1
|
Ashoobi MT, Hemmati H, Aghayan HR, Zarei-Behjani Z, Keshavarz S, Babaloo H, Maroufizadeh S, Yousefi S, Farzin M, Vojoudi E. Wharton's jelly mesenchymal stem cells transplantation for critical limb ischemia in patients with type 2 diabetes mellitus: a preliminary report of phase I clinical trial. Cell Tissue Res 2024; 395:211-220. [PMID: 38112806 DOI: 10.1007/s00441-023-03854-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
Peripheral artery disease (PAD) affects more than 230 million people worldwide, with approximately 11% of patients presenting with advanced-stage PAD or critical limb ischemia (CLI). To avoid or delay amputation, particularly in no-option CLI patients with infeasible or ineffective revascularization, new treatment strategies such as regenerative therapies should be developed. Mesenchymal stem cells (MSCs) are the most popular cell source in regenerative therapies. They possess significant characteristics such as angiogenic, anti-inflammatory, and immunomodulatory activities, which encourage their application in different diseases. This phase I clinical trial reports the safety, feasibility, and probable efficacy of the intramuscular administration of allogeneic Wharton's jelly-derived MSCs (WJ-MSCs) in type 2 diabetes patients with CLI. Out of six screened patients with CLI, five patients were administered WJ-MSCs into the gastrocnemius, soleus, and the proximal part of the tibialis anterior muscles of the ischemic lower limb. The safety of WJ-MSCs injection was considered a primary outcome. Secondary endpoints included wound healing, the presence of pulse at the disease site, the absence of amputation, and improvement in visual analogue scale (VAS), pain-free walking time, and foot and ankle disability index (FADI). No patient experienced adverse events and foot or even toe amputation during the 6-month follow-up. Six months after the intervention, there were a significantly lower VAS score and significantly higher pain-free walking time and FADI score than the baseline, but no statistically significant difference was seen between other time points. In conclusion, allogeneic WJ-MSC transplantation in patients with CLI seems to be safe and effective.
Collapse
Affiliation(s)
- Mohammad Taghi Ashoobi
- Department of General Surgery, School of Medicine Road Trauma Research Center, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Hossein Hemmati
- Department of General Surgery, School of Medicine Road Trauma Research Center, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran.
- Razi Clinical Research Development Unit, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Zarei-Behjani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samaneh Keshavarz
- School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamideh Babaloo
- Biotechnology Research Center, International Campus, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Saman Maroufizadeh
- Department of Biostatistics, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| | - Saeed Yousefi
- Department of General Surgery, School of Medicine Road Trauma Research Center, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohaya Farzin
- Razi Clinical Research Development Unit, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Elham Vojoudi
- School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
2
|
Lee DM, Lee SH, Hong TH, Lee JC, Nam H, Joo KM. Effects of ethanol washing and storage duration on primary culture of stem cells from human exfoliated deciduous teeth. J Oral Biol Craniofac Res 2023; 13:598-603. [PMID: 37576800 PMCID: PMC10415792 DOI: 10.1016/j.jobcr.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/07/2023] [Accepted: 06/19/2023] [Indexed: 08/15/2023] Open
Abstract
Purpose Since the oral environment harbors various microorganisms, the removal of contaminants during the primary culture process of stem cells from human exfoliated deciduous teeth (SHEDs) is very important. We investigated optimal methods for primary culture of SHEDs with minimal contamination rates. Materials and methods Three different storage conditions for deciduous teeth were utilized:1) storing teeth in Hank's Balanced Salt Solution (HBSS) with 3% penicillin and streptomycin (P/S), 2) storing teeth in HBSS with 3% antibiotics and antimycotics (A-A), and 3) storing teeth in HBSS with A-A, and additional washing with 70% ethanol just before primary culture of dental pulp. In addition, the storage time from the extraction of teeth to the primary culture was measured. Results The contamination rates were about 70% for HBSS with P/S, 40% for HBSS with A-A, and less than 10% for HBSS with A-A and additional washing with 70% ethanol. When the primary culture was conducted within 12 h after teeth extraction, the contamination rate was the lowest in all conditions. Furthermore, when the teeth were delivered in HBSS with A-A and an additional 70% ethanol washing was performed, the contamination rate was 0% until 48 h after teeth extraction. Ethanol washing had little effect on the cellular characteristics and stemness of SHEDs, including their morphology, growth rate, expression of surface markers, and differentiation potential. Conclusions We suggested that both delivering teeth in HBSS with A-A and additional 70% ethanol washing are critical considerations for the successful culture of SHEDs without contamination.
Collapse
Affiliation(s)
- Du-man Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Sun Haeng Lee
- Department of Preventive Dentistry & Public Oral Health, School of Dentistry, Seoul National University, Seoul, 08826, South Korea
- Children's Dental Center, Seoul, 06072, South Korea
- DUDA Inc., Seoul, 06072, South Korea
| | - Tae Hee Hong
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul, 08513, South Korea
| | - Jae Cheoun Lee
- Children's Dental Center, Seoul, 06072, South Korea
- DUDA Inc., Seoul, 06072, South Korea
| | - Hyun Nam
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul, 08513, South Korea
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Kyeung Min Joo
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul, 08513, South Korea
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, South Korea
| |
Collapse
|
3
|
Shirbaghaee Z, Heidari Keshel S, Rasouli M, Valizadeh M, Hashemi Nazari SS, Hassani M, Soleimani M. Report of a phase 1 clinical trial for safety assessment of human placental mesenchymal stem cells therapy in patients with critical limb ischemia (CLI). Stem Cell Res Ther 2023; 14:174. [PMID: 37408043 PMCID: PMC10324209 DOI: 10.1186/s13287-023-03390-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/29/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Critical limb ischemia (CLI) is associated with increased risk of tissue loss, leading to significant morbidity and mortality. Therapeutic angiogenesis using cell-based treatments, notably mesenchymal stem cells (MSCs), is essential for enhancing blood flow to ischemic areas in subjects suffering from CLI. The objective of this study was to evaluate the feasibility of using placenta-derived mesenchymal stem cells (P-MSCs) in patients with CLI. METHODS This phase I dose-escalation study investigated P-MSCs in nine CLI patients who were enrolled into each of the two dosage groups (20 × 106 and 60 × 106 cells), delivered intramuscularly twice, two months apart. The incidence of treatment-related adverse events was the primary endpoint. The decrease in inflammatory cytokines, improvement in the ankle-brachial pressure index (ABI), maximum walking distance, vascular collateralization, alleviation of rest pain, healing of ulceration, and avoidance of major amputation in the target leg were the efficacy outcomes. RESULTS All dosages of P-MSCs, including the highest tested dose of 60 × 106 cells, were well tolerated. During the 6-month follow-up period, there was a statistically significant decrease in IL-1 and IFN-γ serum levels following P-MSC treatment. The blood lymphocyte profile of participants with CLI did not significantly differ, suggesting that the injection of allogeneic cells did not cause T-cell proliferation in vivo. We found clinically substantial improvement in rest pain, ulcer healing, and maximum walking distance after P-MSC implantation. In patients with CLI, we performed minor amputations rather than major amputations. Angiography was unable to demonstrate new small vessels formation significantly. CONCLUSION The observations from this phase I clinical study indicate that intramuscular administration of P-MSCs is considered safe and well tolerated and may dramatically improve physical performance and minimize inflammatory conditions in patients with CLI. TRIAL REGISTRATION IRCT, IRCT20210221050446N1. Registered May 09, 2021.
