1
|
Alipour S, Mardi A, Shajari N, Kazemi T, Sadeghi MR, Ahmadian Heris J, Masoumi J, Baradaran B. Unmasking the NLRP3 inflammasome in dendritic cells as a potential therapeutic target for autoimmunity, cancer, and infectious conditions. Life Sci 2024; 348:122686. [PMID: 38710282 DOI: 10.1016/j.lfs.2024.122686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Proper and functional immune response requires a complex interaction between innate and adaptive immune cells, which dendritic cells (DCs) are the primary actors in this coordination as professional antigen-presenting cells. DCs are armed with numerous pattern recognition receptors (PRRs) such as nucleotide-binding and oligomerization domain-like receptors (NLRs) like NLRP3, which influence the development of their activation state upon sensation of ligands. NLRP3 is a crucial component of the immune system for protection against tumors and infectious agents, because its activation leads to the assembly of inflammasomes that cause the formation of active caspase-1 and stimulate the maturation and release of proinflammatory cytokines. But, when NLRP3 becomes overactivated, it plays a pathogenic role in the progression of several autoimmune disorders. So, NLRP3 activation is strictly regulated by diverse signaling pathways that are mentioned in detail in this review. Furthermore, the role of NLRP3 in all of the diverse immune cells' subsets is briefly mentioned in this study because NLRP3 plays a pivotal role in modulating other immune cells which are accompanied by DCs' responses and subsequently influence differentiation of T cells to diverse T helper subsets and even impact on cytotoxic CD8+ T cells' responses. This review sheds light on the functional and therapeutic role of NLRP3 in DCs and its contribution to the occurrence and progression of autoimmune disorders, prevention of diverse tumors' development, and recognition and annihilation of various infectious agents. Furthermore, we highlight NLRP3 targeting potential for improving DC-based immunotherapeutic approaches, to be used for the benefit of patients suffering from these disorders.
Collapse
Affiliation(s)
- Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Shajari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Sadeghi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Schutti O, Klauer L, Baudrexler T, Burkert F, Schmohl J, Hentrich M, Bojko P, Kraemer D, Rank A, Schmid C, Schmetzer H. Effective and Successful Quantification of Leukemia-Specific Immune Cells in AML Patients' Blood or Culture, Focusing on Intracellular Cytokine and Degranulation Assays. Int J Mol Sci 2024; 25:6983. [PMID: 39000091 PMCID: PMC11241621 DOI: 10.3390/ijms25136983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 07/16/2024] Open
Abstract
Novel (immune) therapies are needed to stabilize remissions or the disease in AML. Leukemia derived dendritic cells (DCleu) can be generated ex vivo from AML patients' blasts in whole blood using approved drugs (GM-CSF and PGE-1 (Kit M)). After T cell enriched, mixed lymphocyte culture (MLC) with Kit M pretreated (vs. untreated WB), anti-leukemically directed immune cells of the adaptive and innate immune systems were already shown to be significantly increased. We evaluated (1) the use of leukemia-specific assays [intracellular cytokine production of INFy, TNFa (INCYT), and degranulation detected by CD107a (DEG)] for a detailed quantification of leukemia-specific cells and (2), in addition, the correlation with functional cytotoxicity and patients' clinical data in Kit M-treated vs. not pretreated settings. We collected whole blood (WB) samples from 26 AML patients at first diagnosis, during persisting disease, or at relapse after allogeneic stem cell transplantation (SCT), and from 18 healthy volunteers. WB samples were treated with or without Kit M to generate DC/DCleu. After MLC with Kit M-treated vs. untreated WB antigen-specific/anti-leukemic effects were assessed through INCYT, DEG, and a cytotoxicity fluorolysis assay. The quantification of cell subtypes was performed via flow cytometry. Our study showed: (1) low frequencies of leukemia-specific cells (subtypes) detectable in AML patients' blood. (2) Significantly higher frequencies of (mature) DCleu generable without induction of blast proliferation in Kit M-treated vs. untreated samples. (3) Significant increase in frequencies of immunoreactive cells (e.g., non-naive T cells, Tprol) as well as in INCYT/DEG ASSAYS leukemia-specific adaptive-(e.g., B, T(memory)) or innate immune cells (e.g., NK, CIK) after MLC with Kit M-treated vs. untreated WB. The results of the intracellular production of INFy and TNFa were comparable. The cytotoxicity fluorolysis assay revealed significantly enhanced blast lysis in Kit M-treated vs. untreated WB. Significant correlations could be shown between induced leukemia-specific cells from several lines and improved blast lysis. We successfully detected and quantified immunoreactive cells at a single-cell level using the functional assays (DEG, INCYT, and CTX). We could quantify leukemia-specific subtypes in uncultured WB as well as after MLC and evaluate the impact of Kit M pretreated (DC/DCleu-containing) WB on the provision of leukemia-specific immune cells. Kit M pretreatment (vs. no pretreatment) was shown to significantly increase leukemia-specific IFNy and TNFa producing, degranulating cells and to improve blast-cytotoxicity after MLC. In vivo treatment of AML patients with Kit M may lead to anti-leukemic effects and contribute to stabilizing the disease or remissions. INCYT and DEG assays qualify to quantify potentially leukemia-specific cells on a single cell level and to predict the clinical course of patients under treatment.
Collapse
Affiliation(s)
- Olga Schutti
- Department for Hematopoetic Cell Transplantation, Med. III, University Hospital of Munich, 81377 Munich, Germany; (O.S.)
- Bavarian Cancer Research Center (BZKF), Comprehensive Cancer Center at University Hospital of Augsburg, 86156 Augsburg, Germany
| | - Lara Klauer
- Department for Hematopoetic Cell Transplantation, Med. III, University Hospital of Munich, 81377 Munich, Germany; (O.S.)
- Bavarian Cancer Research Center (BZKF), Comprehensive Cancer Center at University Hospital of Augsburg, 86156 Augsburg, Germany
| | - Tobias Baudrexler
- Department for Hematopoetic Cell Transplantation, Med. III, University Hospital of Munich, 81377 Munich, Germany; (O.S.)
- Bavarian Cancer Research Center (BZKF), Comprehensive Cancer Center at University Hospital of Augsburg, 86156 Augsburg, Germany
| | - Florian Burkert
- Department for Hematopoetic Cell Transplantation, Med. III, University Hospital of Munich, 81377 Munich, Germany; (O.S.)
- Bavarian Cancer Research Center (BZKF), Comprehensive Cancer Center at University Hospital of Augsburg, 86156 Augsburg, Germany
| | - Joerg Schmohl
- Department of Haematology and Oncology, University Hospital of Tuebingen, 72076 Tuebingen, Germany
| | - Marcus Hentrich
- Department of Haematology and Oncology, Red Cross Hospital of Munich, 80634 Munich, Germany
| | - Peter Bojko
- Department of Haematology and Oncology, Red Cross Hospital of Munich, 80634 Munich, Germany
| | - Doris Kraemer
- Department of Heamatology and Oncology, St.-Josefs-Hospital Hagen, 58097 Hagen, Germany
| | - Andreas Rank
- Bavarian Cancer Research Center (BZKF), Comprehensive Cancer Center at University Hospital of Augsburg, 86156 Augsburg, Germany
- Department of Haematology and Oncology, University Hospital of Augsburg, 86156 Augsburg, Germany
| | - Christoph Schmid
- Bavarian Cancer Research Center (BZKF), Comprehensive Cancer Center at University Hospital of Augsburg, 86156 Augsburg, Germany
- Department of Haematology and Oncology, University Hospital of Augsburg, 86156 Augsburg, Germany
| | - Helga Schmetzer
- Department for Hematopoetic Cell Transplantation, Med. III, University Hospital of Munich, 81377 Munich, Germany; (O.S.)
- Bavarian Cancer Research Center (BZKF), Comprehensive Cancer Center at University Hospital of Augsburg, 86156 Augsburg, Germany
| |
Collapse
|
3
|
Liang C, Zhang Y, Wang S, Jiao W, Guo J, Zhang N, Liu X. Nanomaterials in modulating tumor-associated macrophages and enhancing immunotherapy. J Mater Chem B 2024; 12:4809-4823. [PMID: 38695349 DOI: 10.1039/d4tb00230j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Tumor-associated macrophages (TAMs) are predominantly present in the tumor microenvironment (TME) and play a crucial role in shaping the efficacy of tumor immunotherapy. These TAMs primarily exhibit a tumor-promoting M2-like phenotype, which is associated with the suppression of immune responses and facilitation of tumor progression. Interestingly, recent research has highlighted the potential of repolarizing TAMs from an M2 to a pro-inflammatory M1 status-a shift that has shown promise in impeding tumor growth and enhancing immune responsiveness. This concept is particularly intriguing as it offers a new dimension to cancer therapy by targeting the tumor microenvironment, which is a significant departure from traditional approaches that focus solely on tumor cells. However, the clinical application of TAM-modulating agents is often challenged by issues such as insufficient tumor accumulation and off-target effects, limiting their effectiveness and safety. In this regard, nanomaterials have emerged as a novel solution. They serve a dual role: as delivery vehicles that can enhance the accumulation of therapeutic agents in the tumor site and as TAM-modulators. This dual functionality of nanomaterials is a significant advancement as it addresses the key limitations of current TAM-modulating strategies and opens up new avenues for more efficient and targeted therapies. This review provides a comprehensive overview of the latest mechanisms and strategies involving nanomaterials in modulating macrophage polarization within the TME. It delves into the intricate interactions between nanomaterials and macrophages, elucidating how these interactions can be exploited to drive macrophage polarization towards a phenotype that is more conducive to anti-tumor immunity. Additionally, the review explores the burgeoning field of TAM-associated nanomedicines in combination with tumor immunotherapy. This combination approach is particularly promising as it leverages the strengths of both nanomedicine and immunotherapy, potentially leading to synergistic effects in combating cancer.
