells for the remote secretion of the relevant human proteins deserve further investigation.
Collapse
Affiliation(s)
- Lena Pinzur
- Pluristem LTD, Haifa, Israel.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT) and Institute of Medical Immunology and Department of Nephrology and Intensive Care, Charité-University Medicine Berlin, Berlin, Germany
| | - Levent Akyuez
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) and Institute of Medical Immunology and Department of Nephrology and Intensive Care, Charité-University Medicine Berlin, Berlin, Germany
| | - Lilia Levdansky
- Laboratory of Biotechnology and Radiobiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Evgenia Volinsky
- Laboratory of Biotechnology and Radiobiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Petra Reinke
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) and Institute of Medical Immunology and Department of Nephrology and Intensive Care, Charité-University Medicine Berlin, Berlin, Germany
| | | | - Hans-Dieter Volk
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) and Institute of Medical Immunology and Department of Nephrology and Intensive Care, Charité-University Medicine Berlin, Berlin, Germany
| | - Raphael Gorodetsky
- Laboratory of Biotechnology and Radiobiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
15
|
Abstract
Unwanted radiological or nuclear exposure remains a public health risk for which effective therapeutic countermeasures are lacking. Here, we evaluated the efficacy of fibroblast growth factor-2 (FGF2) in treating radiation-induced gastrointestinal syndrome (RIGS) incurred by lethal whole-body irradiation (WBI) when administered in conjunction with bone marrow transplantation (BMT). In vitro experiments indicated FGF2 treatment increased proliferation, reduced apoptosis, and upregulated AKT–GSK3β/β–catenin signaling in irradiated IEC-6 cells. We next established and analyzed mice cohorts consisting of sham irradiation (Group Sh); 12 Gy WBI (Group A); WBI with BMT (Group B); WBI with FGF2 treatment (Group F); and WBI with BMT and FGF2 treatment (Group BF). At 2 weeks post-irradiation, Group BF showed a dramatic increase in survival over all other groups. Intestinal epithelium of Group BF, but not Group B or F, showed augmented proliferation, decreased apoptosis, and preserved crypt numbers and morphology. Furthermore, Group BF maintained intestinal barrier function with minimal inflammatory disturbances in a manner comparable to Group Sh. In accordance, transcriptomic analyses showed significant upregulation of intestinal barrier and stem cell markers in Group BF relative to Groups A and B. Taken together, parenteral FGF2 synergizes with BMT to confer potent mitigation against RIGS.
Collapse
|
16
|
Feng H, Zhao JK, Schiergens TS, Wang PX, Ou BC, Al-Sayegh R, Li ML, Lu AG, Yin S, Thasler WE. Bone marrow-derived mesenchymal stromal cells promote colorectal cancer cell death under low-dose irradiation. Br J Cancer 2018; 118:353-365. [PMID: 29384527 PMCID: PMC5808030 DOI: 10.1038/bjc.2017.415] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 10/03/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Radiotherapy remains one of the cornerstones to improve the outcome of colorectal cancer (CRC) patients. Radiotherapy of the CRC not only help to destroy cancer cells but also remodel the tumour microenvironment by enhancing tumour-specific tropism of bone marrow-derived mesenchymal stromal cell (BM-MSC) from the peripheral circulation. However, the role of local MSCs and recruited BM-MSC under radiation were not well defined. Indeed, the functions of BM-MSC without irradiation intervention remained controversial in tumour progression: BM-MSC was previously shown to modulate the immune function of major immune cells, resulting in an impaired immunological sensitivity and to induce an increased risk of tumour recurrence. In contrast, it could also secrete various cytokines and possess anticancer effect. METHODS Three co-cultivation modules, 3D culture modules, and cancer organoids were established. The induction of cytokines secretion in hBM-MSCs after irradiation was analysed by ELISA array and flow cytometry. AutoMac separator was used to separate hBM-MSC and CRC automatically. Cells from the co-cultured group and the control group were then irradiated by UV-C lamp and X-ray. Proliferation assay and viability assay were performed. RESULTS In this study, we show that BM-MSCs can induce the EMT progression of CRC cells in vitro. When irradiated with low doses of ultraviolet radiation and X-rays, BM-MSCs show an anti-tumour effect by secreting certain cytokine (TNF-α, IFN-γ) that lead to the inhibition of proliferation and induction of apoptosis of CRC cells. This was further verified in a 3D culture model of a CRC cell in vitro. Furthermore, irradiation on the co-culture system induced the cleavage of caspase3, and attenuated the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/AKT and extracellular signal-regulated kinase in cancer cells. The signal pathways above might contribute to the cancer cell death. CONCLUSIONS Taken together, we show that BM-MSC can potentially promote the effect of radiotherapy in CRC.