Collapse
Affiliation(s)
- Zeinab Shirbaghaee
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Rasouli
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Valizadeh
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Saeed Hashemi Nazari
- Prevention of Cardiovascular Disease Research Center, Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassani
- Department of Vascular and Endovascular Surgery, Ayatollah Taleghani Hospital Research Development Committee, Shahid Beheshti University of Medical Sciences, Velenjak St., Shahid Chamran Highway, Tehran, Iran.
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Applied Cell Sciences and Hematology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Shirbaghaee Z, Hassani M, Heidari Keshel S, Soleimani M. Emerging roles of mesenchymal stem cell therapy in patients with critical limb ischemia. Stem Cell Res Ther 2022; 13:462. [PMID: 36068595 PMCID: PMC9449296 DOI: 10.1186/s13287-022-03148-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Critical limb ischemia (CLI), the terminal stage of peripheral arterial disease (PAD), is characterized by an extremely high risk of amputation and vascular issues, resulting in severe morbidity and mortality. In patients with severe limb ischemia with no alternative therapy options, such as endovascular angioplasty or bypass surgery, therapeutic angiogenesis utilizing cell-based therapies is vital for increasing blood flow to ischemic regions. Mesenchymal stem cells (MSCs) are currently considered one of the most encouraging cells as a regenerative alternative for the surgical treatment of CLI, including restoring tissue function and repairing ischemic tissue via immunomodulation and angiogenesis. The regenerative treatments for limb ischemia based on MSC therapy are still considered experimental. Despite recent advances in preclinical and clinical research studies, it is not recommended for regular clinical use. In this study, we review the immunomodulatory features of MSC besides the current understanding of different sources of MSC in the angiogenic treatment of CLI subjects and their potential applications as therapeutic agents. Specifically, this paper concentrates on the most current clinical application issues, and several recommendations are provided to improve the efficacy of cell therapy for CLI patients.
Collapse
Affiliation(s)
- Zeinab Shirbaghaee
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassani
- Department of Vascular and Endovascular Surgery, Ayatollah Taleghani Hospital Research Development Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Heidari Keshel
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Applied Cell Science and Hematology Department, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
Kim CK, Hwang JY, Hong TH, Lee DM, Lee K, Nam H, Joo KM. Combination stem cell therapy using dental pulp stem cells and human umbilical vein endothelial cells for critical hindlimb ischemia. BMB Rep 2022. [PMID: 35168701 PMCID: PMC9340082 DOI: 10.5483/bmbrep.2022.55.7.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Narrowing of arteries supplying blood to the limbs provokes critical hindlimb ischemia (CLI). Although CLI results in irreversible sequelae, such as amputation, few therapeutic options induce the formation of new functional blood vessels. Based on the proangiogenic potentials of stem cells, in this study, it was examined whether a combination of dental pulp stem cells (DPSCs) and human umbilical vein endothelial cells (HUVECs) could result in enhanced therapeutic effects of stem cells for CLI compared with those of DPSCs or HUVECs alone. The DPSCs+ HUVECs combination therapy resulted in significantly higher blood flow and lower ischemia damage than DPSCs or HUVECs alone. The improved therapeutic effects in the DPSCs+ HUVECs group were accompanied by a significantly higher number of microvessels in the ischemic tissue than in the other groups. In vitro proliferation and tube formation assay showed that VEGF in the conditioned media of DPSCs induced proliferation and vessel-like tube formation of HUVECs. Altogether, our results demonstrated that the combination of DPSCs and HUVECs had significantly better therapeutic effects on CLI via VEGF-mediated crosstalk. This combinational strategy could be used to develop novel clinical protocols for CLI proangiogenic regenerative treatments.
Collapse
Affiliation(s)
- Chung Kwon Kim
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08517, Korea
| | - Ji-Yoon Hwang
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08517, Korea
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16149, Korea
| | - Tae Hee Hong
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08517, Korea
| | - Du Man Lee
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08517, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Kyunghoon Lee
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16149, Korea
| | - Hyun Nam
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16149, Korea
- Stem Cell and Regenerative Medicine Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16149, Korea
| | - Kyeung Min Joo
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08517, Korea
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16149, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
- Stem Cell and Regenerative Medicine Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea
| |
Collapse
|
6
|
Kim CK, Hwang JY, Hong TH, Lee DM, Lee K, Nam H, Joo KM. Combination stem cell therapy using dental pulp stem cells and human umbilical vein endothelial cells for critical hindlimb ischemia. BMB Rep 2022; 55:336-341. [PMID: 35168701 PMCID: PMC9340082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/25/2022] [Accepted: 02/11/2022] [Indexed: 03/08/2024] Open
Abstract
Narrowing of arteries supplying blood to the limbs provokes critical hindlimb ischemia (CLI). Although CLI results in irreversible sequelae, such as amputation, few therapeutic options induce the formation of new functional blood vessels. Based on the proangiogenic potentials of stem cells, in this study, it was examined whether a combination of dental pulp stem cells (DPSCs) and human umbilical vein endothelial cells (HUVECs) could result in enhanced therapeutic effects of stem cells for CLI compared with those of DPSCs or HUVECs alone. The DPSCs+ HUVECs combination therapy resulted in significantly higher blood flow and lower ischemia damage than DPSCs or HUVECs alone. The improved therapeutic effects in the DPSCs+ HUVECs group were accompanied by a significantly higher number of microvessels in the ischemic tissue than in the other groups. In vitro proliferation and tube formation assay showed that VEGF in the conditioned media of DPSCs induced proliferation and vessel-like tube formation of HUVECs. Altogether, our results demonstrated that the combination of DPSCs and HUVECs had significantly better therapeutic effects on CLI via VEGF-mediated crosstalk. This combinational strategy could be used to develop novel clinical protocols for CLI proangiogenic regenerative treatments. [BMB Reports 2022; 55(7): 336-341].
Collapse
Affiliation(s)
- Chung Kwon Kim
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08517, Korea
| | - Ji-Yoon Hwang
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08517, Korea
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16149, Korea
| | - Tae Hee Hong
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08517, Korea
| | - Du Man Lee
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08517, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Kyunghoon Lee
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16149, Korea
| | - Hyun Nam
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16149, Korea
- Stem Cell and Regenerative Medicine Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16149, Korea
| | - Kyeung Min Joo
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08517, Korea
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16149, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
- Stem Cell and Regenerative Medicine Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16149, Korea
| |
Collapse
|
7
|
Carstens MH, Zelaya M, Calero D, Rivera C, Correa D. Adipose-derived stromal vascular fraction (SVF) cells for the treatment of non-reconstructable peripheral vascular disease in patients with critical limb ischemia: A 6-year follow-up showing durable effects. Stem Cell Res 2020; 49:102071. [PMID: 33157389 DOI: 10.1016/j.scr.2020.102071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/06/2020] [Accepted: 10/25/2020] [Indexed: 12/18/2022] Open
Abstract
We previously reported 18-month results post-injection of adipose-derived stromal vascular fraction (SVF) cells in 10 patients with end-stage peripheral vascular disease (PVD) in critical limb ischemia (CLI) and candidates for amputation, secondary to long-standing diabetes and/or arteriosclerotic disease. We documented positive clinical outcomes demonstrating pain relief as a change in the Rutherford score, improvement of ankle-brachial ratios (ABI), complete healing of 6 critical-size ulcers and evidence of neovascularization to the foot by MRI-based angiography. We now report persistency of the effect 6 years post-procedure in five patients and 4 years post-procedure in four additional patients who remained asymptomatic until death due to cardiac causes (patient 3) and lost from the study (patient 1). The 10th patient died early in the study. All treated extremities remain asymptomatic with increased ambulation, no recurrence of ulceration, and doppler color flow imaging at various vascular levels of the extremity demonstrating persistent blood flow and the presence of pulses doppler waveforms in the treated foot. Despite the extent of the disease, the contralateral extremities have not worsened significantly and no new ulcerations have appeared in any of the patients. Collectively, these data demonstrate that SVF injections have a durable long-term benefit forestalling further progression of the disease.