Collapse
Affiliation(s)
- Chen Liang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences & School of Medicine, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Yihan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Siyao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences & School of Medicine, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Wangbo Jiao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Jingyi Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences & School of Medicine, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Nan Zhang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaoli Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences & School of Medicine, Northwest University, Xi'an, Shaanxi 710069, China.
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
4
|
Sohrabi S, Masoumi J, Naseri B, Ghorbaninezhad F, Alipour S, Kazemi T, Ahmadian Heris J, Aghebati Maleki L, Basirjafar P, Zandvakili R, Doustvandi MA, Baradaran B. STATs signaling pathways in dendritic cells: As potential therapeutic targets? Int Rev Immunol 2024; 43:138-159. [PMID: 37886903 DOI: 10.1080/08830185.2023.2274576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells (APCs), including heterogenous populations with phenotypic and functional diversity that coordinate bridging innate and adaptive immunity. Signal transducer and activator of transcriptions (STAT) factors as key proteins in cytokine signaling were shown to play distinct roles in the maturation and antigen presentation of DCs and play a pivotal role in modulating immune responses mediated by DCs such as differentiation of T cells to T helper (Th) 1, Th2 or regulatory T (Treg) cells. This review sheds light on the importance of STAT transcription factors' signaling pathways in different subtypes of DCs and highlights their targeting potential usages for improving DC-based immunotherapies for patients who suffer from cancer or diverse autoimmune conditions according to the type of the STAT transcription factor and its specific activating or inhibitory agent.
Collapse
Affiliation(s)
- Sepideh Sohrabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Pedram Basirjafar
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Raziyeh Zandvakili
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Motallebzadeh Khanmiri J, Alizadeh M, Esmaeili S, Gholami Z, Safarzadeh A, Khani-Eshratabadi M, Baghbanzadeh A, Alizadeh N, Baradaran B. Dendritic cell vaccination strategy for the treatment of acute myeloid leukemia: a systematic review. Cytotherapy 2024; 26:427-435. [PMID: 38483358 DOI: 10.1016/j.jcyt.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND AIMS Acute myeloid leukemia (AML) is classified as a hematologic malignancy characterized by the proliferation of immature blood cells within the bone marrow (BM), resulting in an aberrant and unregulated cellular growth. The primary therapeutic modalities for AML include chemotherapy and hematopoietic stem cell transplantation. However, it is important to note that these treatments are accompanied by important adverse effects and mortality rates. Therefore, the need for more effective treatment options seems necessary, and dendritic cell (DC) vaccine therapy can be one of these options. In this study, we aim to investigate the effectiveness of DC vaccination therapy for the management of AML. METHODS PubMed, Scopus, ProQuest, Web of Science, and Google Scholar databases were searched for this systematic review. The articles were evaluated based on the inclusion criteria of this study and initially compared in terms of titles or abstracts. Finally, the articles related to the topic of this review were obtained in full text. The complete remission and partial remission, survival, correlative immune assays, and health-related metrics were used to evaluate this cellular immunotherapy effectiveness. The quality of the studies was assessed independently using the Cochrane risk-of-bias tools. The compiled data were input into a standard Excel spreadsheet. Each domain was evaluated as having either a "low risk," "high risk," or "unclear risk" of bias. RESULTS Among the 3986 studies that were determined, a total of 11 correlated trials were selected for inclusion in this systematic review. DC vaccine therapy was effective in inducing complete and partial remission, and stabilization of the disease. Additionally, it was discovered that the treatment strengthened the immune system as seen by increased levels of CD4+ and CD8+ T cells, Th1 cytokines, WT1-specific T cells, and activated NK cells. CONCLUSION We conducted a systematic review that supports the use of DC vaccine therapy as an effective treatment for AML. The therapy demonstrated potentials in achieving remission, enhancing the immune system function, and increasing overall survival. However, more studies are required to improve the methods of preparing and delivering the DC vaccine, and to confirm its long-term safety and effectiveness.
Collapse
Affiliation(s)
- Jamal Motallebzadeh Khanmiri
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Esmaeili
- Student Research Committee, Shahed University, Tehran, Iran
| | - Zeinab Gholami
- Faculty of Medicine, University of Medical Sciences, Tabriz, Iran
| | - Ali Safarzadeh
- Department of Biology, University of Padova, Padova, Italy
| | | | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Dao T, Xiong G, Mun SS, Meyerberg J, Korontsvit T, Xiang J, Cui Z, Chang AY, Jarvis C, Cai W, Luo H, Pierson A, Daniyan A, Yoo S, Takao S, Kharas M, Kentsis A, Liu C, Scheinberg DA. A dual-receptor T-cell platform with Ab-TCR and costimulatory receptor achieves specificity and potency against AML. Blood 2024; 143:507-521. [PMID: 38048594 PMCID: PMC10950474 DOI: 10.1182/blood.2023021054] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 12/06/2023] Open
Abstract
ABSTRACT Chimeric antigen receptor T-cell (CAR T) therapy has produced remarkable clinical responses in B-cell neoplasms. However, many challenges limit this class of agents for the treatment of other cancer types, in particular the lack of tumor-selective antigens for solid tumors and other hematological malignancies, such as acute myeloid leukemia (AML), which may be addressed without significant risk of severe toxicities while providing sufficient abundance for efficient tumor suppression. One approach to overcome this hurdle is dual targeting by an antibody-T-cell receptor (AbTCR) and a chimeric costimulatory signaling receptor (CSR) to 2 different antigens, in which both antigens are found together on the cancer cells but not together on normal cells. To explore this proof of concept in AML, we engineered a new T-cell format targeting Wilms tumor 1 protein (WT1) and CD33; both are highly expressed on most AML cells. Using an AbTCR comprising a newly developed TCR-mimic monoclonal antibody against the WT1 RMFPNAPYL (RMF) epitope/HLA-A2 complex, ESK2, and a secondary CSR comprising a single-chain variable fragment directed to CD33 linked to a truncated CD28 costimulatory fragment, this unique platform confers specific T-cell cytotoxicity to the AML cells while sparing healthy hematopoietic cells, including CD33+ myelomonocytic normal cells. These data suggest that this new platform, named AbTCR-CSR, through the combination of a AbTCR CAR and CSR could be an effective strategy to reduce toxicity and improve specificity and clinical outcomes in adoptive T-cell therapy in AML.
Collapse
Affiliation(s)
- Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Sung Soo Mun
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jeremy Meyerberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tatyana Korontsvit
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Ziyou Cui
- Eureka Therapeutics Inc, Emeryville, CA
| | - Aaron Y. Chang
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Casey Jarvis
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Winson Cai
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Hanzhi Luo
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Aspen Pierson
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Anthony Daniyan
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sarah Yoo
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sumiko Takao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael Kharas
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medicine, New York, NY
| | - Alex Kentsis
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medicine, New York, NY
| | - Cheng Liu
- Eureka Therapeutics Inc, Emeryville, CA
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medicine, New York, NY
| |
Collapse
|
7
|
Mun SS, Meyerberg J, Peraro L, Korontsvit T, Gardner T, Malviya M, Kyi C, O'Cearbhaill RE, Liu C, Dao T, Scheinberg DA. Dual targeting ovarian cancer by Muc16 CAR T cells secreting a bispecific T cell engager antibody for an intracellular tumor antigen WT1. Cancer Immunol Immunother 2023; 72:3773-3786. [PMID: 37635172 PMCID: PMC10991175 DOI: 10.1007/s00262-023-03529-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
Epithelial ovarian cancer is the most lethal of gynecological cancers. The therapeutic efficacy of chimeric antigen receptor (CAR) T cell directed against single antigens is limited by the heterogeneous target antigen expression in epithelial ovarian tumors. To overcome this limitation, we describe an engineered cell with both dual targeting and orthogonal cytotoxic modalities directed against two tumor antigens that are highly expressed on ovarian cancer cells: cell surface Muc16 and intracellular WT1. Muc16-specific CAR T cells (4H11) were engineered to secrete a bispecific T cell engager (BiTE) constructed from a TCR mimic antibody (ESK1) reactive with the WT1-derived epitope RMFPNAPYL (RMF) presented by HLA-A2 molecules. The secreted ESK1 BiTE recruited and redirected other T cells to WT1 on the tumor cells. We show that ESK1 BiTE-secreting 4H11 CAR T cells exhibited enhanced anticancer activity against cancer cells with low Muc16 expression, compared to 4H11 CAR T cells alone, both in vitro and in mouse tumor models. Dual orthogonal cytotoxic modalities with different specificities targeting both surface and intracellular tumor-associated antigens present a promising strategy to overcome resistance to CAR T cell therapy in epithelial ovarian cancer and other cancers.