Collapse
Affiliation(s)
- Hao Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of General-, Visceral-, Transplantation and Vascular Surgery, University Hospital of LMU Munich, Munich 81377, Germany
| | - Jing-kun Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of General-, Visceral-, Transplantation and Vascular Surgery, University Hospital of LMU Munich, Munich 81377, Germany
| | - Tobias S Schiergens
- Department of General-, Visceral-, Transplantation and Vascular Surgery, University Hospital of LMU Munich, Munich 81377, Germany
| | - Pu-xiongzhi Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bao-chi Ou
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rami Al-Sayegh
- Department of General-, Visceral-, Transplantation and Vascular Surgery, University Hospital of LMU Munich, Munich 81377, Germany
| | - Ming-lun Li
- Department of Radiation Oncology, University Hospital of LMU Munich, Munich 81377, Germany
| | - Ai-guo Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shuai Yin
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of General-, Visceral-, Transplantation and Vascular Surgery, University Hospital of LMU Munich, Munich 81377, Germany
- Department of General Surgery, State Hospital of Anhui Province, Hefei 230000, China
| | - Wolfgang E Thasler
- Department of General and Visceral Surgery, Red Cross Hospital, Munich 80634, Germany
| |
Collapse
|
17
|
Moussa L, Usunier B, Demarquay C, Benderitter M, Tamarat R, Sémont A, Mathieu N. Bowel Radiation Injury: Complexity of the Pathophysiology and Promises of Cell and Tissue Engineering. Cell Transplant 2018; 25:1723-1746. [PMID: 27197023 DOI: 10.3727/096368916x691664] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ionizing radiation is effective to treat malignant pelvic cancers, but the toxicity to surrounding healthy tissue remains a substantial limitation. Early and late side effects not only limit the escalation of the radiation dose to the tumor but may also be life-threatening in some patients. Numerous preclinical studies determined specific mechanisms induced after irradiation in different compartments of the intestine. This review outlines the complexity of the pathogenesis, highlighting the roles of the epithelial barrier in the vascular network, and the inflammatory microenvironment, which together lead to chronic fibrosis. Despite the large number of pharmacological molecules available, the studies presented in this review provide encouraging proof of concept regarding the use of mesenchymal stromal cell (MSC) therapy to treat radiation-induced intestinal damage. The therapeutic efficacy of MSCs has been demonstrated in animal models and in patients, but an enormous number of cells and multiple injections are needed due to their poor engraftment capacity. Moreover, it has been observed that although MSCs have pleiotropic effects, some intestinal compartments are less restored after a high dose of irradiation. Future research should seek to optimize the efficacy of the injected cells, particularly with regard to extending their life span in the irradiated tissue. Moreover, improving the host microenvironment, combining MSCs with other specific regenerative cells, or introducing new tissue engineering strategies could be tested as methods to treat the severe side effects of pelvic radiotherapy.
Collapse
Affiliation(s)
- Lara Moussa
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Benoît Usunier
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Christelle Demarquay
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Marc Benderitter
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Radia Tamarat
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Alexandra Sémont
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Noëlle Mathieu
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| |
Collapse
|
18
|
Choi JS, An HY, Shin HS, Kim YM, Lim JY. Enhanced tissue remodelling efficacy of adipose-derived mesenchymal stem cells using injectable matrices in radiation-damaged salivary gland model. J Tissue Eng Regen Med 2017; 12:e695-e706. [PMID: 27860388 DOI: 10.1002/term.2352] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/10/2016] [Accepted: 11/09/2016] [Indexed: 12/11/2022]
Abstract
The present study was conducted to introduce the use of a delivery carrier for local transplantation of human adipose tissue-derived mesenchymal stem cells (AdMSCs) into the salivary gland (SG) and analyse its ability to enhance radioprotection of AdMSCs against irradiation (IR)-induced damage. An injectable porcine small intestinal submucosa (SIS) matrix was used as a cell delivery carrier, and human AdMSCs were contained within SIS hydrogel (AdMSC/SIS). After local injection into SGs of mice following local IR, morphological and functional changes were evaluated in the sham, vehicle [phosphate-buffered saline (PBS)], SIS, AdMSC and AdMSC/SIS groups. Local transplantation of AdMSC resulted in less fibrosis, regardless of the use of a carrier, but the AdMSC/SIS group showed more mucin-producing acini relative to those in the PBS group. Functional restoration of salivation capacity and salivary protein synthesis was achieved in AdMSC and AdMSC/SIS groups, with a greater tendency being observed in the AdMSC/SIS group. AdMSC treatment resulted in tissue remodelling with a greater number of salivary epithelial cells (AQP-5), SG progenitor cells (c-Kit), endothelial cells (CD31) and myoepithelial cells (α-SMA), among which endothelial and myoepithelial cells significantly increased in the AdMSC/SIS group relative to the AdMSC group. AdMSC treatment alleviated IR-induced cell death, and the anti-apoptotic and anti-oxidative effects of AdMSC were enhanced in the AdMSC/SIS group relative to the AdMSC group. These results suggest local transplantation of AdMSC improves tissue remodelling following radiation damage in SG tissue, and that use of a carrier enhances the protective effects of AdMSC-mediated cellular protection against IR via paracrine secretion. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jeong-Seok Choi
- Department of Otorhinolaryngology - Head and Neck Surgery, Inha University School of Medicine, Incheon, Republic of Korea
| | - Hye-Young An
- Department of Otorhinolaryngology - Head and Neck Surgery, Inha University School of Medicine, Incheon, Republic of Korea
| | - Hyun-Soo Shin
- Department of Otorhinolaryngology - Head and Neck Surgery, Inha University School of Medicine, Incheon, Republic of Korea
| | - Young-Mo Kim
- Department of Otorhinolaryngology - Head and Neck Surgery, Inha University School of Medicine, Incheon, Republic of Korea
| | - Jae-Yol Lim
- Department of Otorhinolaryngology - Head and Neck Surgery, Inha University School of Medicine, Incheon, Republic of Korea
| |
Collapse
|
19
|
Han YM, Park JM, Choi YS, Jin H, Lee YS, Han NY, Lee H, Hahm KB. The efficacy of human placenta-derived mesenchymal stem cells on radiation enteropathy along with proteomic biomarkers predicting a favorable response. Stem Cell Res Ther 2017; 8:105. [PMID: 28464953 PMCID: PMC5414323 DOI: 10.1186/s13287-017-0559-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/22/2017] [Accepted: 04/08/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Radiation enteropathy is a common complication in patients with abdominopelvic cancer, but no treatment has yet been established. Stem cell therapy may be a viable therapeutic option because intestinal stem cells are highly vulnerable to ionizing radiation (IR) and stem cell loss explains its intractability to general treatment. Here, we investigated either prophylactic or therapeutic efficacy of human placenta-derived mesenchymal stem cells (hPDSCs) against radiation enteropathy and could identify biomarkers predicting a favorable response to stem cell therapy. METHODS We challenged a radiation-induced enteropathy model with hPDSCs. After sacrifice, we checked the gross anatomy of small intestine, histology gross, and analyzed that, accompanied with molecular changes implicated in this model. RESULTS hPDSCs significantly improved the outcome of mice induced with either radiation enteropathy or lethal radiation syndrome (P < 0.01). hPDSCs exerted inhibitory actions on inflammatory cytokines, the re-establishment of epithelium homeostasis was completed with increasing endogenous restorative processes as assessed with increased levels of proliferative markers in the hPDSCs group, and a significant inhibition of IR-induced apoptosis. The preservation of cells expressing lysozyme, and Musashi-1 were significantly increased in the hPDSC treatment group. Both preventive and therapeutic efficacies of hPDSCs were noted against IR-induced enteropathy. Label-free quantification was used to identify biomarkers which predict favorable responses after hPDSC treatment, and finally glutathione S-transferase-mu type, interleukin-10, and peroxiredoxin-2 were validated as proteomic biomarkers predicting a favorable response to hPDSCs in radiation enteropathy. CONCLUSIONS hPDSCs may be a useful prophylactic and therapeutic cell therapy for radiation enteropathy.