Collapse
Affiliation(s)
- Michael H Carstens
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, USA; Department of Surgery, Universidad Nacional Autónoma de Nicaragua, León, Nicaragua.
| | - Maria Zelaya
- Department of Radiology, Universidad Nacional Autónoma de Nicaragua, León, Nicaragua
| | - Dorian Calero
- Department of Radiology, Universidad Nacional Autónoma de Nicaragua, León, Nicaragua
| | - Carlos Rivera
- Department of Radiology, Universidad Nacional Autónoma de Nicaragua, Matagalpa, Nicaragua
| | - Diego Correa
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL, USA; Diabetes Research Institute and Cell Transplant Center, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
8
|
Pei X, Kim H, Lee M, Wang N, Shin J, Lee S, Yoon M, Yang VC, He H. Local delivery of cardiac stem cells overexpressing HIF-1α promotes angiogenesis and muscular tissue repair in a hind limb ischemia model. J Control Release 2020; 322:610-621. [DOI: 10.1016/j.jconrel.2020.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/23/2020] [Accepted: 03/13/2020] [Indexed: 12/14/2022]
|
9
|
Soria-Juan B, Escacena N, Capilla-González V, Aguilera Y, Llanos L, Tejedo JR, Bedoya FJ, Juan V, De la Cuesta A, Ruiz-Salmerón R, Andreu E, Grochowicz L, Prósper F, Sánchez-Guijo F, Lozano FS, Miralles M, Del Río-Solá L, Castellanos G, Moraleda JM, Sackstein R, García-Arranz M, García-Olmo D, Martín F, Hmadcha A, Soria B. Cost-Effective, Safe, and Personalized Cell Therapy for Critical Limb Ischemia in Type 2 Diabetes Mellitus. Front Immunol 2019; 10:1151. [PMID: 31231366 PMCID: PMC6558400 DOI: 10.3389/fimmu.2019.01151] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/07/2019] [Indexed: 12/26/2022] Open
Abstract
Cell therapy is a progressively growing field that is rapidly moving from preclinical model development to clinical application. Outcomes obtained from clinical trials reveal the therapeutic potential of stem cell-based therapy to deal with unmet medical treatment needs for several disorders with no therapeutic options. Among adult stem cells, mesenchymal stem cells (MSCs) are the leading cell type used in advanced therapies for the treatment of autoimmune, inflammatory and vascular diseases. To date, the safety and feasibility of autologous MSC-based therapy has been established; however, their indiscriminate use has resulted in mixed outcomes in preclinical and clinical studies. While MSCs derived from diverse tissues share common properties depending on the type of clinical application, they markedly differ within clinical trials in terms of efficacy, resulting in many unanswered questions regarding the application of MSCs. Additionally, our experience in clinical trials related to critical limb ischemia pathology (CLI) shows that the therapeutic efficacy of these cells in different animal models has only been partially reproduced in humans through clinical trials. Therefore, it is crucial to develop new research to identify pitfalls, to optimize procedures and to clarify the repair mechanisms used by these cells, as well as to be able to offer a next generation of stem cell that can be routinely used in a cost-effective and safe manner in stem cell-based therapies targeting CLI.
Collapse
Affiliation(s)
| | - Natalia Escacena
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Vivian Capilla-González
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Yolanda Aguilera
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Lucía Llanos
- Fundación Jiménez Díaz Health Research Institute, Madrid, Spain
| | - Juan R Tejedo
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Francisco J Bedoya
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | | | - Antonio De la Cuesta
- Unidad de Isquemia Crónica de Miembros Inferiores, Hospital Victoria Eugenia de la Cruz Roja, Sevilla, Spain
| | | | | | | | | | | | | | - Manuel Miralles
- Department of Surgery, University of Valencia, Valencia, Spain
| | | | - Gregorio Castellanos
- Servicio Hematología y Hemoterapia, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - José M Moraleda
- Servicio Hematología y Hemoterapia, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Robert Sackstein
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | | | | | - Franz Martín
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Abdelkrim Hmadcha
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Bernat Soria
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | | |
Collapse
|
10
|
Dental derived stem cell conditioned media for hair growth stimulation. PLoS One 2019; 14:e0216003. [PMID: 31042749 PMCID: PMC6493760 DOI: 10.1371/journal.pone.0216003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022] Open
Abstract
Alopecia is a clinical condition caused by excessive hair loss which may result in baldness, the causes of which still remain elusive. Conditioned media (CM) from stem cells shows promise in regenerative medicine. Our aim was to evaluate the potential CM of dental pulp stem cells obtained from human deciduous teeth (SHED-CM) to stimulate hair growth under in vitro and in vivo conditions. SHED and hair follicle stem cells (HFSCs) (n = 3) were cultured in media combinations; i) STK2, ii) DMEM-KO+10% FBS, iii) STK2+2% FBS and profiled for the presence of positive hair growth-regulatory paracrine factors; SDF-1, HGF, VEGF-A, PDGF-BB and negative hair growth-regulatory paracrine factors; IL-1α, IL-1β, TGF-β, bFGF, TNF-α, and BDNF. The potential of CM from both cell sources to stimulate hair growth was evaluated based on the paracrine profile and measured dynamics of hair growth under in vitro conditions. The administration of CM media to telogen-staged synchronized 7-week old C3H/HeN female mice was carried out to study the potential of the CM to stimulate hair growth in vivo. SHED and HFSCs cultured in STK2 based media showed a shorter population doubling time, higher viability and better maintenance of MSC characteristics in comparison to cells cultured in DMEM-KO media. STK2 based CM contained only two negative hair growth-regulatory factors; TNF-α, IL-1 while DMEM-KO CM contained all negative hair growth-regulatory factors. The in vitro study confirmed that treatment with STK2 based media CM from passage 3 SHED and HFSCs resulted in a significantly higher number of anagen-staged hair follicles (p<0.05) and a significantly lower number of telogen-staged hair follicles (p<0.05). Administration of SHED-CM to C3H/HeN mice resulted in a significantly faster stimulation of hair growth in comparison to HFSC-CM (p<0.05), while the duration taken for complete hair coverage was similar for both CM sources. Thus, SHED-CM carries the potential to stimulate hair growth which can be used as a treatment tool for alopecia.
Collapse
|
11
|
Gunawardena TNA, Rahman MT, Abdullah BJJ, Abu Kasim NH. Conditioned media derived from mesenchymal stem cell cultures: The next generation for regenerative medicine. J Tissue Eng Regen Med 2019; 13:569-586. [PMID: 30644175 DOI: 10.1002/term.2806] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 10/26/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Abstract
Recent studies suggest that the main driving force behind the therapeutic activity observed in mesenchymal stem cells (MSCs) are the paracrine factors secreted by these cells. These biomolecules also trigger antiapoptotic events to prevent further degeneration of the diseased organ through paracrine signalling mechanisms. In comparison with the normal physiological conditions, an increased paracrine gradient is observed within the peripheral system of diseased organs that enhances the migration of tissue-specific MSCs towards the site of infection or injury to promote healing. Thus, upon administration of conditioned media derived from mesenchymal stem cell cultures (MSC-CM) could contribute in maintaining the increased paracrine factor gradient between the diseased organ and the stem cell niche in order to speed up the process of recovery. Based on the principle of the paracrine signalling mechanism, MSC-CM, also referred as the secretome of the MSCs, is a rich source of the paracrine factors and are being studied extensively for a wide range of regenerative therapies such as myocardial infarction, stroke, bone regeneration, hair growth, and wound healing. This article highlights the current technological applications and advances of MSC-CM with the aim to appraise its future potential as a regenerative therapeutic agent.