Collapse
Affiliation(s)
- Sung Soo Mun
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Jeremy Meyerberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Leila Peraro
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Tatyana Korontsvit
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Thomas Gardner
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Manish Malviya
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Chrisann Kyi
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Roisin E O'Cearbhaill
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Cheng Liu
- Eureka Therapeutics, Inc., Emeryville, CA, USA
| | - Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - David A Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
- Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
8
|
Mun SS, Peraro L, Meyerberg J, Korontsvit T, Malviya M, Gardner T, Kyi C, O'Cearbhaill RE, Liu C, Dao T, Scheinberg DA. Dual targeting ovarian cancer by Muc16 CAR-T cells secreting a bispecific T cell engager antibody for an intracellular tumor antigen WT1. RESEARCH SQUARE 2023:rs.3.rs-2887299. [PMID: 37214945 PMCID: PMC10197740 DOI: 10.21203/rs.3.rs-2887299/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Epithelial ovarian cancer is the most lethal of gynecological cancers. The therapeutic efficacy of chimeric antigen receptor (CAR) T cell directed against single antigens is limited by the heterogeneous target antigen expression in epithelial ovarian tumors. To overcome this limitation, we describe an engineered cell with both dual targeting and orthogonal cytotoxic modalities directed against two tumor antigens that are highly expressed on ovarian cancer cells: cell surface Muc16 and intracellular WT1. Muc16-specific CAR-T cells (4H11) were engineered to secrete a bispecific T cell engager (BiTE) constructed from a TCR mimic antibody (ESK1) reactive with the WT1-derived epitope RMFPNAPYL (RMF) presented by HLA-A2 molecules. The secreted ESK1 BiTE recruited and redirected other T cells to WT1 on the tumor cells. We show that ESK1 BiTE-secreting 4H11 CAR-T cells exhibited enhanced anticancer activity against cancer cells with low Muc16 expression, compared to 4H11 CAR-T cells alone, both in vitro and in mouse tumor models. Dual orthogonal cytotoxic modalities with different specificities targeting both surface and intracellular tumor-associated antigens present a promising strategy to overcome resistance to CAR-T cell therapy in epithelial ovarian cancer and other cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tao Dao
- Memorial Sloan Kettering Cancer Center
| | | |
Collapse
|
9
|
Harvey AG, Graves AM, Uppalapati CK, Matthews SM, Rosenberg S, Parent EG, Fagerlie MH, Guinan J, Lopez BS, Kronstad LM. Dendritic cell-natural killer cell cross-talk modulates T cell activation in response to influenza A viral infection. Front Immunol 2022; 13:1006998. [PMID: 36618376 PMCID: PMC9815106 DOI: 10.3389/fimmu.2022.1006998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Influenza viruses lead to substantial morbidity and mortality including ~3-5 million cases of severe illness and ~290,000-650,000 deaths annually. One of the major hurdles regarding influenza vaccine efficacy is generating a durable, robust cellular immune response. Appropriate stimulation of the innate immune system is key to generating cellular immunity. Cross-talk between innate dendritic cells (DC) and natural killer (NK) cells plays a key role in activating virus-specific T cells, yet the mechanisms used by influenza A viruses (IAV) to govern this process remain incompletely understood. Here, we used an ex vivo autologous human primary immune cell culture system to evaluate the impact of DC-NK cell cross-talk and subsequent naïve T cell activation at steady-state and after exposure to genetically distinct IAV strains-A/California/07/2009 (H1N1) and A/Victoria/361/2011 (H3N2). Using flow cytometry, we found that exposure of DCs to IAV in co-culture with NK cells led to a decreased frequency of CD83+ and CD86+ cells on DCs and an increased frequency of HLA-DR+ on both DCs and NK cells. We then assessed the outcome of DC-NK cell cross-talk on T cell activation. At steady-state, DC-NK cell cross-talk increased pan T cell CD69 and CD25 expression while exposure to either IAV strain reduced pan T cell CD25 expression and suppressed CD4+ and CD8+ T cell IFN-γ and TNF production, following chemical stimulation with PMA/Ionomycin. Moreover, exposure to A/Victoria/361/2011 elicited lower IFN-γ production by CD4+ and CD8+ T cells compared with A/California/07/2009. Overall, our results indicate a role for DC-NK cell cross-talk in T cell priming in the context of influenza infection, informing the immunological mechanisms that could be manipulated for the next generation of influenza vaccines or immunotherapeutics.
Collapse
Affiliation(s)
- Abigail G. Harvey
- Master of Biomedical Sciences Program, Midwestern University, Glendale, AZ, United States
| | - Athens M. Graves
- Master of Biomedical Sciences Program, Midwestern University, Glendale, AZ, United States
| | - Chandana K. Uppalapati
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Saoirse M. Matthews
- Master of Biomedical Sciences Program, Midwestern University, Glendale, AZ, United States
| | - Stephanie Rosenberg
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, United States
| | - Emma G. Parent
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, United States
| | - Madison H. Fagerlie
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, United States
| | - Jack Guinan
- Farm Animal Medicine, College of Veterinary Medicine, Midwestern University, Glendale, AZ, United States
| | - Brina S. Lopez
- Farm Animal Medicine, College of Veterinary Medicine, Midwestern University, Glendale, AZ, United States
| | - Lisa M. Kronstad
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ, United States,*Correspondence: Lisa M. Kronstad,
| |
Collapse
|
10
|
Yu J, Sun H, Cao W, Song Y, Jiang Z. Research progress on dendritic cell vaccines in cancer immunotherapy. Exp Hematol Oncol 2022; 11:3. [PMID: 35074008 PMCID: PMC8784280 DOI: 10.1186/s40164-022-00257-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/16/2022] [Indexed: 12/13/2022] Open
Abstract
Dendritic cell (DC) vaccines induce specific immune responses that can selectively eliminate target cells. In recent years, many studies have been conducted to explore DC vaccination in the treatment of hematological malignancies, including acute myeloid leukemia and myelodysplastic syndromes, as well as other nonleukemia malignancies. There are at least two different strategies that use DCs to promote antitumor immunity: in situ vaccination and canonical vaccination. Monocyte-derived DCs (mo-DCs) and leukemia-derived DCs (DCleu) are the main types of DCs used in vaccines for AML and MDS thus far. Different cancer-related molecules such as peptides, recombinant proteins, apoptotic leukemic cells, whole tumor cells or lysates and DCs/DCleu containing a vaster antigenic repertoire with RNA electroporation, have been used as antigen sources to load DCs. To enhance DC vaccine efficacy, new strategies, such as combination with conventional chemotherapy, monospecific/bispecific antibodies and immune checkpoint-targeting therapies, have been explored. After a decade of trials and tribulations, much progress has been made and much promise has emerged in the field. In this review we summarize the recent advances in DC vaccine immunotherapy for AML/MDS as well as other nonleukemia malignancies.
Collapse
Affiliation(s)
- Jifeng Yu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan International Joint Laboratory of Nuclear Protein Gene Regulation, Henan University College of Medicine, Kaifeng, 475004, Henan, China
| | - Hao Sun
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Weijie Cao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yongping Song
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, Henan, China.
| | - Zhongxing Jiang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
11
|
Aureli A, Marziani B, Sconocchia T, Del Principe MI, Buzzatti E, Pasqualone G, Venditti A, Sconocchia G. Immunotherapy as a Turning Point in the Treatment of Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13246246. [PMID: 34944865 PMCID: PMC8699368 DOI: 10.3390/cancers13246246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Despite recent progress achieved in the management of acute myeloid leukemia (AML), it remains a life-threatening disease with a poor prognosis, particularly in the elderly, having an average 5-year survival of approximately 28%. However, recent evidence suggests that immunotherapy can provide the background for developing personalized targeted therapy to improve the clinical course of AML patients. Our review aimed to assess the immunotherapy effectiveness in AML by discussing the impact of monoclonal antibodies, immune checkpoint inhibitors, chimeric antigen receptor T cells, and vaccines in AML preclinical and clinical studies. Abstract Acute myeloid leukemia (AML) is a malignant disease of hematopoietic precursors at the earliest stage of maturation, resulting in a clonalproliferation of myoblasts replacing normal hematopoiesis. AML represents one of the most common types of leukemia, mostly affecting elderly patients. To date, standard chemotherapy protocols are only effective in patients at low risk of relapse and therapy-related mortality. The average 5-year overall survival (OS) is approximately 28%. Allogeneic hematopoietic stem cell transplantation (HSCT) improves prognosis but is limited by donor availability, a relatively young age of patients, and absence of significant comorbidities. Moreover, it is associated with significant morbidity and mortality. However, increasing understanding of AML immunobiology is leading to the development of innovative therapeutic strategies. Immunotherapy is considered an attractive strategy for controlling and eliminating the disease. It can be a real breakthrough in the treatment of leukemia, especially in patients who are not eligible forintensive chemotherapy. In this review, we focused on the progress of immunotherapy in the field of AML by discussing monoclonal antibodies (mAbs), immune checkpoint inhibitors, chimeric antigen receptor T cells (CAR-T cells), and vaccine therapeutic choices.
Collapse
Affiliation(s)
- Anna Aureli
- CNR Institute of Translational Pharmacology, 00133 Rome, Italy
- Correspondence: (A.A.); (G.S.)
| | - Beatrice Marziani
- Emergency and Urgent Department, University Hospital Sant’Anna of Ferrara, 44124 Ferrara, Italy;
| | | | - Maria Ilaria Del Principe
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (M.I.D.P.); (E.B.); (G.P.); (A.V.)
| | - Elisa Buzzatti
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (M.I.D.P.); (E.B.); (G.P.); (A.V.)
| | - Gianmario Pasqualone
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (M.I.D.P.); (E.B.); (G.P.); (A.V.)
| | - Adriano Venditti
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (M.I.D.P.); (E.B.); (G.P.); (A.V.)
| | - Giuseppe Sconocchia
- CNR Institute of Translational Pharmacology, 00133 Rome, Italy
- Correspondence: (A.A.); (G.S.)
| |
Collapse
|
12
|
Innate Immune Mechanisms and Immunotherapy of Myeloid Malignancies. Biomedicines 2021; 9:biomedicines9111631. [PMID: 34829860 PMCID: PMC8615731 DOI: 10.3390/biomedicines9111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Similar to other cancers, myeloid malignancies are thought to subvert the immune system during their development. This subversion occurs via both malignant cell-autonomous and non-autonomous mechanisms and involves manipulation of the innate and adaptive immune systems. Multiple strategies are being studied to rejuvenate, redirect, or re-enforce the immune system in order to fight off myeloid malignancies. So far, the most successful strategies include interferon treatment and antibody-based therapies, though chimeric antigen receptor (CAR) cells and immune checkpoint inhibitors are also promising therapies. In this review, we discuss the inherent immune mechanisms of defense against myeloid malignancies, currently-approved agents, and agents under investigation. Overall, we evaluate the efficacy and potential of immuno-oncology in the treatment of myeloid malignancies.