Collapse
Affiliation(s)
- Young-Min Han
- CHA Cancer Prevention Research Center, CHA University, CHA Bio Complex, 335 Pangyo-ro, Bundang-ku, Seongnam, Kyunggi-do, 463-712, South Korea
| | - Jong-Min Park
- CHA Cancer Prevention Research Center, CHA University, CHA Bio Complex, 335 Pangyo-ro, Bundang-ku, Seongnam, Kyunggi-do, 463-712, South Korea
| | - Yong Soo Choi
- Department of Applied Bioscience, CHA University, Seongnam, South Korea
| | - Hee Jin
- Graduated School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Yun-Sil Lee
- Graduated School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Na-Young Han
- Lee Gil Ya Cancer and Diabetes Institute, College of Pharmacy, Gachon University, Incheon, South Korea
| | - Hookeun Lee
- Lee Gil Ya Cancer and Diabetes Institute, College of Pharmacy, Gachon University, Incheon, South Korea
| | - Ki Baik Hahm
- CHA Cancer Prevention Research Center, CHA University, CHA Bio Complex, 335 Pangyo-ro, Bundang-ku, Seongnam, Kyunggi-do, 463-712, South Korea. .,Digestive Disease Center, CHA Bundang Medical Center, CHA University, Seongnam, South Korea.
| |
Collapse
|
20
|
Zheng K, Wu W, Yang S, Huang L, Chen J, Gong C, Fu Z, Lin R, Tan J. Treatment of radiation-induced acute intestinal injury with bone marrow-derived mesenchymal stem cells. Exp Ther Med 2016; 11:2425-2431. [PMID: 27284330 DOI: 10.3892/etm.2016.3248] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 10/21/2015] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to investigate the ability of bone marrow-derived mesenchymal stem cells (BMSCs) to repair radiation-induced acute intestinal injury, and to elucidate the underlying repair mechanism. Male Sprague-Dawley rats were subjected to whole abdominal irradiation using a single medical linear accelerator (12 Gy) and randomly assigned to two groups. Rats in the BMSC-treated group were injected with 1 ml BMSC suspension (2×106 cells/ml) via the tail vein, while the control group rats were injected with normal saline. BMSCs were identified by detecting the expression of CD29, CD90, CD34 and CD45 using flow cytometry. The expression of the cytokines stromal cell-derived factor 1 (SDF-1), prostaglandin E2 (PGE2) and interleukin (IL)-2 was detected using immunohistochemical techniques. Plasma citrulline concentrations were evaluated using an ELISA kit. Rat general conditions, including body weight, and changes in cellular morphology were also recorded. The results suggested that BMSCs exerted a protective effect on radiation-induced acute intestinal injury in rats. The histological damage was rapidly repaired in the BMSC-treated group. In addition, the BMSC-treated group showed significantly reduced radiation injury scores (P<0.01), mildly reduced body weight and plasma citrulline levels, significantly more rapid recovery (P<0.01), significantly reduced expression of the cytokines PGE2 and IL-2 (P<0.05) and significantly increased SDF-1 expression (P<0.01) compared with the control group. In summary, the present results indicate that BMSCs are able to effectively reduce inflammation and promote repair of the structure and function of intestinal tissues damaged by radiation exposure, suggesting that they may provide a promising therapeutic agent.