Collapse
Affiliation(s)
| | - Mohammad Tariqur Rahman
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.,Regenerative Dentistry Research Group, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Rajangam T, Moon KS, Kim D, Kang J, Lee S, Oh SJ, Kim SH. Therapeutic Effect of a Xeno-Free Three-Dimensional Stem Cell Mass in a Hind Limb Ischemia Model. Tissue Eng Part A 2019; 25:314-332. [DOI: 10.1089/ten.tea.2018.0089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Thanavel Rajangam
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Kyoung-Sik Moon
- Korea Institute of Toxicology, Daejeon, Republic of Korea
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejon, Republic of Korea
| | - Dokyun Kim
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Biomedical Engineering, University of Science and Technology, Daejon, Republic of Korea
| | - Jungmi Kang
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Biomedical Engineering, University of Science and Technology, Daejon, Republic of Korea
| | - Sunyeong Lee
- Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Seung Ja Oh
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Sang-Heon Kim
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Biomedical Engineering, University of Science and Technology, Daejon, Republic of Korea
| |
Collapse
|
13
|
Niu H, Li X, Li H, Fan Z, Ma J, Guan J. Thermosensitive, fast gelling, photoluminescent, highly flexible, and degradable hydrogels for stem cell delivery. Acta Biomater 2019; 83:96-108. [PMID: 30541703 PMCID: PMC6296825 DOI: 10.1016/j.actbio.2018.10.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/30/2022]
Abstract
Stem cell therapy is a promising approach to regenerate ischemic cardiovascular tissues yet experiences low efficacy. One of the major causes is inferior cell retention in tissues. Injectable cell carriers that can quickly solidify upon injection into tissues so as to immediately increase viscosity have potential to largely improve cell retention. A family of injectable, fast gelling, and thermosensitive hydrogels were developed for delivering stem cells into heart and skeletal muscle tissues. The hydrogels were also photoluminescent with low photobleaching, allowing for non-invasively tracking hydrogel biodistribution and retention by fluorescent imaging. The hydrogels were polymerized by N-isopropylacrylamide (NIPAAm), 2-hydroxyethyl methacrylate (HEMA), 1-vinyl-2-pyrrolidinone (VP), and acrylate-oligolactide (AOLA), followed by conjugation with hypericin (HYP). The hydrogel solutions had thermal transition temperatures around room temperature, and were readily injectable at 4 °C. The solutions were able to quickly solidify within 7 s at 37 °C. The formed gels were highly flexible possessing similar moduli as the heart and skeletal muscle tissues. In vitro, hydrogel fluorescence intensity decreased proportionally to weight loss. After being injected into thigh muscles, the hydrogel can be detected by an in vivo imaging system for 4 weeks. The hydrogels showed excellent biocompatibility in vitro and in vivo, and can stimulate mesenchymal stem cell (MSC) proliferation and paracrine effects. The fast gelling hydrogel remarkably increased MSC retention in thigh muscles compared to slow gelling collagen, and non-gelling PBS. These hydrogels have potential to efficiently deliver stem cells into tissues. Hydrogel degradation can be non-invasively and real-time tracked. STATEMENT OF SIGNIFICANCE: Low cell retention in tissues represents one of the major causes for limited therapeutic efficacy in stem cell therapy. A family of injectable, fast gelling, and thermosensitive hydrogels that can quickly solidify upon injection into tissues were developed to improve cell retention. The hydrogels were also photoluminescent, allowing for non-invasively and real-time tracking hydrogel biodistribution and retention by fluorescent imaging.
Collapse
Affiliation(s)
- Hong Niu
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH, USA
| | - Xiaofei Li
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH, USA
| | - Haichang Li
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Zhaobo Fan
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH, USA
| | - Jianjie Ma
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
14
|
Mesenchymal Stem Cell Therapy for Ischemic Tissues. Stem Cells Int 2018; 2018:8179075. [PMID: 30402112 PMCID: PMC6196793 DOI: 10.1155/2018/8179075] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/01/2018] [Accepted: 08/29/2018] [Indexed: 12/13/2022] Open
Abstract
Ischemic diseases such as myocardial infarction, ischemic stroke, and critical limb ischemia are immense public health challenges. Current pharmacotherapy and surgical approaches are insufficient to completely heal ischemic diseases and are associated with a considerable risk of adverse effects. Alternatively, human mesenchymal stem cells (hMSCs) have been shown to exhibit immunomodulation, angiogenesis, and paracrine secretion of bioactive factors that can attenuate inflammation and promote tissue regeneration, making them a promising cell source for ischemic disease therapy. This review summarizes the pathogenesis of ischemic diseases, discusses the potential therapeutic effects and mechanisms of hMSCs for these diseases, and provides an overview of challenges of using hMSCs clinically for treating ischemic diseases.
Collapse
|
15
|
Jeong GJ, Song SY, Kang M, Go S, Sohn HS, Kim BS. An Injectable Decellularized Matrix That Improves Mesenchymal Stem Cell Engraftment for Therapeutic Angiogenesis. ACS Biomater Sci Eng 2018; 4:2571-2581. [DOI: 10.1021/acsbiomaterials.8b00617] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Wang H, Agarwal P, Xiao Y, Peng H, Zhao S, Liu X, Zhou S, Li J, Liu Z, He X. A Nano-In-Micro System for Enhanced Stem Cell Therapy of Ischemic Diseases. ACS CENTRAL SCIENCE 2017; 3:875-885. [PMID: 28852702 PMCID: PMC5571461 DOI: 10.1021/acscentsci.7b00213] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Indexed: 05/12/2023]
Abstract
Stem cell therapy holds great potential for treating ischemic diseases. However, contemporary methods for local stem cell delivery suffer from poor cell survival/retention after injection. We developed a unique multiscale delivery system by encapsulating therapeutic agent-laden nanoparticles in alginate hydrogel microcapsules and further coentrapping the nano-in-micro capsules with stem cells in collagen hydrogel. The multiscale system exhibits significantly higher mechanical strength and stability than pure collagen hydrogel. Moreover, unlike nanoparticles, the nano-in-micro capsules do not move with surrounding body fluid and are not taken up by the cells. This allows a sustained and localized release of extracellular epidermal growth factor (EGF), a substance that could significantly enhance the proliferation of mesenchymal stem cells while maintaining their multilineage differentiation potential via binding with its receptors on the stem cell surface. As a result, the multiscale system significantly improves the stem cell survival at 8 days after implantation to ∼70% from ∼4-7% for the conventional system with nanoparticle-encapsulated EGF or free EGF in collagen hydrogel. After injecting into the ischemic limbs of mice, stem cells in the multiscale system facilitate tissue regeneration to effectively restore ∼100% blood perfusion in 4 weeks without evident side effects.