Collapse
|
13
|
Zhou L, Liu H, Liu K, Wei S. Gold Compounds and the Anticancer Immune Response. Front Pharmacol 2021; 12:739481. [PMID: 34588987 PMCID: PMC8473785 DOI: 10.3389/fphar.2021.739481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
Gold compounds are not only well-explored for cytotoxic effects on tumors, but are also known to interact with the cancer immune system. The immune system deploys innate and adaptive mechanisms to protect against pathogens and prevent malignant transformation. The combined action of gold compounds with the activated immune system has shown promising results in cancer therapy through in vivo and in vitro experiments. Gold compounds are known to induce innate immune responses; however, these responses may contribute to adaptive immune responses. Gold compounds play the role of a major hapten that acts synergistically in innate immunity. Gold compounds support cancer cell antigenicity and promote anti-tumor immune response by inducing the release of CRT, ATP, HMGB1, HSP, and NKG2D to enhance immunogenicity. Gold compounds affect various immune cells (including suppressor regulatory T cells), inhibit myeloid derived suppressor cells, and enhance the function and number of dendritic cells. Gold nanoparticles (AuNPs) have potential for improving the effect of immunotherapy and reducing the toxicity and side effects of the treatment process. Thus, AuNPs provide an ideal opportunity for exploring the combination of anticancer gold compounds and immunotherapeutic interventions.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Kui Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Liu Q, Hua M, Zhang C, Wang R, Liu J, Yang X, Han F, Hou M, Ma D. NLRP3-activated bone marrow dendritic cells play antileukemic roles via IL-1β/Th1/IFN-γ in acute myeloid leukemia. Cancer Lett 2021; 520:109-120. [PMID: 34237408 DOI: 10.1016/j.canlet.2021.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 01/09/2023]
Abstract
The bone marrow microenvironment of acute myeloid leukemia (AML) characterized by immunosuppressive features fosters leukemia immune escape. Elucidating the immunosuppressive mechanism and developing effective immunotherapeutic strategies are necessary. Here, we found that the Th1% and IFN-γ level were downregulated in bone marrow of AML and NLRP3-activated BMDCs promoted CD4+ T cell differentiation into Th1 cells via IL-1β secretion. However, IFN-γ-producing Th1 cells were not induced by NLRP3-activated BMDCs in the presence of the NLRP3 inflammasome inhibitor MCC950 or anti-IL-1β antibody in vitro unless exogenous IL-1β was replenished. This inhibitory effect on Th1 differentiation was also observed in Nlrp3-/- mice or anti-IL-1β antibody-treated mice. Notably, elevated Th1 cell levels promoted apoptosis and inhibited proliferation in leukemia cells via IFN-γ secretion in vitro and in vivo. Thus, NLRP3-activated BMDCs promote the proliferation of IFN-γ-producing Th1 cells with antileukemic effects and may provide insight into the basis for leukemia immunotherapy in patients with AML.
Collapse
Affiliation(s)
- Qinqin Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China; Department of Hematology, Taian Central Hospital, Taian, Shandong, 271000, China
| | - Mingqiang Hua
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Chen Zhang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China; Department of Hematology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, China
| | - Ruiqing Wang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Jinting Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Xinyu Yang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Fengjiao Han
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China.
| |
Collapse
|
15
|
Wu M, Wang S, Chen JY, Zhou LJ, Guo ZW, Li YH. Therapeutic cancer vaccine therapy for acute myeloid leukemia. Immunotherapy 2021; 13:863-877. [PMID: 33955237 DOI: 10.2217/imt-2020-0277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Antitumor function of the immune system has been harnessed to eradicate tumor cells as cancer therapy. Therapeutic cancer vaccines aim to help immune cells recognize tumor cells, which are difficult to target owing to immune escape. Many attempts at vaccine designs have been conducted throughout the last decades. In addition, as the advanced understanding of immunosuppressive mechanisms mediated by tumor cells, combining cancer vaccines with other immune therapies seems to be more efficient for cancer treatment. Acute myeloid leukemia (AML) is the most common acute leukemia in adults with poor prognosis. Evidence has shown T-cell-mediated immune responses in AML, which encourages the utility of immune therapies in AML. This review discusses cancer vaccines in AML from vaccine design as well as recent progress in vaccination combination with other immune therapies.
Collapse
Affiliation(s)
- Ming Wu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.,Department of Hematology, Zhongshan People's Hospital, Zhongshan 528400, China
| | - Sheng Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jian-Yu Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Li-Juan Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zi-Wen Guo
- Department of Hematology, Zhongshan People's Hospital, Zhongshan 528400, China
| | - Yu-Hua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| |
Collapse
|
16
|
Amberger DC, Schmetzer HM. Dendritic Cells of Leukemic Origin: Specialized Antigen-Presenting Cells as Potential Treatment Tools for Patients with Myeloid Leukemia. Transfus Med Hemother 2021; 47:432-443. [PMID: 33442338 DOI: 10.1159/000512452] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/12/2020] [Indexed: 11/19/2022] Open
Abstract
The prognosis of elderly patients with acute myeloid leukemia (AML) and high-grade myelodysplastic syndrome (MDS) is limited due to the lack of therapy options and high relapse rates. Dendritic cell (DC)-based immunotherapy seems to be a promising treatment tool. DC are potent antigen-presenting cells and play a pivotal role on the interface of the innate and the adaptive immune system. Myeloid leukemia blasts can be converted to DC of leukemic origin (DCleu), expressing costimulatory molecules along with the whole leukemic antigen repertoire of individual patients. These generated DCleu are potent stimulators of various immune reactive cells and increase antileukemic immunity ex vivo. Here we review the generating process of DC/DCleu from leukemic peripheral blood mononuclear cells as well as directly from leukemic whole blood with "minimized" Kits to simulate physiological conditions ex vivo. The purpose of adoptive cell transfer of DC/DCleu as a vaccination strategy is discussed. A new potential therapy option with Kits for patients with myeloid leukemia, which would render an adoptive DC/DCleu transfer unnecessary, is presented. In summary, DC/DCleu-based therapies seem to be promising treatment tools for patients with AML or MDS but ongoing research including trials in animals and humans have to be performed.
Collapse
Affiliation(s)
| | - Helga Maria Schmetzer
- Department of Medicine III, University Hospital, Hematopoetic Cell Transplantation, Munich, Germany
| |
Collapse
|
17
|
Gu FF, Zhang K, Ma LL, Liu YY, Li C, Hu Y, Yang QF, Liang JY, Zeng YL, Wang Y, Liu L. The Superior Ability of Human BDCA3 + (CD141 +) Dendritic Cells (DCs) to Cross-Present Antigens Derived From Necrotic Lung Cancer Cells. Front Immunol 2020; 11:1267. [PMID: 32655564 PMCID: PMC7325999 DOI: 10.3389/fimmu.2020.01267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/19/2020] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells (DCs) play a key role in initiating and regulating the immune responses to pathogens, self-antigens, and cancers. Human blood DCs comprise a family of different subsets: plasmacytoid DCs (pDCs) and CD16+, CD1c/BDCA1+, and BDCA3+ (CD141+) myeloid DCs and possess different phenotypes and functional characteristics. Lung cancer is the most common cancer, with the highest morbidity and mortality in the world. However, which DC subset plays a leading role in the lung cancer immune responses is unclear. We reanalyzed C-type lectin domain family 9 member A (CLEC9A) and CD141 (THBD) gene expression profiles from the Cancer Genome Atlas (TCGA) database and performed the Kaplan-Meier survival analysis of overall survival for several cancers according to their expression levels. Next, we investigated the capacities of five human blood DC subsets to stimulate T cell proliferation and capture, process and (cross-) present tumor antigen. Human BDCA3+ (CD141+) DCs have a superior capacity to stimulate allogeneic CD4+T cells proliferation and induce superior Th1 response compared with other DC subsets. Interestingly, toll-like receptor (TLR) agonists have little effect on DCs to induce the proliferation of naïve CD4+ T cells, but contribute to their differentiation. Importantly, BDCA3+ (CD141+) DCs possess the most potent ability to cross-present human tumor antigen after their uptake of necrotic lung cancer cells despite their lower antigen uptake. These findings suggest that human BDCA3+ (CD141+) DCs are critical mediators of cytotoxic T lymphocyte responses against EGFR-positive lung cancer. Therefore, our findings may provide theoretical basis for the development of DC-based antitumor vaccines.