Collapse
Affiliation(s)
- Kai Zheng
- Cell and Organ Transplant Institute, Fuzhou General Hospital, Fuzhou, Fujian 350025, P.R. China
| | - Weizhen Wu
- Cell and Organ Transplant Institute, Fuzhou General Hospital, Fuzhou, Fujian 350025, P.R. China
| | - Shunliang Yang
- Cell and Organ Transplant Institute, Fuzhou General Hospital, Fuzhou, Fujian 350025, P.R. China
| | - Lianghu Huang
- Cell and Organ Transplant Institute, Fuzhou General Hospital, Fuzhou, Fujian 350025, P.R. China
| | - Jin Chen
- Cell and Organ Transplant Institute, Fuzhou General Hospital, Fuzhou, Fujian 350025, P.R. China
| | - Chungui Gong
- Radiotherapy Centre, Fuzhou General Hospital, Fuzhou, Fujian 350025, P.R. China
| | - Zhichao Fu
- Radiotherapy Centre, Fuzhou General Hospital, Fuzhou, Fujian 350025, P.R. China
| | - Ruofei Lin
- Cell and Organ Transplant Institute, Fuzhou General Hospital, Fuzhou, Fujian 350025, P.R. China
| | - Jianming Tan
- Cell and Organ Transplant Institute, Fuzhou General Hospital, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|
21
|
An HY, Shin HS, Choi JS, Kim HJ, Lim JY, Kim YM. Adipose Mesenchymal Stem Cell Secretome Modulated in Hypoxia for Remodeling of Radiation-Induced Salivary Gland Damage. PLoS One 2015; 10:e0141862. [PMID: 26529411 PMCID: PMC4631328 DOI: 10.1371/journal.pone.0141862] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 10/14/2015] [Indexed: 12/21/2022] Open
Abstract
Background and Purpose This study was conducted to determine whether a secretome from mesenchymal stem cells (MSC) modulated by hypoxic conditions to contain therapeutic factors contributes to salivary gland (SG) tissue remodeling and has the potential to improve irradiation (IR)-induced salivary hypofunction in a mouse model. Materials and Methods Human adipose mesenchymal stem cells (hAdMSC) were isolated, expanded, and exposed to hypoxic conditions (O2 < 5%). The hypoxia-conditioned medium was then filtered to a high molecular weight fraction and prepared as a hAdMSC secretome. The hAdMSC secretome was subsequently infused into the tail vein of C3H mice immediately after local IR once a day for seven consecutive days. The control group received equal volume (500 μL) of vehicle (PBS) only. SG function and structural tissue remodeling by the hAdMSC secretome were investigated. Human parotid epithelial cells (HPEC) were obtained, expanded in vitro, and then irradiated and treated with either the hypoxia-conditioned medium or a normoxic control medium. Cell proliferation and IR-induced cell death were examined to determine the mechanism by which the hAdMSC secretome exerted its effects. Results The conditioned hAdMSC secretome contained high levels of GM-CSF, VEGF, IL-6, and IGF-1. Repeated systemic infusion with the hAdMSC secretome resulted in improved salivation capacity and increased levels of salivary proteins, including amylase and EGF, relative to the PBS group. The microscopic structural integrity of SG was maintained and salivary epithelial (AQP-5), endothelial (CD31), myoepithelial (α-SMA) and SG progenitor cells (c-Kit) were successfully protected from radiation damage and remodeled. The hAdMSC secretome strongly induced proliferation of HPEC and led to a significant decrease in cell death in vivo and in vitro. Moreover, the anti-apoptotic effects of the hAdMSC secretome were found to be promoted after hypoxia-preconditioning relative to normoxia-cultured hAdMSC secretome. Conclusion These results show that the hAdMSC secretome from hypoxic-conditioned medium may provide radioprotection and tissue remodeling via release of paracrine mediators.
Collapse
Affiliation(s)
- Hye-Young An
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, Incheon, Republic of Korea
- Translational Research Center, Inha University College of Medicine, Incheon, Republic of Korea
| | - Hyun-Soo Shin
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, Incheon, Republic of Korea
- Translational Research Center, Inha University College of Medicine, Incheon, Republic of Korea
| | - Jeong-Seok Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, Incheon, Republic of Korea
- Translational Research Center, Inha University College of Medicine, Incheon, Republic of Korea
| | - Hun Jung Kim
- Department of Radiation Oncology, Inha University College of Medicine, Incheon, Republic of Korea
| | - Jae-Yol Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, Incheon, Republic of Korea
- Translational Research Center, Inha University College of Medicine, Incheon, Republic of Korea
- * E-mail: (JL); (YK)
| | - Young-Mo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, Incheon, Republic of Korea
- Translational Research Center, Inha University College of Medicine, Incheon, Republic of Korea
- * E-mail: (JL); (YK)
| |
Collapse
|
22
|
Nicolay NH, Lopez Perez R, Debus J, Huber PE. Mesenchymal stem cells – A new hope for radiotherapy-induced tissue damage? Cancer Lett 2015; 366:133-40. [DOI: 10.1016/j.canlet.2015.06.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022]
|
23
|
Nicolay NH, Perez RL, Saffrich R, Huber PE. Radio-resistant mesenchymal stem cells: mechanisms of resistance and potential implications for the clinic. Oncotarget 2015; 6:19366-80. [PMID: 26203772 PMCID: PMC4637291 DOI: 10.18632/oncotarget.4358] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 05/30/2015] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) comprise a heterogeneous population of multipotent stromal cells and can be isolated from various tissues and organs. Due to their regenerative potential, they have been subject to intense research efforts, and they may provide an efficient means for treating radiation-induced tissue damage. MSCs are relatively resistant to ionizing radiation and retain their stem cell characteristics even after high radiation doses. The underlying mechanisms for the observed MSC radioresistance have been extensively studied and may involve efficient DNA damage recognition, double strand break repair and evasion of apoptosis. Here, we present a concise review of the published scientific data on the radiobiological features of MSCs. The involvement of different DNA damage recognition and repair pathways in the creation of a radioresistant MSC phenotype is outlined, and the roles of apoptosis, senescence and autophagy regarding the reported radioresistance are summarized. Finally, potential influences of the radioresistant MSCs for the clinic are discussed with respect to the repair and radioprotection of irradiated tissues.