Collapse
Affiliation(s)
- Hai Wang
- Department of Biomedical Engineering, Comprehensive Cancer Center, Davis Heart and Lung
Research Institute, and Division of Cardiovascular Medicine,
and Department of Veterinary
Biosciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Pranay Agarwal
- Department of Biomedical Engineering, Comprehensive Cancer Center, Davis Heart and Lung
Research Institute, and Division of Cardiovascular Medicine,
and Department of Veterinary
Biosciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yichao Xiao
- Department of Biomedical Engineering, Comprehensive Cancer Center, Davis Heart and Lung
Research Institute, and Division of Cardiovascular Medicine,
and Department of Veterinary
Biosciences, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Burns and Plastic Surgery, The Third
Xiangya Hospital and Department of Cardiology,
The Second Xiangya Hospital, Central South
University, Changsha, Hunan 410013, P.R. China
| | - Hao Peng
- Department of Biomedical Engineering, Comprehensive Cancer Center, Davis Heart and Lung
Research Institute, and Division of Cardiovascular Medicine,
and Department of Veterinary
Biosciences, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Burns and Plastic Surgery, The Third
Xiangya Hospital and Department of Cardiology,
The Second Xiangya Hospital, Central South
University, Changsha, Hunan 410013, P.R. China
| | - Shuting Zhao
- Department of Biomedical Engineering, Comprehensive Cancer Center, Davis Heart and Lung
Research Institute, and Division of Cardiovascular Medicine,
and Department of Veterinary
Biosciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xuanyou Liu
- Department of Biomedical Engineering, Comprehensive Cancer Center, Davis Heart and Lung
Research Institute, and Division of Cardiovascular Medicine,
and Department of Veterinary
Biosciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Shenghua Zhou
- Department of Burns and Plastic Surgery, The Third
Xiangya Hospital and Department of Cardiology,
The Second Xiangya Hospital, Central South
University, Changsha, Hunan 410013, P.R. China
| | - Jianrong Li
- Department of Biomedical Engineering, Comprehensive Cancer Center, Davis Heart and Lung
Research Institute, and Division of Cardiovascular Medicine,
and Department of Veterinary
Biosciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zhenguo Liu
- Department of Biomedical Engineering, Comprehensive Cancer Center, Davis Heart and Lung
Research Institute, and Division of Cardiovascular Medicine,
and Department of Veterinary
Biosciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiaoming He
- Department of Biomedical Engineering, Comprehensive Cancer Center, Davis Heart and Lung
Research Institute, and Division of Cardiovascular Medicine,
and Department of Veterinary
Biosciences, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
17
|
Li R, Pang Z, He H, Lee S, Qin J, Wu J, Pang L, Wang J, Yang VC. Drug depot-anchoring hydrogel: A self-assembling scaffold for localized drug release and enhanced stem cell differentiation. J Control Release 2017; 261:234-245. [PMID: 28694033 DOI: 10.1016/j.jconrel.2017.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/26/2017] [Accepted: 07/06/2017] [Indexed: 12/30/2022]
Abstract
Localized and long-term delivery of growth factors has been a long-standing challenge for stem cell-based tissue engineering. In the current study, a polymeric drug depot-anchoring hydrogel scaffold was developed for the sustained release of macromolecules to enhance the differentiation of stem cells. Self-assembling peptide (RADA16)-modified drug depots (RDDs) were prepared and anchored to a RADA16 hydrogel. The anchoring effect of RADA16 modification on the RDDs was tested both in vitro and in vivo. It was shown that the in vitro leakage of RDDs from the RADA16 hydrogel was significantly less than that of the unmodified drug depots (DDs). In addition, the in vivo retention of injected hydrogel-incorporated RDDs was significantly longer than that of hydrogel-incorporated unmodified DDs. A model drug, vascular endothelial growth factor (VEGF), was encapsulated in RDDs (V-RDDs) as drug depot that was then anchored to the hydrogel. The release of VEGF could be sustained for 4weeks. Endothelial progenitor cells (EPCs) were cultured on the V-RDDs-anchoring scaffold and enhanced cell proliferation and differentiation were observed, compared with a VEGF-loaded scaffold. Furthermore, this scaffold laden with EPCs promoted neovascularization in an animal model of hind limb ischemia. These results demonstrate that self-assembling hydrogel-anchored drug-loaded RDDs are promising for localized and sustained drug release, and can effectively enhance the proliferation and differentiation of resident stem cells, thus lead to successful tissue regeneration.
Collapse
Affiliation(s)
- Ruixiang Li
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Zhiqing Pang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Seungjin Lee
- College of Pharmacy, Ewha Women's University, Seoul 03760, Republic of Korea
| | - Jing Qin
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Jian Wu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Liang Pang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Jianxin Wang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China.
| | - Victor C Yang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA.
| |
Collapse
|
18
|
Carstens MH, Gómez A, Cortés R, Turner E, Pérez C, Ocon M, Correa D. Non-reconstructable peripheral vascular disease of the lower extremity in ten patients treated with adipose-derived stromal vascular fraction cells. Stem Cell Res 2017; 18:14-21. [DOI: 10.1016/j.scr.2016.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/04/2016] [Accepted: 12/02/2016] [Indexed: 12/22/2022] Open
|
19
|
Xu Y, Fu M, Li Z, Fan Z, Li X, Liu Y, Anderson PM, Xie X, Liu Z, Guan J. A prosurvival and proangiogenic stem cell delivery system to promote ischemic limb regeneration. Acta Biomater 2016; 31:99-113. [PMID: 26689466 DOI: 10.1016/j.actbio.2015.12.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/17/2015] [Accepted: 12/11/2015] [Indexed: 12/20/2022]
Abstract
Stem cell therapy is one of the most promising strategies to restore blood perfusion and promote muscle regeneration in ischemic limbs. Yet its therapeutic efficacy remains low owing to the inferior cell survival under the low oxygen and nutrient environment of the injured limbs. To increase therapeutic efficacy, high rates of both short- and long-term cell survival are essential, which current approaches do not support. In this work, we hypothesized that a high rate of short-term cell survival can be achieved by introducing a prosurvival environment into the stem cell delivery system to enhance cell survival before vascularization is established; and that a high rate of long-term cell survival can be attained by building a proangiogenic environment in the system to quickly vascularize the limbs. The system was based on a biodegradable and thermosensitive poly(N-Isopropylacrylamide)-based hydrogel, a prosurvival and proangiogenic growth factor bFGF, and bone marrow-derived mesenchymal stem cells (MSCs). bFGF can be continuously released from the system for 4weeks. The released bFGF significantly improved MSC survival and paracrine effects under low nutrient and oxygen conditions (0% FBS and 1% O2) in vitro. The prosurvival effect of the bFGF on MSCs was resulted from activating cell Kruppel-like factor 4 (KLF4) pathway. When transplanted into the ischemic limbs, the system dramatically improved MSC survival. Some of the engrafted cells were differentiated into skeletal muscle and endothelial cells, respectively. The system also promoted the proliferation of host cells. After only 2weeks of implantation, tissue blood perfusion was completely recovered; and after 4weeks, the muscle fiber diameter was restored similarly to that of the normal limbs. These pronounced results demonstrate that the developed stem cell delivery system has a potential for ischemic limb regeneration. STATEMENT OF SIGNIFICANCE Stem cell therapy is a promising strategy to restore blood perfusion and promote muscle regeneration in ischemic limbs. Yet its therapeutic efficacy remains low owing to the inferior cell survival under the ischemic environment of the injured limbs. To increase therapeutic efficacy, high rate of cell survival is essential, which current approaches do not support. In this work, we tested the hypothesis that a stem cell delivery system that can continuously release a prosurvival and proangiogenic growth factor will promote high rates of cell survival in the ischemic limbs. The prosurvival effect could augment cell survival before vascularization is established, while the proangiogenic effect could stimulate quick angiogenesis to achieve long-term cell survival. Meanwhile, the differentiation of stem cells into endothelial and myogenic lineages, and cell paracrine effects will enhance vascularization and muscle regeneration.