Collapse
Affiliation(s)
- Fei-Fei Gu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Li Ma
- Department of Oncology, Wuhan Brain Hospital, Wuhan, China
| | - Yang-Yang Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi-Fan Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Yan Liang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Lan Zeng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Analysis and Testing Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Li Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Charles J, Chaperot L, Hannani D, Bruder Costa J, Templier I, Trabelsi S, Gil H, Moisan A, Persoons V, Hegelhofer H, Schir E, Quesada JL, Mendoza C, Aspord C, Manches O, Coulie PG, Khammari A, Dreno B, Leccia MT, Plumas J. An innovative plasmacytoid dendritic cell line-based cancer vaccine primes and expands antitumor T-cells in melanoma patients in a first-in-human trial. Oncoimmunology 2020; 9:1738812. [PMID: 32313721 PMCID: PMC7153838 DOI: 10.1080/2162402x.2020.1738812] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
The efficacy of immune checkpoint inhibitors has been shown to depend on preexisting antitumor immunity; thus, their combination with cancer vaccines is an attractive therapeutic approach. Plasmacytoid dendritic cells (PDC) are strong inducers of antitumor responses and represent promising vaccine candidates. We developed a cancer vaccine approach based on an allogeneic PDC line that functioned as a very potent antigen-presenting cell in pre-clinical studies. In this phase Ib clinical trial, nine patients with metastatic stage IV melanoma received up to 60 million irradiated PDC line cells loaded with 4 melanoma antigens, injected subcutaneously at weekly intervals. The primary endpoints were safety and tolerability. The vaccine was well tolerated and no serious vaccine-induced side effects were recorded. Strikingly, there was no allogeneic response toward the vaccine, but a significant increase in the frequency of circulating anti-tumor specific T lymphocytes was observed in two patients, accompanied by a switch from a naïve to memory phenotype, thus demonstrating priming of antigen-specific T-cells. Signs of clinical activity were observed, including four stable diseases according to IrRC and vitiligoïd lesions. Four patients were still alive at week 48. We also demonstrate the in vitro enhancement of specific T cell expansion induced by the synergistic combination of peptide-loaded PDC line with anti-PD-1, as compared to peptide-loaded PDC line alone. Taken together, these clinical observations demonstrate the ability of the PDC line based-vaccine to prime and expand antitumor CD8+ responses in cancer patients. Further trials should test the combination of this vaccine with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Julie Charles
- Immunobiology and Immunotherapy of Chronic Diseases, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,Dermatology Department, Pôle Pluridisciplinaire de Médecine, CHU Grenoble Alpes, Grenoble, France
| | - Laurence Chaperot
- Immunobiology and Immunotherapy of Chronic Diseases, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,R&D Laboratory, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | - Dalil Hannani
- Immune checkpoint inhibitors, PDCline Pharma, Grenoble
| | - Juliana Bruder Costa
- Immunobiology and Immunotherapy of Chronic Diseases, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,Dermatology Department, Pôle Pluridisciplinaire de Médecine, CHU Grenoble Alpes, Grenoble, France.,R&D Laboratory, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | - Isabelle Templier
- Dermatology Department, Pôle Pluridisciplinaire de Médecine, CHU Grenoble Alpes, Grenoble, France
| | - Sabiha Trabelsi
- Dermatology Department, Pôle Pluridisciplinaire de Médecine, CHU Grenoble Alpes, Grenoble, France
| | - Hugo Gil
- Pathology Department, Institut de Biologie et Pathologie, CHU Grenoble Alpes, Grenoble, France
| | - Anaick Moisan
- Immunobiology and Immunotherapy of Chronic Diseases, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,Cell Therapy and Engineering Unit, Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint Ismier, France
| | - Virginie Persoons
- Cell Therapy and Engineering Unit, Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint Ismier, France
| | - Harald Hegelhofer
- Cell Therapy and Engineering Unit, Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint Ismier, France
| | - Edith Schir
- Délégation à la Recherche Clinique et à l'Innovation, CHU Grenoble Alpes, Grenoble, France
| | | | | | - Caroline Aspord
- Immunobiology and Immunotherapy of Chronic Diseases, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,R&D Laboratory, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | - Olivier Manches
- Immunobiology and Immunotherapy of Chronic Diseases, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,R&D Laboratory, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | - Pierre G Coulie
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Amir Khammari
- Onco-dermatology Department, CHU Nantes, CIC 1413, CRCINA, Nantes University, Nantes, France
| | - Brigitte Dreno
- Onco-dermatology Department, CHU Nantes, CIC 1413, CRCINA, Nantes University, Nantes, France
| | - Marie-Thérèse Leccia
- Immunobiology and Immunotherapy of Chronic Diseases, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,Dermatology Department, Pôle Pluridisciplinaire de Médecine, CHU Grenoble Alpes, Grenoble, France
| | - Joel Plumas
- Immunobiology and Immunotherapy of Chronic Diseases, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,R&D Laboratory, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France.,Immune checkpoint inhibitors, PDCline Pharma, Grenoble
| |
Collapse
|
19
|
Abadir E, Gasiorowski RE, Silveira PA, Larsen S, Clark GJ. Is Hematopoietic Stem Cell Transplantation Required to Unleash the Full Potential of Immunotherapy in Acute Myeloid Leukemia? J Clin Med 2020; 9:E554. [PMID: 32085578 PMCID: PMC7073661 DOI: 10.3390/jcm9020554] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/22/2022] Open
Abstract
From monoclonal antibodies (mAbs) to Chimeric Antigen Receptor (CAR) T cells, immunotherapies have enhanced the efficacy of treatments against B cell malignancies. The same has not been true for Acute Myeloid Leukemia (AML). Hematologic toxicity has limited the potential of modern immunotherapies for AML at preclinical and clinical levels. Gemtuzumab Ozogamicin has demonstrated hematologic toxicity, but the challenge of preserving normal hematopoiesis has become more apparent with the development of increasingly potent immunotherapies. To date, no single surface molecule has been identified that is able to differentiate AML from Hematopoietic Stem and Progenitor Cells (HSPC). Attempts have been made to spare hematopoiesis by targeting molecules expressed only on later myeloid progenitors as well as AML or using toxins that selectively kill AML over HSPC. Other strategies include targeting aberrantly expressed lymphoid molecules or only targeting monocyte-associated proteins in AML with monocytic differentiation. Recently, some groups have accepted that stem cell transplantation is required to access potent AML immunotherapy and envision it as a rescue to avoid severe hematologic toxicity. Whether it will ever be possible to differentiate AML from HSPC using surface molecules is unclear. Unless true specific AML surface targets are discovered, stem cell transplantation could be required to harness the true potential of immunotherapy in AML.
Collapse
Affiliation(s)
- Edward Abadir
- Dendritic Cell Research, ANZAC Research Institute, Concord 2139, NSW, Australia;
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown 2050, NSW, Australia;
- The University of Sydney, Camperdown 2039, NSW, Australia;
| | - Robin E. Gasiorowski
- The University of Sydney, Camperdown 2039, NSW, Australia;
- Department of Haematology, Concord Repatriation and General Hospital, Concord 2039, NSW, Australia
| | - Pablo A. Silveira
- Dendritic Cell Research, ANZAC Research Institute, Concord 2139, NSW, Australia;
- The University of Sydney, Camperdown 2039, NSW, Australia;
| | - Stephen Larsen
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown 2050, NSW, Australia;
- The University of Sydney, Camperdown 2039, NSW, Australia;
| | - Georgina J. Clark
- Dendritic Cell Research, ANZAC Research Institute, Concord 2139, NSW, Australia;
- The University of Sydney, Camperdown 2039, NSW, Australia;
| |
Collapse
|
20
|
O'Brien LJ, Guillerey C, Radford KJ. Can Dendritic Cell Vaccination Prevent Leukemia Relapse? Cancers (Basel) 2019; 11:cancers11060875. [PMID: 31234526 PMCID: PMC6627518 DOI: 10.3390/cancers11060875] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/14/2019] [Accepted: 06/20/2019] [Indexed: 01/02/2023] Open
Abstract
Leukemias are clonal proliferative disorders arising from immature leukocytes in the bone marrow. While the advent of targeted therapies has improved survival in certain subtypes, relapse after initial therapy is a major problem. Dendritic cell (DC) vaccination has the potential to induce tumor-specific T cells providing long-lasting, anti-tumor immunity. This approach has demonstrated safety but limited clinical success until recently, as DC vaccination faces several barriers in both solid and hematological malignancies. Importantly, vaccine-mediated stimulation of protective immune responses is hindered by the aberrant production of immunosuppressive factors by cancer cells which impede both DC and T cell function. Leukemias present the additional challenge of severely disrupted hematopoiesis owing to both cytogenic defects in hematopoietic progenitors and an abnormal hematopoietic stem cell niche in the bone marrow; these factors accentuate systemic immunosuppression and DC malfunction. Despite these obstacles, several recent clinical trials have caused great excitement by extending survival in Acute Myeloid Leukemia (AML) patients through DC vaccination. Here, we review the phenotype and functional capacity of DCs in leukemia and approaches to harness DCs in leukemia patients. We describe the recent clinical successes in AML and detail the multiple new strategies that might enhance prognosis in AML and other leukemias.
Collapse
Affiliation(s)
- Liam J O'Brien
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| | - Camille Guillerey
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| | - Kristen J Radford
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
21
|
Van Acker HH, Versteven M, Lichtenegger FS, Roex G, Campillo-Davo D, Lion E, Subklewe M, Van Tendeloo VF, Berneman ZN, Anguille S. Dendritic Cell-Based Immunotherapy of Acute Myeloid Leukemia. J Clin Med 2019; 8:E579. [PMID: 31035598 PMCID: PMC6572115 DOI: 10.3390/jcm8050579] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/16/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a type of blood cancer characterized by the uncontrolled clonal proliferation of myeloid hematopoietic progenitor cells in the bone marrow. The outcome of AML is poor, with five-year overall survival rates of less than 10% for the predominant group of patients older than 65 years. One of the main reasons for this poor outcome is that the majority of AML patients will relapse, even after they have attained complete remission by chemotherapy. Chemotherapy, supplemented with allogeneic hematopoietic stem cell transplantation in patients at high risk of relapse, is still the cornerstone of current AML treatment. Both therapies are, however, associated with significant morbidity and mortality. These observations illustrate the need for more effective and less toxic treatment options, especially in elderly AML and have fostered the development of novel immune-based strategies to treat AML. One of these strategies involves the use of a special type of immune cells, the dendritic cells (DCs). As central orchestrators of the immune system, DCs are key to the induction of anti-leukemia immunity. In this review, we provide an update of the clinical experience that has been obtained so far with this form of immunotherapy in patients with AML.
Collapse
Affiliation(s)
- Heleen H Van Acker
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, Faculty of Medicine & Health Sciences, University of Antwerp, 2610 Wilrijk, Antwerp, Belgium.
| | - Maarten Versteven
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, Faculty of Medicine & Health Sciences, University of Antwerp, 2610 Wilrijk, Antwerp, Belgium.
| | - Felix S Lichtenegger
- Department of Medicine III, LMU Munich, University Hospital, 80799 Munich, Germany.
| | - Gils Roex
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, Faculty of Medicine & Health Sciences, University of Antwerp, 2610 Wilrijk, Antwerp, Belgium.
| | - Diana Campillo-Davo
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, Faculty of Medicine & Health Sciences, University of Antwerp, 2610 Wilrijk, Antwerp, Belgium.
| | - Eva Lion
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, Faculty of Medicine & Health Sciences, University of Antwerp, 2610 Wilrijk, Antwerp, Belgium.
| | - Marion Subklewe
- Department of Medicine III, LMU Munich, University Hospital, 80799 Munich, Germany.
| | - Viggo F Van Tendeloo
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, Faculty of Medicine & Health Sciences, University of Antwerp, 2610 Wilrijk, Antwerp, Belgium.
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, Faculty of Medicine & Health Sciences, University of Antwerp, 2610 Wilrijk, Antwerp, Belgium.