Collapse
Affiliation(s)
- Nils H. Nicolay
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, Heidelberg, Germany
- Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Ramon Lopez Perez
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, Heidelberg, Germany
- Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Rainer Saffrich
- Department of Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter E. Huber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, Heidelberg, Germany
- Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
| |
Collapse
|
24
|
Chang PY, Qu YQ, Wang J, Dong LH. The potential of mesenchymal stem cells in the management of radiation enteropathy. Cell Death Dis 2015; 6:e1840. [PMID: 26247725 PMCID: PMC4558492 DOI: 10.1038/cddis.2015.189] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/02/2015] [Accepted: 06/08/2015] [Indexed: 12/20/2022]
Abstract
Although radiotherapy is effective in managing abdominal and pelvic malignant tumors, radiation enteropathy is still unavoidable. This disease severely affects the quality of life of cancer patients due to some refractory lesions, such as intestinal ischemia, mucositis, ulcer, necrosis or even perforation. Current drugs or prevailing therapies are committed to alleviating the symptoms induced by above lesions. But the efficacies achieved by these interventions are still not satisfactory, because the milieus for tissue regeneration are not distinctly improved. In recent years, regenerative therapy for radiation enteropathy by using mesenchymal stem cells is of public interests. Relevant results of preclinical and clinical studies suggest that this regenerative therapy will become an attractive tool in managing radiation enteropathy, because mesenchymal stem cells exhibit their pro-regenerative potentials for healing the injuries in both epithelium and endothelium, minimizing inflammation and protecting irradiated intestine against fibrogenesis through activating intrinsic repair actions. In spite of these encouraging results, whether mesenchymal stem cells promote tumor growth is still an issue of debate. On this basis, we will discuss the advances in anticancer therapy by using mesenchymal stem cells in this review after analyzing the pathogenesis of radiation enteropathy, introducing the advances in managing radiation enteropathy using regenerative therapy and exploring the putative actions by which mesenchymal stem cells repair intestinal injuries. At last, insights gained from the potential risks of mesenchymal stem cell-based therapy for radiation enteropathy patients may provide clinicians with an improved awareness in carrying out their studies.
Collapse
Affiliation(s)
- P-Y Chang
- 1] Department of Radiation Oncology, The First Bethune Hospital of Jilin University, Changchun 130021, China [2] Electrochemical State Key Laboratory, Changchun Institute of Applied Chemistry Academy of Science, Changchun 130021, China
| | - Y-Q Qu
- Department of Radiation Oncology, The First Bethune Hospital of Jilin University, Changchun 130021, China
| | - J Wang
- Electrochemical State Key Laboratory, Changchun Institute of Applied Chemistry Academy of Science, Changchun 130021, China
| | - L-H Dong
- Department of Radiation Oncology, The First Bethune Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
25
|
Chen YX, Zeng ZC, Sun J, Zeng HY, Huang Y, Zhang ZY. Mesenchymal stem cell-conditioned medium prevents radiation-induced liver injury by inhibiting inflammation and protecting sinusoidal endothelial cells. JOURNAL OF RADIATION RESEARCH 2015; 56:700-8. [PMID: 26070321 PMCID: PMC4497399 DOI: 10.1093/jrr/rrv026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/21/2015] [Indexed: 05/14/2023]
Abstract
Current management of radiation-induced liver injury is limited. Sinusoidal endothelial cell (SEC) apoptosis and inflammation are considered to be initiating events in hepatic damage. We hypothesized that mesenchymal stem cells (MSCs) possess anti-apoptotic and anti-inflammatory actions during hepatic irradiation, acting via paracrine mechanisms. This study aims to examine whether MSC-derived bioactive components are protective against radiation-induced liver injury in rats. MSC-conditioned medium (MSC-CM) was generated from rat bone marrow-derived MSCs. The effect of MSC-CM on the viability of irradiated SECs was examined by flow cytometric analysis. Activation of the Akt and ERK pathways was analyzed by western blot. MSC-CM was also delivered to Sprague-Dawley rats immediately before receiving liver irradiation, followed by testing for pathological features, changes in serum hyaluronic acid, ALT, and inflammatory cytokine levels, and liver cell apoptosis. MSC-CM enhanced the viability of irradiated SECs in vitro and induced Akt and ERK phosphorylation in these cells. Infusion of MSC-CM immediately before liver irradiation provided a significant anti-apoptotic effect on SECs and improved the histopathological features of injury in the irradiated liver. MSC-CM also reduced the secretion and expression of inflammatory cytokines and increased the expression of anti-inflammatory cytokines. MSC-derived bioactive components could be a novel therapeutic approach for treating radiation-induced liver injury.
Collapse
Affiliation(s)
- Yi-Xing Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhao-Chong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jing Sun
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hai-Ying Zeng
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yan- Huang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhen-Yu Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
26
|
Pre-activation of mesenchymal stem cells with TNF-α, IL-1β and nitric oxide enhances its paracrine effects on radiation-induced intestinal injury. Sci Rep 2015; 5:8718. [PMID: 25732721 PMCID: PMC4346809 DOI: 10.1038/srep08718] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 01/27/2015] [Indexed: 02/05/2023] Open
Abstract
Conditioned medium from mesenchymal stem cells (MSC-CM) may represent a promising alternative to MSCs transplantation, however, the low concentrations of growth factors in non-activated MSC-CM hamper its clinical application. Recent data indicated that the paracrine potential of MSCs could be enhanced by inflammatory factors. Herein, we pre-activated bone-marrow-derived MSCs under radiation-induced inflammatory condition (MSCIEC-6(IR)) and investigated the evidence and mechanism for the differential effects of MSC-CMIEC-6(IR) and non-activated MSC-CM on radiation-induced intestinal injury (RIII). Systemic infusion of MSC-CMIEC-6(IR), but not non-activated MSC-CM, dramatically improved intestinal damage and survival of irradiated rats. Such benefits may involve the modulation of epithelial regeneration and inflammation, as indicated by the regeneration of intestinal epithelial/stem cells, the regulation of the pro-/anti-inflammatory cytokine balance. The mechanism for the superior paracrine efficacy of MSCIEC-6(IR) is related to a higher secretion of regenerative, immunomodulatory and trafficking molecules, including the pivotal factor IGF-1, induced by TNF-α, IL-1β and nitric oxide partially via a heme oxygenase-1 dependent mechanism. Together, our findings suggest that pre-activation of MSCs with TNF-α, IL-1β and nitric oxide enhances its paracine effects on RIII via a heme oxygenase-1 dependent mechanism, which may help us to maximize the paracrine potential of MSCs.