Collapse
Affiliation(s)
- Yanyi Xu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Minghuan Fu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States; Department of Gerontology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Zhihong Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States; Division of General Surgery, Shanghai Pudong New District Zhoupu Hospital, Shanghai 201200, China
| | - Zhaobo Fan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Xiaofei Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Ying Liu
- Department of Gerontology, Tongji Hospital, Tongji University, Shanghai, China
| | - Peter M Anderson
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Xiaoyun Xie
- Department of Gerontology, Tongji Hospital, Tongji University, Shanghai, China
| | - Zhenguo Liu
- Davis Heart and Lung Research Institute, The Ohio State University, OH 43210, United States
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States; Tongji Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
20
|
Shin JY, Yoon JK, Noh MK, Bhang SH, Kim BS. Enhancing Therapeutic Efficacy and Reducing Cell Dosage in Stem Cell Transplantation Therapy for Ischemic Limb Diseases by Modifying the Cell Injection Site. Tissue Eng Part A 2016; 22:349-62. [PMID: 26824782 DOI: 10.1089/ten.tea.2015.0119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In conventional stem cell transplantation therapies for ischemic limb diseases, stem cells are generally transplanted into the ischemic region (IR), and most of the transplanted cells undergo hypoxia-mediated cell death. Due to massive cell death, the therapeutic efficacy is reduced and a high dose of stem cells is necessitated for the therapies. In this study, we investigated whether the therapeutic efficacy can be improved and the cell dosage can be reduced in the therapy for limb ischemia simply by modifying the stem cell injection site to a site where cell engraftment is improved and blood vessel sprouting is efficiently stimulated. Human mesenchymal stem cells (hMSCs) cultured under hypoxic condition, which simulates cells transplanted to IR, underwent extensive cell death in vitro. Importantly, cell death was significantly attenuated when hMSCs adhered first under normoxic condition for 24 h and then were exposed to hypoxic condition, which simulates cells transplanted to the border zone (BZ) in the upper thigh and migrated to IR. hMSCs, at doses of 2 × 10(5) or 2 × 10(6) cells, were injected into the IR or BZ of 5-week-old female athymic mice after ischemic hindlimb induction. Compared with human mesenchymal stem cell (hMSC) transplantation to the IR of mouse ischemic limbs, transplantation to the BZ significantly enhanced cell engraftment and paracrine factor secretion, which effectively stimulated vessel sprouting, enhanced blood perfusion in IR, and enabled the cell dosage reduction. Therefore, modification of the stem cell transplantation site would improve the current stem cell therapies for ischemic limb diseases in terms of cell dosage reduction and therapeutic efficacy enhancement.
Collapse
Affiliation(s)
- Jung-Youn Shin
- 1 School of Chemical and Biological Engineering, Seoul National University , Seoul, Republic of Korea
| | - Jeong-Kee Yoon
- 1 School of Chemical and Biological Engineering, Seoul National University , Seoul, Republic of Korea
| | - Myung Kyung Noh
- 1 School of Chemical and Biological Engineering, Seoul National University , Seoul, Republic of Korea
| | - Suk Ho Bhang
- 2 School of Chemical Engineering, Sungkyunkwan University , Suwon, Republic of Korea
| | - Byung-Soo Kim
- 1 School of Chemical and Biological Engineering, Seoul National University , Seoul, Republic of Korea.,3 Bio-MAX Institute, Institute for Chemical Processes, Seoul National University , Seoul, Republic of Korea
| |
Collapse
|
21
|
Xie N, Li Z, Adesanya TM, Guo W, Liu Y, Fu M, Kilic A, Tan T, Zhu H, Xie X. Transplantation of placenta-derived mesenchymal stem cells enhances angiogenesis after ischemic limb injury in mice. J Cell Mol Med 2015; 20:29-37. [PMID: 26282458 PMCID: PMC4717860 DOI: 10.1111/jcmm.12489] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/10/2014] [Indexed: 01/06/2023] Open
Abstract
Mesenchymal stem cell‐based therapy has emerged as a promising approach for the treatment of peripheral arterial disease. The purpose of this study was to examine the potential effects of human placenta‐derived mesenchymal stem cells (PMSCs) on mouse hindlimb ischemia. PMSCs were isolated from human placenta tissue and characterized by flow cytometry. An in vivo surgical ligation‐induced murine limb ischemia model was generated with fluorescent dye (CM‐DiI) labelled PMSCs delivered via intramuscular injection. Our data show that PMSCs treatment significantly enhanced microvessel density, improved blood perfusion and diminished pathologies in ischemic mouse hindlimbs as compared to those in the control group. Further immunostaining studies suggested that injected PMSCs can incorporate into the vasculature and differentiate into endothelial and smooth muscle cells to enhance angiogenesis in ischemic hind limbs. This may in part explain the beneficial effects of PMSCs treatment. Taken together, we found that PMSCs treatment might be an effective treatment modality for treatment of ischemia‐induced injury to mouse hind limbs by enhancement of angiogenesis.
Collapse
Affiliation(s)
- Nanzi Xie
- Division of Geriatrics, Tongji Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Zhihong Li
- Division of General Surgery, Chenzhou First People's Hospital, Chenzhou, Hunan, China
| | - Timothy M Adesanya
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Weixin Guo
- Guangdong Geriatrics Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yang Liu
- Division of Geriatrics, Tongji Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Minghuan Fu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ahmet Kilic
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Tao Tan
- Division of Geriatrics, Tongji Hospital, Tongji University, School of Medicine, Shanghai, China.,Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Xiaoyun Xie
- Division of Geriatrics, Tongji Hospital, Tongji University, School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Park IS, Mondal A, Chung PS, Ahn JC. Vascular regeneration effect of adipose-derived stem cells with light-emitting diode phototherapy in ischemic tissue. Lasers Med Sci 2015; 30:533-41. [PMID: 25567209 DOI: 10.1007/s10103-014-1699-9] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/09/2014] [Indexed: 11/26/2022]
Abstract
The objective of this study was to investigate the effects on the vascular regeneration of adipose-derived stem cells (ASCs) by using red light-emitting diode (LED) irradiation in ischemic hind limbs. Low-level light therapy (LLLT) has been shown to enhance proliferation and cytokine secretion of a number of cells. ASCs are an attractive cell source for vascular tissue engineering. This approach is hindered because transplanted ASCs decline rapidly in the recipient tissue. Ischemic hind limbs were treated with LLLT from an LED array (660 nm) at an irradiance of 50 mW/cm(2) and a radiant exposure of 30 J/cm(2). LLLT, ASC transplantation, and ASC transplantation with LLLT (ASC + LLLT) were applied to ischemic limbs, and cell survival and differentiation, and secretion of vascular endothelial growth factor and basic fibroblast growth factor of the ASCs were evaluated by immunostaining and Western blot analyses. Vascular regeneration was assessed by immunostaining and hematoxylin and eosin staining. In the ASC + LLLT group, the survival of ASCs was increased due to the decreased apoptosis of ASCs. The secretion of growth factors was stimulated in this group compared with ASCs alone. The ASC + LLLT group displayed improved treatment efficacy including neovascularization and tissue regeneration compared with ASCs alone. In particular, quantitative analysis of laser Doppler blood perfusion image ratio showed that blood perfusion was enhanced significantly (p < 0.05) by ASC + LLLT treatment. These data suggest that LLLT is an effective biostimulator of ASCs in vascular regeneration, which enhances the survival of ASCs and stimulates the secretion of growth factors in ischemic limbs.