- Division of Hematology and Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Antwerp, Belgium.
| | - Sébastien Anguille
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, Faculty of Medicine & Health Sciences, University of Antwerp, 2610 Wilrijk, Antwerp, Belgium.
- Division of Hematology and Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Antwerp, Belgium.
| |
Collapse
|
22
|
Ma H, Padmanabhan Iyer S, Parmar S, Gong Y. Adoptive cell therapy for acute myeloid leukemia. Leuk Lymphoma 2019; 60:1370-1380. [PMID: 30628504 DOI: 10.1080/10428194.2018.1553300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hongbing Ma
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | | | - Simrit Parmar
- Department of Lymphoma & Myeloma, MD Anderson Cancer Center, Texas University, Houston, TX, USA
| | - Yuping Gong
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
van Ee TJ, Van Acker HH, van Oorschot TG, Van Tendeloo VF, Smits EL, Bakdash G, Schreibelt G, de Vries IJM. BDCA1+CD14+ Immunosuppressive Cells in Cancer, a Potential Target? Vaccines (Basel) 2018; 6:E65. [PMID: 30235890 PMCID: PMC6161086 DOI: 10.3390/vaccines6030065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/22/2022] Open
Abstract
Dendritic cell (DC) vaccines show promising effects in cancer immunotherapy. However, their efficacy is affected by a number of factors, including (1) the quality of the DC vaccine and (2) tumor immune evasion. The recently characterized BDCA1+CD14+ immunosuppressive cells combine both aspects; their presence in DC vaccines may directly hamper vaccine efficacy, whereas, in patients, BDCA1+CD14+ cells may suppress the induced immune response in an antigen-specific manner systemically and at the tumor site. We hypothesize that BDCA1+CD14+ cells are present in a broad spectrum of cancers and demand further investigation to reveal treatment opportunities and/or improvement for DC vaccines. In this review, we summarize the findings on BDCA1+CD14+ cells in solid cancers. In addition, we evaluate the presence of BDCA1+CD14+ cells in leukemic cancers. Preliminary results suggest that the presence of BDCA1+CD14+ cells correlates with clinical features of acute and chronic myeloid leukemia. Future research focusing on the differentiation from monocytes towards BDCA1+CD14+ cells could reveal more about their cell biology and clinical significance. Targeting these cells in cancer patients may improve the outcome of cancer immunotherapy.
Collapse
Affiliation(s)
- Thomas J van Ee
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen 6525 GA, The Netherlands.
| | - Heleen H Van Acker
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp 2000, Belgium.
| | - Tom G van Oorschot
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen 6525 GA, The Netherlands.
| | - Viggo F Van Tendeloo
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp 2000, Belgium.
| | - Evelien L Smits
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp 2000, Belgium.
- Center for Oncological Research, University of Antwerp, Antwerp 2000, Belgium.
| | - Ghaith Bakdash
- Allergic Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| | - Gerty Schreibelt
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen 6525 GA, The Netherlands.
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen 6525 GA, The Netherlands.
- Department of Medical Oncology; Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen 6525 GA, The Netherlands.
| |
Collapse
|
24
|
Willemen Y, Van den Bergh JMJ, Bonte SM, Anguille S, Heirman C, Stein BMH, Goossens H, Kerre T, Thielemans K, Peeters M, Van Tendeloo VFI, Smits ELJ, Berneman ZN. The tumor-associated antigen RHAMM (HMMR/CD168) is expressed by monocyte-derived dendritic cells and presented to T cells. Oncotarget 2018; 7:73960-73970. [PMID: 27659531 PMCID: PMC5342027 DOI: 10.18632/oncotarget.12170] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 09/12/2016] [Indexed: 02/05/2023] Open
Abstract
We formerly demonstrated that vaccination with Wilms’ tumor 1 (WT1)-loaded autologous monocyte-derived dendritic cells (mo-DCs) can be a well-tolerated effective treatment in acute myeloid leukemia (AML) patients. Here, we investigated whether we could introduce the receptor for hyaluronic acid-mediated motility (RHAMM/HMMR/CD168), another clinically relevant tumor-associated antigen, into these mo-DCs through mRNA electroporation and elicit RHAMM-specific immune responses. While RHAMM mRNA electroporation significantly increased RHAMM protein expression by mo-DCs, our data indicate that classical mo-DCs already express and present RHAMM at sufficient levels to activate RHAMM-specific T cells, regardless of electroporation. Moreover, we found that RHAMM-specific T cells are present at vaccination sites in AML patients. Our findings implicate that we and others who are using classical mo-DCs for cancer immunotherapy are already vaccinating against RHAMM.
Collapse
Affiliation(s)
- Yannick Willemen
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Johan M J Van den Bergh
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Sarah M Bonte
- Department of Hematology and Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Sébastien Anguille
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Carlo Heirman
- Laboratory of Molecular and Cellular Therapy, Department of Immunology-Physiology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Barbara M H Stein
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Tessa Kerre
- Department of Hematology and Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Department of Immunology-Physiology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marc Peeters
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - Viggo F I Van Tendeloo
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Evelien L J Smits
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium.,Center for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
25
|
Versteven M, Van den Bergh JMJ, Marcq E, Smits ELJ, Van Tendeloo VFI, Hobo W, Lion E. Dendritic Cells and Programmed Death-1 Blockade: A Joint Venture to Combat Cancer. Front Immunol 2018; 9:394. [PMID: 29599770 PMCID: PMC5863527 DOI: 10.3389/fimmu.2018.00394] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/13/2018] [Indexed: 12/31/2022] Open
Abstract
Two decades of clinical cancer research with dendritic cell (DC)-based vaccination have proved that this type of personalized medicine is safe and has the capacity to improve survival, but monotherapy is unlikely to cure the cancer. Designed to empower the patient’s antitumor immunity, huge research efforts are set to improve the efficacy of next-generation DC vaccines and to find synergistic combinations with existing cancer therapies. Immune checkpoint approaches, aiming to breach immune suppression and evasion to reinforce antitumor immunity, have been a revelation in the immunotherapy field. Early success of therapeutic antibodies blocking the programmed death-1 (PD-1) pathway has sparked the development of novel inhibitors and combination therapies. Hence, merging immunoregulatory tumor-specific DC strategies with PD-1-targeted approaches is a promising path to explore. In this review, we focus on the role of PD-1-signaling in DC-mediated antitumor immunity. In the quest of exploiting the full potential of DC therapy, different strategies to leverage DC immunopotency by impeding PD-1-mediated immune regulation are discussed, including the most advanced research on targeted therapeutic antibodies, lessons learned from chemotherapy-induced immune activation, and more recent developments with soluble molecules and gene-silencing techniques. An overview of DC/PD-1 immunotherapy combinations that are currently under preclinical and clinical investigation substantiates the clinical potential of such combination strategies.
Collapse
Affiliation(s)
- Maarten Versteven
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Johan M J Van den Bergh
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Elly Marcq
- Center for Oncological Research Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Evelien L J Smits
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium.,Center for Oncological Research Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium
| | - Viggo F I Van Tendeloo
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Willemijn Hobo
- Laboratory of Hematology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Eva Lion
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
26
|
Hsu JL, Bryant CE, Papadimitrious MS, Kong B, Gasiorowski RE, Orellana D, McGuire HM, Groth BFDS, Joshua DE, Ho PJ, Larsen S, Iland HJ, Gibson J, Clark GJ, Fromm PD, Hart DN. A blood dendritic cell vaccine for acute myeloid leukemia expands anti-tumor T cell responses at remission. Oncoimmunology 2018; 7:e1419114. [PMID: 29632738 DOI: 10.1080/2162402x.2017.1419114] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/31/2022] Open
Abstract
Only modest advances in AML therapy have occurred in the past decade and relapse due to residual disease remains the major challenge. The potential of the immune system to address this is evident in the success of allogeneic transplantation, however this leads to considerable morbidity. Dendritic cell (DC) vaccination can generate leukemia-specific autologous immunity with little toxicity. Promising results have been achieved with vaccines developed in vitro from purified monocytes (Mo-DC). We now demonstrate that blood DC (BDC) have superior function to Mo-DC. Whilst BDC are reduced at diagnosis in AML, they recover following chemotherapy and allogeneic transplantation, can be purified using CMRF-56 antibody technology, and can stimulate functional T cell responses. While most AML patients in remission had a relatively normal T cell landscape, those who had received fludarabine as salvage therapy have persistent T cell abnormalities including reduced number, altered subset distribution, failure to expand, and increased activation-induced cell death. Furthermore, PD-1 and TIM-3 are increased on CD4T cells in AML patients in remission and their blockade enhances the expansion of leukemia-specific T cells. This confirms the feasibility of a BDC vaccine to consolidate remission in AML and suggests it should be tested in conjunction with checkpoint blockade.