Collapse
|
27
|
Benderitter M, Caviggioli F, Chapel A, Coppes RP, Guha C, Klinger M, Malard O, Stewart F, Tamarat R, van Luijk P, Limoli CL. Stem cell therapies for the treatment of radiation-induced normal tissue side effects. Antioxid Redox Signal 2014; 21:338-55. [PMID: 24147585 PMCID: PMC4060814 DOI: 10.1089/ars.2013.5652] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Targeted irradiation is an effective cancer therapy but damage inflicted to normal tissues surrounding the tumor may cause severe complications. While certain pharmacologic strategies can temper the adverse effects of irradiation, stem cell therapies provide unique opportunities for restoring functionality to the irradiated tissue bed. RECENT ADVANCES Preclinical studies presented in this review provide encouraging proof of concept regarding the therapeutic potential of stem cells for treating the adverse side effects associated with radiotherapy in different organs. Early-stage clinical data for radiation-induced lung, bone, and skin complications are promising and highlight the importance of selecting the appropriate stem cell type to stimulate tissue regeneration. CRITICAL ISSUES While therapeutic efficacy has been demonstrated in a variety of animal models and human trials, a range of additional concerns regarding stem cell transplantation for ameliorating radiation-induced normal tissue sequelae remain. Safety issues regarding teratoma formation, disease progression, and genomic stability along with technical issues impacting disease targeting, immunorejection, and clinical scale-up are factors bearing on the eventual translation of stem cell therapies into routine clinical practice. FUTURE DIRECTIONS Follow-up studies will need to identify the best possible stem cell types for the treatment of early and late radiation-induced normal tissue injury. Additional work should seek to optimize cellular dosing regimes, identify the best routes of administration, elucidate optimal transplantation windows for introducing cells into more receptive host tissues, and improve immune tolerance for longer-term engrafted cell survival into the irradiated microenvironment.
Collapse
Affiliation(s)
- Marc Benderitter
- 1 Laboratory of Radiopathology and Experimental Therapies, IRSN , PRP-HOM, SRBE, Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Voswinkel J, Francois S, Simon JM, Benderitter M, Gorin NC, Mohty M, Fouillard L, Chapel A. Use of mesenchymal stem cells (MSC) in chronic inflammatory fistulizing and fibrotic diseases: a comprehensive review. Clin Rev Allergy Immunol 2014; 45:180-92. [PMID: 23296948 DOI: 10.1007/s12016-012-8347-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cells (MSC), multipotent adult stem cells, feature the potential to regenerate tissue damage and, in parallel, inhibit inflammation and fibrosis. MSC can be safely transplanted in autologous and allogeneic ways as they are non-immunogenic, and consequently represent a therapeutic option for refractory connective tissue diseases, fibrosing diseases like scleroderma and fistulizing colitis like in Crohn's disease. Actually, there are more than 200 registered clinical trial sites for evaluating MSC therapy, and 22 are on autoimmune diseases. In irradiation-induced colitis, MSC accelerate functional recovery of the intestine and dampen the systemic inflammatory response. In order to provide rescue therapy for accidentally over-irradiated prostate cancer patients who underwent radiotherapy, allogeneic bone marrow-derived MSC from family donors were intravenously infused to three patients with refractory and fistulizing colitis resembling fistulizing Crohn's disease. Systemic MSC therapy of refractory irradiation-induced colitis was safe and effective on pain, diarrhoea, hemorrhage, inflammation and fistulization accompanied by modulation of the lymphocyte subsets towards an increase of T regulatory cells and a decrease of activated effector T cells. The current data indicate that MSC represent a promising alternative strategy in the treatment of various immune-mediated diseases. Encouraging results have already been obtained from clinical trials in Crohn's disease and SLE as well as from case series in systemic sclerosis. MSC represent a safe therapeutic measure for patients who suffer from chronic and fistulizing colitis. These findings are instructional for the management of refractory inflammatory bowel diseases that are characterized by similar clinical and immunopathological features.
Collapse
Affiliation(s)
- Jan Voswinkel
- Department of Hematology, Saint Antoine Hospital APHP and UPMC University, UMRS 938, 184 rue Faubourg Saint Antoine, 75012, Paris, France,
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Voswinkel J, Francois S, Gorin NC, Chapel A. Gastro-intestinal autoimmunity: preclinical experiences and successful therapy of fistulizing bowel diseases and gut Graft versus host disease by mesenchymal stromal cells. Immunol Res 2014; 56:241-8. [PMID: 23564182 DOI: 10.1007/s12026-013-8397-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mesenchymal stromal cells (MSC) are multipotent adult stem cells with the potential to regenerate tissue damage and inhibit inflammation and fibrosis in parallel. As they are non-immunogenic, MSC can be safely auto- and allotransplanted and consequently represent a therapeutic option for refractory connective tissue diseases and fistulizing colitis like Crohn's disease. Actually, there are more than 200 registered clinical trial sites for evaluating MSC therapy, 22 are on autoimmune diseases and 27 are actually recruiting bowel disease' patients. More than 1,500 patients with bowel diseases like Crohn's disease were treated in clinical trials by local as well as systemic MSC therapy. Phase I and II trials on fistula documented the feasibility and safety of MSC therapy, and a significant superiority compared to fibrin glue in fistulizing bowel diseases was demonstrated. Autologous as well as allogeneic use of Bone marrow as well as of adipose tissue-derived MSC are feasible. In refractory Graft versus host disease, especially in refractory gut Graft versus host diseases, encouraging results were reported using MSC. Systemic MSC therapy of refractory irradiation-induced colitis was safe and effective on pain, diarrhea, hemorrhage, inflammation and fistulization accompanied by modulation of the lymphocyte subsets toward an increase in T regulatory cells and a decrease in activated effector T cells. Mesenchymal stem cells represent a safe therapy for patients with refractory inflammatory bowel diseases.