Collapse
Affiliation(s)
- In-Su Park
- Beckman Laser Institute Korea, Dankook University, 119 Dandae-ro, Cheonan, Chungnam, 330-714, South Korea
| | | | | | | |
Collapse
|
23
|
Taran R, Mamidi MK, Singh G, Dutta S, Parhar IS, John JP, Bhonde R, Pal R, Das AK. In vitro and in vivo neurogenic potential of mesenchymal stem cells isolated from different sources. J Biosci 2014; 39:157-69. [PMID: 24499800 DOI: 10.1007/s12038-013-9409-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Regenerative medicine is an evolving interdisciplinary topic of research involving numerous technological methods that utilize stem cells to repair damaged tissues. Particularly, mesenchymal stem cells (MSCs) are a great tool in regenerative medicine because of their lack of tumorogenicity, immunogenicity and ability to perform immunomodulatory as well as anti-inflammatory functions. Numerous studies have investigated the role of MSCs in tissue repair and modulation of allogeneic immune responses. MSCs derived from different sources hold unique regenerative potential as they are self-renewing and can differentiate into chondrocytes, osteoblasts, adipocytes, cardiomyocytes, hepatocytes, endothelial and neuronal cells, among which neuronal-like cells have gained special interest. MSCs also have the ability to secrete multiple bioactive molecules capable of stimulating recovery of injured cells and inhibiting inflammation. In this review we focus on neural differentiation potential of MSCs isolated from different sources and how certain growth factors/small molecules can be used to derive neuronal phenotypes from MSCs. We also discuss the efficacy of MSCs when transplanted in vivo and how they can generate certain neurons and lead to relief or recovery of the diseased condition. Furthermore, we have tried to evaluate the appropriatemerits of different sources ofMSCs with respect to their propensity towards neurological differentiation as well as their effectiveness in preclinical studies.
Collapse
Affiliation(s)
- Ramyani Taran
- Manipal Institute of Regenerative Medicine, Manipal University Branch Campus, Bangalore, India
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Park IS, Chung PS, Ahn JC. Enhanced angiogenic effect of adipose-derived stromal cell spheroid with low-level light therapy in hind limb ischemia mice. Biomaterials 2014; 35:9280-9. [PMID: 25132605 DOI: 10.1016/j.biomaterials.2014.07.061] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 07/29/2014] [Indexed: 11/27/2022]
Abstract
The aim of this study was to investigate the effects of low-level laser therapy (LLLT) on transplanted human adipose-derived mesenchymal stem cells (hASCs) spheroid in a hind limb ischemia animal model. LLLT, hASCs spheroid and hASCs spheroid transplantation with LLLT (spheroid + LLLT) were applied to the ischemic hind limbs in athymic mice. The survival, differentiation and secretion of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF), and hepatocyte growth factor (HGF) of the spheroid ASCs were evaluated by immunohistochemistry and western blots. Spheroid + LLLT group had enhanced the tissue regeneration, including angiogenesis, compared with the ASC group. The spheroid ASCs contributed to tissue regeneration via differentiation and secretion of growth factors. In the spheroid + LLLT group, the survival of spheroid hASCs increased with a concomitant decrease in apoptosis of spheroid hASCs in the ischemic hind limb. The secretion of growth factors was stimulated in the spheroid + LLLT group compared with the ASCs and spheroid group. These data suggested that LLLT is an effective biostimulator of spheroid hASCs in tissue regeneration that enhanced the survival of ASCs and stimulated the secretion of growth factors in the ischemic hind limb.
Collapse
Affiliation(s)
- In-Su Park
- Beckman Laser Institute Korea, Dankook University, 119 Dandae-ro, Cheonan, Chungnam 330-714, South Korea
| | - Phil-Sang Chung
- Beckman Laser Institute Korea, Dankook University, 119 Dandae-ro, Cheonan, Chungnam 330-714, South Korea; Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungnam 330-714, South Korea
| | - Jin Chul Ahn
- Beckman Laser Institute Korea, Dankook University, 119 Dandae-ro, Cheonan, Chungnam 330-714, South Korea; Department of Biomedical Science, Dankook University, Cheonan, Chungnam 330-714, South Korea; Biomedical Translational Research Institute, Dankook University, Cheonan, Chungnam 330-714, South Korea.
| |
Collapse
|
25
|
Wang ZX, Li D, Cao JX, Liu YS, Wang M, Zhang XY, Li JL, Wang HB, Liu JL, Xu BL. Efficacy of autologous bone marrow mononuclear cell therapy in patients with peripheral arterial disease. J Atheroscler Thromb 2014; 21:1183-96. [PMID: 25078066 DOI: 10.5551/jat.23374] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Peripheral arterial disease (PAD), particularly critical limb ischemia (CLI), is a severe cause of amputation and mortality. More than 50% of diabetic patients with CLI die within four to five years. The development of novel stem cell therapies may bring new hope to these patients. We aimed to assess the efficacy of autologous bone marrow cell therapy for treating CLI using a meta-analysis. METHODS We searched the literature in PubMed, the Cochrane Central Registry of Controlled Trials, the Elsevier database and EBSCO for trials of autologous cell therapy in patients with severe PAD published before October 30, 2013. We chose objective clinical endpoints to assess the efficacy of therapy in the meta-analysis, including changes in the ankle-brachial index (ABI), transcutaneous oxygen tension (TcO2), pain scale (0-10 scale) and amputation-free survival (AFS). RESULTS Thirty-one articles reporting clinical trials involving a total of 1,214 patients treated with bone marrow stem cell-based therapy were collected for the meta-analysis, in which the randomized controlled trials (RCTs) and other trials (non-RCTs) were classified into two groups. Regarding the efficacy of stem cell therapy, the ABI showed significant increases (P<0.05) at 12 , 24 and 48 weeks after therapy in the non-RCT and RCT groups, but not after four to eight weeks in the non-RCT group. The TcO2 values also increased in the RCT group at four to eight weeks after therapy and 24 weeks after therapy (P<0.001) and in the non-RCT group at four to eight weeks after therapy (P= 0.01), although no significant increases were observed in the RCT group at 12 weeks after therapy or the non-RCT group at 24 weeks after therapy. Meanwhile, pain was significantly reduced (P<0.05) at four to eight weeks and 24 weeks after therapy in both the non-RCT and RCT groups, but not at four to eight weeks or 12 weeks after therapy in the RCT group. In addition, the long-term clinical trials demonstrated that the AFS rate improved after therapy with bone marrow stem cells (one-year AFS, P<0.00001; three-year AFS, P=0.0003). CONCLUSIONS The present results suggest that autologous bone marrow stem cells have an advantageous therapy effect in PAD patients who are not eligible for revascularization.