Collapse
Affiliation(s)
- Jennifer L Hsu
- Dendritic Cell Research Group, ANZAC Research Institute, Sydney, NSW, Australia
| | - Christian E Bryant
- Dendritic Cell Research Group, ANZAC Research Institute, Sydney, NSW, Australia.,Institute of Haematology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Michael S Papadimitrious
- Dendritic Cell Research Group, ANZAC Research Institute, Sydney, NSW, Australia.,Discipline of Internal Medicine, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Benjamin Kong
- Dendritic Cell Research Group, ANZAC Research Institute, Sydney, NSW, Australia.,Discipline of Internal Medicine, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Robin E Gasiorowski
- Dendritic Cell Research Group, ANZAC Research Institute, Sydney, NSW, Australia
| | - Daniel Orellana
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Helen M McGuire
- Ramaciotti Facility for Human Systems Biology, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Melanoma Immunology and Oncology Unit, Centenary Institute, The University of Sydney, Sydney, Australia
| | - Barbara Fazekas de St Groth
- Ramaciotti Facility for Human Systems Biology, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Discipline of Pathology, Sydney Medical School, The University of Sydney, Sydney NSW, Australia
| | - Douglas E Joshua
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Discipline of Internal Medicine, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - P Joy Ho
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Discipline of Internal Medicine, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Stephen Larsen
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Harry J Iland
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - John Gibson
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Discipline of Internal Medicine, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Georgina J Clark
- Dendritic Cell Research Group, ANZAC Research Institute, Sydney, NSW, Australia.,Discipline of Internal Medicine, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Phillip D Fromm
- Dendritic Cell Research Group, ANZAC Research Institute, Sydney, NSW, Australia.,Discipline of Internal Medicine, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Derek Nj Hart
- Dendritic Cell Research Group, ANZAC Research Institute, Sydney, NSW, Australia.,Discipline of Internal Medicine, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
27
|
Galati D, Zanotta S. Hematologic neoplasms: Dendritic cells vaccines in motion. Clin Immunol 2017; 183:181-190. [PMID: 28870867 DOI: 10.1016/j.clim.2017.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/28/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022]
Abstract
Dendritic cells (DCs) are bone-marrow-derived immune cells accounted for a key role in cancer vaccination as potent antigen-presenting cells within the immune system. Cancer microenvironment can modulate DCs maturation resulting in their accumulation into functional states associated with a reduced antitumor immune response. In this regard, a successful cancer vaccine needs to mount a potent antitumor immune response able to overcome the immunosuppressive tumor milieu. As a consequence, DCs-based approaches are a safe and promising strategy for improving the therapeutic efficacy in hematological malignancies, particularly in combinations with additional treatments. This review summarizes the most significant evidence about the immunotherapeutic strategies performed to target hematologic neoplasms including the tumoral associated antigens (TAA) pulsed on DCs, whole tumor cell vaccines or leukemia-derived DCs.
Collapse
Affiliation(s)
- Domenico Galati
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Hematology, National Cancer Institute, Fondazione 'G. Pascale', IRCCS, Via Mariano Semmola 49, 80131 Naples, Italy.
| | - Serena Zanotta
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Hematology, National Cancer Institute, Fondazione 'G. Pascale', IRCCS, Via Mariano Semmola 49, 80131 Naples, Italy
| |
Collapse
|
28
|
Van den Bergh J, Willemen Y, Lion E, Van Acker H, De Reu H, Anguille S, Goossens H, Berneman Z, Van Tendeloo V, Smits E. Transpresentation of interleukin-15 by IL-15/IL-15Rα mRNA-engineered human dendritic cells boosts antitumoral natural killer cell activity. Oncotarget 2016; 6:44123-33. [PMID: 26675759 DOI: 10.18632/oncotarget.6536] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/28/2015] [Indexed: 01/20/2023] Open
Abstract
In cancer immunotherapy, the use of dendritic cell (DC)-based vaccination strategies can improve overall survival, but until now durable clinical responses remain scarce. To date, DC vaccines are designed primarily to induce effective T-cell responses, ignoring the antitumor activity potential of natural killer (NK) cells. Aiming to further improve current DC vaccination outcome, we engineered monocyte-derived DC to produce interleukin (IL)-15 and/or IL-15 receptor alpha (IL-15Rα) using mRNA electroporation. The addition of IL-15Rα to the protocol, enabling IL-15 transpresentation to neighboring NK cells, resulted in significantly better NK-cell activation compared to IL-15 alone. Next to upregulation of NK-cell membrane activation markers, IL-15 transpresentation resulted in increased NK-cell secretion of IFN-γ, granzyme B and perforin. Moreover, IL-15-transpresenting DC/NK cell cocultures from both healthy donors and acute myeloid leukemia (AML) patients in remission showed markedly enhanced cytotoxic activity against NK cell sensitive and resistant tumor cells. Blocking IL-15 transpresentation abrogated NK cell-mediated cytotoxicity against tumor cells, pointing to a pivotal role of IL-15 transpresentation by IL-15Rα to exert its NK cell-activating effects. In conclusion, we report an attractive approach to improve antitumoral NK-cell activity in DC-based vaccine strategies through the use of IL-15/IL-15Rα mRNA-engineered designer DC.
Collapse
Affiliation(s)
- Johan Van den Bergh
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Yannick Willemen
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Eva Lion
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Heleen Van Acker
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Hans De Reu
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Sébastien Anguille
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Zwi Berneman
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Viggo Van Tendeloo
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Evelien Smits
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Center for Oncological Research Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
29
|
Van de Velde AL, Beutels P, Smits EL, Van Tendeloo VF, Nijs G, Anguille S, Verlinden A, Gadisseur AP, Schroyens WA, Dom S, Cornille I, Goossens H, Berneman ZN. Medical costs of treatment and survival of patients with acute myeloid leukemia in Belgium. Leuk Res 2016; 46:26-9. [PMID: 27111858 DOI: 10.1016/j.leukres.2016.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/31/2016] [Indexed: 12/26/2022]
Abstract
The advent of new cell-based immunotherapies for leukemia offers treatment possibilities for certain leukemia subgroups. The wider acceptability of these new technologies in clinical practice will depend on its impact on survival and costs. Due to the small patient groups who have received it, these aspects have remained understudied. This non-randomized single-center study evaluated medical costs and survival for acute myeloid leukemia between 2005 and 2010 in 50 patients: patients treated with induction and consolidation chemotherapy (ICT) alone; patients treated with ICT plus allogeneic hematopoietic stem cell transplantation (HCT), which is the current preferred post-remission therapy in patients with intermediate- and poor-risk AML with few co-morbidities, and patients treated with ICT plus immunotherapy using autologous dendritic cells (DC) engineered to express the Wilms' tumor protein (WT1). Total costs including post- consolidation costs on medical care at the hematology ward and outpatient clinic, pharmaceutical prescriptions, intensive care ward, laboratory tests and medical imaging were analyzed. Survival was markedly better in HCT and DC. HCT and DC were more costly than ICT. The median total costs for HCT and DC were similar. These results need to be confirmed to enable more thorough cost-effectiveness analyses, based on observations from multicenter, randomized clinical trials and preferably using quality-adjusted life-years as an outcome measure.
Collapse
Affiliation(s)
- A L Van de Velde
- Division of Hematology, Antwerp University Hospital, Edegem, Belgium.
| | - P Beutels
- Centre for Health Economics Research & Modeling Infectious Diseases, University of Antwerp, Antwerp, Belgium
| | - E L Smits
- Center for Cell Therapy and Regenerative Medicine (CCRG), Antwerp University Hospital, Edegem, Belgium; Center for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - V F Van Tendeloo
- Center for Cell Therapy and Regenerative Medicine (CCRG), Antwerp University Hospital, Edegem, Belgium
| | - G Nijs
- Center for Cell Therapy and Regenerative Medicine (CCRG), Antwerp University Hospital, Edegem, Belgium
| | - S Anguille
- Division of Hematology, Antwerp University Hospital, Edegem, Belgium
| | - A Verlinden
- Division of Hematology, Antwerp University Hospital, Edegem, Belgium
| | - A P Gadisseur
- Division of Hematology, Antwerp University Hospital, Edegem, Belgium
| | - W A Schroyens
- Division of Hematology, Antwerp University Hospital, Edegem, Belgium
| | - S Dom
- Business Intelligence, Antwerp University Hospital, Edegem, Belgium
| | - I Cornille
- Business Intelligence, Antwerp University Hospital, Edegem, Belgium
| | - H Goossens
- Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Belgium
| | - Z N Berneman
- Division of Hematology, Antwerp University Hospital, Edegem, Belgium; Center for Cell Therapy and Regenerative Medicine (CCRG), Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
30
|
Anguille S, Smits EL, Bryant C, Van Acker HH, Goossens H, Lion E, Fromm PD, Hart DN, Van Tendeloo VF, Berneman ZN. Dendritic Cells as Pharmacological Tools for Cancer Immunotherapy. Pharmacol Rev 2015; 67:731-53. [DOI: 10.1124/pr.114.009456] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
31
|
Willemen Y, Van den Bergh JMJ, Lion E, Anguille S, Roelandts VAE, Van Acker HH, Heynderickx SDI, Stein BMH, Peeters M, Figdor CG, Van Tendeloo VFI, de Vries IJ, Adema GJ, Berneman ZN, Smits ELJ. Engineering monocyte-derived dendritic cells to secrete interferon-α enhances their ability to promote adaptive and innate anti-tumor immune effector functions. Cancer Immunol Immunother 2015; 64:831-42. [PMID: 25863943 PMCID: PMC11028489 DOI: 10.1007/s00262-015-1688-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/19/2015] [Indexed: 11/27/2022]
Abstract
Dendritic cell (DC) vaccination has demonstrated potential in clinical trials as a new effective cancer treatment, but objective and durable clinical responses are confined to a minority of patients. Interferon (IFN)-α, a type-I IFN, can bolster anti-tumor immunity by restoring or increasing the function of DCs, T cells and natural killer (NK) cells. Moreover, type-I IFN signaling on DCs was found to be essential in mice for tumor rejection by the innate and adaptive immune system. Targeted delivery of IFN-α by DCs to immune cells could boost the generation of anti-tumor immunity, while avoiding the side effects frequently associated with systemic administration. Naturally circulating plasmacytoid DCs, major producers of type-I IFN, were already shown capable of inducing tumor antigen-specific T cell responses in cancer patients without severe toxicity, but their limited number complicates their use in cancer vaccination. In the present work, we hypothesized that engineering easily generated human monocyte-derived mature DCs to secrete IFN-α using mRNA electroporation enhances their ability to promote adaptive and innate anti-tumor immunity. Our results show that IFN-α mRNA electroporation of DCs significantly increases the stimulation of tumor antigen-specific cytotoxic T cell as well as anti-tumor NK cell effector functions in vitro through high levels of IFN-α secretion. Altogether, our findings mark IFN-α mRNA-electroporated DCs as potent inducers of both adaptive and innate anti-tumor immunity and pave the way for clinical trial evaluation in cancer patients.