Collapse
Affiliation(s)
- Jan Voswinkel
- Department of Haematology, Saint Antoine Hospital, APHP and UPMC University, UMRS 938, 184 rue Faubourg Saint Antoine, 75012, Paris, France.
| | | | | | | |
Collapse
|
30
|
Linard C, Busson E, Holler V, Strup-Perrot C, Lacave-Lapalun JV, Lhomme B, Prat M, Devauchelle P, Sabourin JC, Simon JM, Bonneau M, Lataillade JJ, Benderitter M. Repeated autologous bone marrow-derived mesenchymal stem cell injections improve radiation-induced proctitis in pigs. Stem Cells Transl Med 2013; 2:916-27. [PMID: 24068742 DOI: 10.5966/sctm.2013-0030] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The management of proctitis in patients who have undergone very-high-dose conformal radiotherapy is extremely challenging. The fibrosis-necrosis, fistulae, and hemorrhage induced by pelvic overirradiation have an impact on morbidity. Augmenting tissue repair by the use of mesenchymal stem cells (MSCs) may be an important advance in treating radiation-induced toxicity. Using a preclinical pig model, we investigated the effect of autologous bone marrow-derived MSCs on high-dose radiation-induced proctitis. Irradiated pigs received repeated intravenous administrations of autologous bone marrow-derived MSCs. Immunostaining and real-time polymerase chain reaction analysis were used to assess the MSCs' effect on inflammation, extracellular matrix remodeling, and angiogenesis, in radiation-induced anorectal and colon damages. In humans, as in pigs, rectal overexposure induces mucosal damage (crypt depletion, macrophage infiltration, and fibrosis). In a pig model, repeated administrations of MSCs controlled systemic inflammation, reduced in situ both expression of inflammatory cytokines and macrophage recruitment, and augmented interleukin-10 expression in rectal mucosa. MSC injections limited radiation-induced fibrosis by reducing collagen deposition and expression of col1a2/col3a1 and transforming growth factor-β/connective tissue growth factor, and by modifying the matrix metalloproteinase/TIMP balance. In a pig model of proctitis, repeated injections of MSCs effectively reduced inflammation and fibrosis. This treatment represents a promising therapy for radiation-induced severe rectal damage.
Collapse
Affiliation(s)
- Christine Linard
- Institute of Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Systemic transplantation of human adipose tissue-derived mesenchymal stem cells for the regeneration of irradiation-induced salivary gland damage. PLoS One 2013; 8:e71167. [PMID: 23951100 PMCID: PMC3739795 DOI: 10.1371/journal.pone.0071167] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 06/28/2013] [Indexed: 12/28/2022] Open
Abstract
Objectives Cell-based therapy has been reported to repair or restore damaged salivary gland (SG) tissue after irradiation. This study was aimed at determining whether systemic administration of human adipose-derived mesenchymal stem cells (hAdMSCs) can ameliorate radiation-induced SG damage. Methods hAdMSCs (1×106) were administered through a tail vein of C3H mice immediately after local irradiation, and then this infusion was repeated once a week for 3 consecutive weeks. At 12 weeks after irradiation, functional evaluations were conducted by measuring salivary flow rates (SFRs) and salivation lag times, and histopathologic and immunofluorescence histochemistry studies were performed to assay microstructural changes, apoptosis, and proliferation indices. The engraftment and in vivo differentiation of infused hAdMSCs were also investigated, and the transdifferentiation of hAdMSCs into amylase-producing SG epithelial cells (SGCs) was observed in vitro using a co-culture system. Results The systemic administration of hAdMSCs exhibited improved SFRs at 12 weeks after irradiation. hAdMSC-transplanted SGs showed fewer damaged and atrophied acinar cells and higher mucin and amylase production levels than untreated irradiated SGs. Immunofluorescence TUNEL assays revealed fewer apoptotic cells in the hAdMSC group than in the untreated group. Infused hAdMSCs were detected in transplanted SGs at 4 weeks after irradiation and some cells were found to have differentiated into SGCs. In vitro, a low number of co-cultured hAdMSCs (13%–18%) were observed to transdifferentiate into SGCs. Conclusion The findings of this study indicate that hAdMSCs have the potential to protect against irradiation-induced cell loss and to transdifferentiate into SGCs, and suggest that hAdMSC administration should be viewed as a candidate therapy for the treatment of radiation-induced SG damage.