Collapse
Affiliation(s)
- Zheng-Xu Wang
- Biotherapy Center, the General Hospital of Beijing Military Command
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Park IS, Kang JA, Kang J, Rhie JW, Kim SH. Therapeutic Effect of Human Adipose-Derived Stromal Cells Cluster in Rat Hind-Limb Ischemia. Anat Rec (Hoboken) 2014; 297:2289-98. [DOI: 10.1002/ar.22961] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 11/10/2022]
Affiliation(s)
- In-Su Park
- Center for Biomaterials, Biomedical Research Institute; Korea Institute of Science and Technology; Seoul Korea
| | - Jo A. Kang
- Department of Plastic Surgery, College of Medicine; The Catholic University of Korea; Seoul Korea
| | - Jungmi Kang
- Center for Biomaterials, Biomedical Research Institute; Korea Institute of Science and Technology; Seoul Korea
- Department of Biomedical Engineering; University of Science and Technology; Seoul Korea
| | - Jong-Won Rhie
- Department of Plastic Surgery, College of Medicine; The Catholic University of Korea; Seoul Korea
| | - Sang-Heon Kim
- Center for Biomaterials, Biomedical Research Institute; Korea Institute of Science and Technology; Seoul Korea
- Department of Biomedical Engineering; University of Science and Technology; Seoul Korea
| |
Collapse
|
27
|
Gálvez-Martín P, Hmadcha A, Soria B, Calpena-Campmany AC, Clares-Naveros B. Study of the stability of packaging and storage conditions of human mesenchymal stem cell for intra-arterial clinical application in patient with critical limb ischemia. Eur J Pharm Biopharm 2014; 86:459-68. [DOI: 10.1016/j.ejpb.2013.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/22/2013] [Accepted: 11/05/2013] [Indexed: 12/20/2022]
|
28
|
Wang X, Jiang L, Wang X, Yin F, Li G, Feng X, Wang K, Sun S. Combination of autologous transplantation of G-CSF-mobilized peripheral blood mononuclear cells and Panax notoginseng saponins in the treatment of unreconstructable critical limb ischemia. Ann Vasc Surg 2014; 28:1501-12. [PMID: 24632316 DOI: 10.1016/j.avsg.2014.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 02/09/2014] [Accepted: 03/04/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND The aim of this study is to explore the efficacy and safety of the combination of autologous transplantation of granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood mononuclear cells (PBMNCs) and Panax notoginseng saponins (PNS) in the treatment of unreconstructable critical limb ischemia (CLI). METHODS We performed an open-label, parallel-group, single-center, randomized clinical trial in this study. A total of 52 patients were enrolled and randomly divided into 2 groups (the PBMNC + PNS group and the PBMNC group) in a 1:1 ratio. Evaluation variables, including changes in the ankle-brachial index (ABI) of ischemic limbs, ulcer area, severity of rest pain, transcutaneous oxygen pressure (T(C)PO2), and 6-min walk distance from baseline to week 8 and 16, as well as angiographic scores for new collateral vessel formation at week 16, were used to compare the benefits of these 2 treatment approaches. RESULTS After 16 weeks of treatment, improvement in ABI, T(C)PO2, and 6-min walk distance was significantly better in the PBMNC + PNS group. In addition, the combination of PBMNC transplantation and PNS administration yielded a greater reduction in ulcer area and severity of rest pain than did PBMNC transplantation alone. The proportion of patients experiencing any adverse event was similar between both treatment groups. Adverse events caused by PBMNC transplantation or PNS were generally mild and no serious adverse events occurred throughout the entire period of study. CONCLUSIONS A combination of PNS and PBMNC transplantation appears to be a safe and effective treatment for patients with unreconstructable CLI. This combination may have great potential advantages in comparison with PBMNC transplantation alone and might constitute a novel therapeutic option for unreconstructable CLI.
Collapse
Affiliation(s)
- Xiuchun Wang
- Department of Vascular Interventional Radiology, the Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Liping Jiang
- Department of Rehabilitation and Health Care Services, Weifang People's Hospital, Weifang, Shandong Province, China
| | - Xuemei Wang
- Department of Vascular Interventional Radiology, the Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Fengling Yin
- Department of Vascular Interventional Radiology, the Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Guixin Li
- Department of Vascular Interventional Radiology, the Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China.
| | - Xueqiang Feng
- Department of Vascular Interventional Radiology, the Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Kai Wang
- Department of Vascular Interventional Radiology, the Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Shunji Sun
- Department of Vascular Interventional Radiology, the Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| |
Collapse
|
29
|
Park IS, Rhie JW, Kim SH. A novel three-dimensional adipose-derived stem cell cluster for vascular regeneration in ischemic tissue. Cytotherapy 2013; 16:508-22. [PMID: 24210783 DOI: 10.1016/j.jcyt.2013.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 08/22/2013] [Accepted: 08/25/2013] [Indexed: 01/27/2023]
Abstract
BACKGROUND AIMS Stem cells are one of the most powerful tools in regeneration medicine. However, many limitations remain regarding the use of adult stem cells in clinical applications, including poor cell survival and low treatment efficiency. We describe an innovative three-dimensional cell mass (3DCM) culture that is based on cell adhesion (basic fibroblast growth factor-immobilized substrate) and assess the therapeutic potential of 3DCMs composed of human adipose tissue-derived stromal cells (hASCs). METHODS For formation of a 3DCM, hASCs were cultured on a substrate with immobilized fibroblast growth factor-2. The angiogenic potential of 3DCMs was determined by immunostaining, fluorescence-activated cell sorting and protein analysis. To evaluate the vasculature ability and improved treatment efficacy of 3DCMs, the 3DCMs were intramuscularly injected into the ischemic limbs of mice. RESULTS The 3DCMs released various angiogenic factors (eg, vascular endothelial growth factor and interleukin-8) and differentiated into vascular cells within 3 days in normal medium. Blood vessel and tissue regeneration was clearly observed through visual inspection in the 3DCM-injected group. hASC injection slowed limb necrosis after treatment, but 50% of the mice ultimately had limb loss within 28 days. Most mice receiving 3DCMs had limb salvage (89%) or mild limb necrosis (11%). CONCLUSIONS 3DCM culture promotes the efficient vascular differentiation of stem cells, and 3DCM transplantation results in the direct vascular regeneration of the injected cells and an improved therapeutic efficacy.
Collapse
Affiliation(s)
- In Su Park
- Center for Biomaterials, Biomedical Engineering Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Jong-Won Rhie
- Department of Plastic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang-Heon Kim
- Center for Biomaterials, Biomedical Engineering Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Kong P, Xie X, Li F, Liu Y, Lu Y. Placenta mesenchymal stem cell accelerates wound healing by enhancing angiogenesis in diabetic Goto-Kakizaki (GK) rats. Biochem Biophys Res Commun 2013; 438:410-9. [PMID: 23899518 DOI: 10.1016/j.bbrc.2013.07.088] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 07/20/2013] [Indexed: 12/27/2022]
Abstract
Multipotent mesenchymal stem cells have recently emerged as an attractive cell type for the treatment of diabetes-associated wounds. The purpose of this study was to examine the potential biological function of human placenta-derived mesenchymal stem cells (PMSCs) in wound healing in diabetic Goto-Kakizaki (GK) rats. PMSCs were isolated from human placenta tissue and characterized by flow cytometry. A full-thickness circular excisional wound was created on the dorsum of each rat. Red fluorescent CM-DiI-labeled PMSCs were injected intradermally around the wound in the treatment group. After complete wound healing, full-thickness skin samples were taken from the wound sites for histological evaluation of the volume and density of vessels. Our data showed that the extent of wound closure was significantly enhanced in the PMSCs group compared with the no-graft controls. Microvessel density in wound bed biopsy sites was significantly higher in the PMSCs group compared with the no-graft controls. Most surprisingly, immunohistochemical studies confirmed that transplanted PMSCs localized to the wound tissue and were incorporated into recipient vasculature with improved angiogenesis. Notably, PMSCs secreted comparable amounts of proangiogenic molecules, such as VEGF, HGF, bFGF, TGF-β and IGF-1 at bioactive levels. This study demonstrated that PMSCs improved the wound healing rate in diabetic rats. It is speculated that this effect can be attributed to the PMSCs engraftment resulting in vascular regeneration via direct de novo differentiation and paracrine mechanisms. Thus, placenta-derived mesenchymal stem cells are implicated as a potential angiogenesis cell therapy for repair-resistant chronic wounds in diabetic patients.
Collapse
Affiliation(s)
- Poren Kong
- Division of Endocrine and Metabolic Diseases, Laboratory of Endocrine and Metabolic Diseases, Ninth People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai 200011, China
| | | | | | | | | |
Collapse
|