Collapse
|
32
|
Chapel A. Mesenchymal stromal cell therapy to repair radiation-induced intestinal damage: implications for treatment of abdominopelvic malignancy. Cytotherapy 2013; 14:1157-8. [PMID: 23066783 DOI: 10.3109/14653249.2012.730321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Gaberman E, Pinzur L, Levdansky L, Tsirlin M, Netzer N, Aberman Z, Gorodetsky R. Mitigation of Lethal Radiation Syndrome in Mice by Intramuscular Injection of 3D Cultured Adherent Human Placental Stromal Cells. PLoS One 2013; 8:e66549. [PMID: 23823334 PMCID: PMC3688917 DOI: 10.1371/journal.pone.0066549] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 05/12/2013] [Indexed: 12/22/2022] Open
Abstract
Exposure to high lethal dose of ionizing radiation results in acute radiation syndrome with deleterious systemic effects to different organs. A primary target is the highly sensitive bone marrow and the hematopoietic system. In the current study C3H/HeN mice were total body irradiated by 7.7 Gy. Twenty four hrs and 5 days after irradiation 2×106 cells from different preparations of human derived 3D expanded adherent placental stromal cells (PLX) were injected intramuscularly. Treatment with batches consisting of pure maternal cell preparations (PLX-Mat) increased the survival of the irradiated mice from ∼27% to 68% (P<0.001), while cell preparations with a mixture of maternal and fetal derived cells (PLX-RAD) increased the survival to ∼98% (P<0.0001). The dose modifying factor of this treatment for both 50% and 37% survival (DMF50 and DMF37) was∼1.23. Initiation of the more effective treatment with PLX-RAD injection could be delayed for up to 48 hrs after irradiation with similar effect. A delayed treatment by 72 hrs had lower, but still significantly effect (p<0.05). A faster recovery of the BM and improved reconstitution of all blood cell lineages in the PLX-RAD treated mice during the follow-up explains the increased survival of the cells treated irradiated mice. The number of CD45+/SCA1+ hematopoietic progenitor cells within the fast recovering population of nucleated BM cells in the irradiated mice was also elevated in the PLX-RAD treated mice. Our study suggests that IM treatment with PLX-RAD cells may serve as a highly effective “off the shelf” therapy to treat BM failure following total body exposure to high doses of radiation. The results suggest that similar treatments may be beneficial also for clinical conditions associated with severe BM aplasia and pancytopenia.
Collapse
Affiliation(s)
- Elena Gaberman
- Sharett Institute of Oncology, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | | | - Lilia Levdansky
- Sharett Institute of Oncology, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Maria Tsirlin
- Sharett Institute of Oncology, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Nir Netzer
- Pluristem Therapeutics Inc., Haifa, Israel
| | | | - Raphael Gorodetsky
- Sharett Institute of Oncology, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
34
|
Voswinkel J, Francois S, Simon JM, Benderitter M, Gorin NC, Mohty M, Fouillard L, Chapel A. Use of mesenchymal stem cells (MSC) in chronic inflammatory fistulizing and fibrotic diseases: a comprehensive review. Clin Rev Allergy Immunol 2013. [PMID: 23296948 DOI: 10.1007/s12016-012-8347-6.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mesenchymal stem cells (MSC), multipotent adult stem cells, feature the potential to regenerate tissue damage and, in parallel, inhibit inflammation and fibrosis. MSC can be safely transplanted in autologous and allogeneic ways as they are non-immunogenic, and consequently represent a therapeutic option for refractory connective tissue diseases, fibrosing diseases like scleroderma and fistulizing colitis like in Crohn's disease. Actually, there are more than 200 registered clinical trial sites for evaluating MSC therapy, and 22 are on autoimmune diseases. In irradiation-induced colitis, MSC accelerate functional recovery of the intestine and dampen the systemic inflammatory response. In order to provide rescue therapy for accidentally over-irradiated prostate cancer patients who underwent radiotherapy, allogeneic bone marrow-derived MSC from family donors were intravenously infused to three patients with refractory and fistulizing colitis resembling fistulizing Crohn's disease. Systemic MSC therapy of refractory irradiation-induced colitis was safe and effective on pain, diarrhoea, hemorrhage, inflammation and fistulization accompanied by modulation of the lymphocyte subsets towards an increase of T regulatory cells and a decrease of activated effector T cells. The current data indicate that MSC represent a promising alternative strategy in the treatment of various immune-mediated diseases. Encouraging results have already been obtained from clinical trials in Crohn's disease and SLE as well as from case series in systemic sclerosis. MSC represent a safe therapeutic measure for patients who suffer from chronic and fistulizing colitis. These findings are instructional for the management of refractory inflammatory bowel diseases that are characterized by similar clinical and immunopathological features.
Collapse
Affiliation(s)
- Jan Voswinkel
- Department of Hematology, Saint Antoine Hospital APHP and UPMC University, UMRS 938, 184 rue Faubourg Saint Antoine, 75012, Paris, France,
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Booth C, Tudor G, Tudor J, Katz BP, MacVittie TJ. Acute gastrointestinal syndrome in high-dose irradiated mice. HEALTH PHYSICS 2012; 103:383-99. [PMID: 23091876 PMCID: PMC3530834 DOI: 10.1097/hp.0b013e318266ee13] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The most detailed reports of the response of the gastrointestinal system to high dose acute radiation have focused mainly on understanding the histopathology. However, to enable medical countermeasure assessment under the animal rule criteria, it is necessary to have a robust model in which the relationship between radiation dose and intestinal radiation syndrome incidence, timing, and severity are established and correlated with histopathology. Although many mortality studies have been published, they have used a variety of mouse strains, ages, radiation sources, and husbandry conditions, all of which influence the dose response. Further, it is clear that the level of bone marrow irradiation and supportive care can influence endpoints. In order to create robust baseline data, the authors have generated dose response data in adult male mice maintained under identical conditions and exposed to either total or partial-body irradiation. Partial-body irradiation includes both extensive (40%) and minimal (5%) bone marrow sparing models, the latter designed to correlate with an established primate model and allow assessment of effects of any medical countermeasure on all three major radiation syndromes (intestinal, bone marrow, and lung) in the surviving mice. Lethal dose (LD(30), LD(50), and LD(70)) data are described in the various models, along with the impact of enteric flora and response to supportive care. Correlation with diarrhea severity and histopathology are also described. These data can be used to aid the design of good laboratory practice (GLP)-compliant Animal Rule studies that are reflective of the conditions following accidental radiation exposure.
Collapse
|
36
|
Tolar J, Tolar M. Reinventing mesenchymal stromal cells. Cytotherapy 2012; 14:388-90. [PMID: 22420833 DOI: 10.3109/14653249.2012.665631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Jakub Tolar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA.
| | | |
Collapse
|