Collapse
Affiliation(s)
- Yannick Willemen
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Despite longstanding efforts in basic research and clinical studies, the prognosis for patients with acute myeloid leukemia (AML) remains poor. About half of the patients are not medically fit for intensive induction therapy to induce a complete remission and are treated with palliative treatment concepts. The patients medically fit for intensive induction therapy have a high complete remission rate but the majority suffers from relapse due to chemo-refractory leukemic cells. Allogeneic stem cell transplantation as post-remission therapy can significantly reduce the likelihood of relapse, but it is associated with a high rate of morbidity and mortality. Novel therapeutic concepts are therefore urgently sought after. During recent years, the focus has shifted towards the development of novel immunotherapeutic strategies. Some of the most promising are drug-conjugated monoclonal antibodies, T-cell engaging antibody constructs, adoptive transfer with chimeric antigen receptor (CAR) T cells, and dendritic cell vaccination. Here, we review recent progress in these four fields and speculate about the optimal time points during the course of AML treatment for their application.
Collapse
Affiliation(s)
- Felix S Lichtenegger
- Department of Internal Medicine III, Klinikum der Universität München, Munich, Germany; Clinical Cooperation Group Immunotherapy at the Helmholtz Institute Munich, Munich, Germany
| | - Christina Krupka
- Department of Internal Medicine III, Klinikum der Universität München, Munich, Germany; Clinical Cooperation Group Immunotherapy at the Helmholtz Institute Munich, Munich, Germany
| | - Thomas Köhnke
- Department of Internal Medicine III, Klinikum der Universität München, Munich, Germany; Clinical Cooperation Group Immunotherapy at the Helmholtz Institute Munich, Munich, Germany
| | - Marion Subklewe
- Department of Internal Medicine III, Klinikum der Universität München, Munich, Germany; Clinical Cooperation Group Immunotherapy at the Helmholtz Institute Munich, Munich, Germany.
| |
Collapse
|
33
|
Derolf ÅR, Laane E, Björklund E, Saft L, Björkholm M, Porwit A. Dendritic Cells in Bone Marrow at Diagnosis and after Chemotherapy in Adult Patients with Acute Myeloid Leukaemia. Scand J Immunol 2014; 80:424-31. [DOI: 10.1111/sji.12223] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 08/12/2014] [Indexed: 01/06/2023]
Affiliation(s)
- Å. R. Derolf
- Division of Hematology; Department of Medicine; Karolinska University Hospital Solna and Karolinska Institutet; Stockholm Sweden
| | - E. Laane
- Hematology-Oncology Clinic; Tartu University; Tartu Estonia
| | - E. Björklund
- Division of Pathology; Department of Oncology and Pathology; Karolinska University Hospital Solna and Karolinska Institutet; Stockholm Sweden
| | - L. Saft
- Division of Pathology; Department of Oncology and Pathology; Karolinska University Hospital Solna and Karolinska Institutet; Stockholm Sweden
| | - M. Björkholm
- Division of Hematology; Department of Medicine; Karolinska University Hospital Solna and Karolinska Institutet; Stockholm Sweden
| | - Anna Porwit
- Division of Pathology; Department of Oncology and Pathology; Karolinska University Hospital Solna and Karolinska Institutet; Stockholm Sweden
- Department of Pathobiology and Laboratory Medicine; University Health Network; Toronto ON Canada
| |
Collapse
|
34
|
Roothans D, Smits E, Lion E, Tel J, Anguille S. CD56 marks human dendritic cell subsets with cytotoxic potential. Oncoimmunology 2014; 2:e23037. [PMID: 23524451 PMCID: PMC3601173 DOI: 10.4161/onci.23037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Human plasmacytoid and myeloid dendritic cells (DCs), when appropriately stimulated, can express the archetypal natural killer (NK)-cell surface marker CD56. In addition to classical DC functions, CD56+ DCs are endowed with an unconventional cytotoxic capacity.
Collapse
Affiliation(s)
- Dessie Roothans
- Vaccine and Infectious Disease Institute (VAXINFECTIO); Laboratory of Experimental Hematology; University of Antwerp; Antwerp, Belgium
| | | | | | | | | |
Collapse
|
35
|
Anguille S, Smits EL, Lion E, van Tendeloo VF, Berneman ZN. Clinical use of dendritic cells for cancer therapy. Lancet Oncol 2014; 15:e257-67. [PMID: 24872109 DOI: 10.1016/s1470-2045(13)70585-0] [Citation(s) in RCA: 517] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since the mid-1990s, dendritic cells have been used in clinical trials as cellular mediators for therapeutic vaccination of patients with cancer. Dendritic cell-based immunotherapy is safe and can induce antitumour immunity, even in patients with advanced disease. However, clinical responses have been disappointing, with classic objective tumour response rates rarely exceeding 15%. Paradoxically, findings from emerging research indicate that dendritic cell-based vaccination might improve survival, advocating implementation of alternative endpoints to assess the true clinical potency of dendritic cell-based vaccination. We review the clinical effectiveness of dendritic cell-based vaccine therapy in melanoma, prostate cancer, malignant glioma, and renal cell carcinoma, and summarise the most important lessons from almost two decades of clinical studies of dendritic cell-based immunotherapy in these malignant disorders. We also address how the specialty is evolving, and which new therapeutic concepts are being translated into clinical trials to leverage the clinical effectiveness of dendritic cell-based cancer immunotherapy. Specifically, we discuss two main trends: the implementation of the next-generation dendritic cell vaccines that have improved immunogenicity, and the emerging paradigm of combination of dendritic cell vaccination with other cancer therapies.
Collapse
Affiliation(s)
- Sébastien Anguille
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium; Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium.
| | - Evelien L Smits
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium; Center for Oncological Research, University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Eva Lion
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Viggo F van Tendeloo
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Zwi N Berneman
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium; Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| |
Collapse
|
36
|
Continuous reduced nonrelapse mortality after allogeneic hematopoietic stem cell transplantation: a single-institution's three decade experience. Biol Blood Marrow Transplant 2014; 20:1217-23. [PMID: 24769328 DOI: 10.1016/j.bbmt.2014.04.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 04/15/2014] [Indexed: 01/06/2023]
Abstract
This study analyzed changes in patients, transplantation, graft characteristics, and outcome among 827 patients who received their first allo-SCT in a single center between 1983 and 2010. In the 2001 to 2010 decade, compared with the 1983 to 1990 and 1991 to 2000 decades, patients were significantly older and presented with higher risk diseases, reduced intensity conditioning and alternative donors were used more often, and stem cell sources changed from bone marrow to peripheral blood stem cells and cord blood. In the 2001 to 2010 decade, we observed a significant decrease in nonrelapse mortality (NRM) (P = .0007 and P < .0001, respectively) and an increase in relapse incidence (P = .04 and P = .009, respectively), but overall survival (OS) was increased (P = .11 and P = .009, respectively), and there was a trend towards an increased progression-free survival (P = .30 and P = .09, respectively), as compared with the 1983 to 1990 and 1991 to 2000 decades. Chronic graft-versus-host disease (GVHD) was significantly increased, whereas grades III to IV acute GVHD remained stable. These data suggest that, despite the fact that older and higher risk patients with more comorbidities underwent transplantation in the last 10 years, NRM decreased while the incidence of relapse increased and the OS improved.
Collapse
|
37
|
Cladribine exerts an immunomodulatory effect on human and murine dendritic cells. Int Immunopharmacol 2014; 18:347-57. [DOI: 10.1016/j.intimp.2013.11.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 11/05/2013] [Accepted: 11/22/2013] [Indexed: 11/22/2022]
|
38
|
Pyzer AR, Avigan DE, Rosenblatt J. Clinical trials of dendritic cell-based cancer vaccines in hematologic malignancies. Hum Vaccin Immunother 2014; 10:3125-31. [PMID: 25625926 PMCID: PMC4514037 DOI: 10.4161/21645515.2014.982993] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/17/2014] [Accepted: 10/05/2014] [Indexed: 11/19/2022] Open
Abstract
The potential for the immune system to target hematological malignancies is demonstrated in the allogeneic transplant setting, where durable responses can be achieved. However, allogeneic transplantation is associated with significant morbidity and mortality related to graft versus host disease. Cancer immunotherapy has the capacity to direct a specific cytotoxic immune response against cancer cells, particularly residual cancer cells, in order to reduce the likelihood of disease relapse in a more targeted and tolerated manner. Ex vivo dendritic cells can be primed in various ways to present tumor associated antigen to the immune system, in the context of co-stimulatory molecules, eliciting a tumor specific cytotoxic response in patients. Several approaches to prime dendritic cells and overcome the immunosuppressive microenvironment have been evaluated in pre-clinical and early clinical trials with promising results. In this review, we summarize the clinical data evaluating dendritic cell based vaccines for the treatment of hematological malignancies.
Collapse
Key Words
- AML, Acute Myeloid Leukemia
- ASCT, Autologous Stem Cell Transplant
- Apo-DC, Apoptotic body loaded- dendritic cells
- CML, Chronic Myeloid Leukemia
- CR, Complete response
- CTLA-4, Cytotoxic T-Lymphocyte Antigen 4
- DC/AML, Dendritic cell Acute Myeloid Leukemia fusion vaccine
- DC/MM, Dendritic cell Multiple Myeloma fusion vaccine
- DNA Deoxyribonucleic acid
- FLT-ITD, Fms-like Tyrosine Kinase with Internal Tandem Duplication
- GMCSF, Granulocyte macrophage colony-stimulating factor
- GVHD, Graft vs Host Disease
- HLA-A*2402, Human Leukocyte antigen A*2402
- IFN, Interferon
- IFNg, Interferon gamma
- IL, Interleukin
- Id, Idiotype
- KLH, Keyhole limpet hemocyanin
- MDS, Myelodysplastic syndrome
- MHC, Major histocompatibility complex
- OS, Overall Survival
- PD-1, Programmed death 1
- PD-L1, Programmed death-ligand 1
- PR, Partial response
- PRR, Pathogen recognition receptor
- RNA, Ribonucleic acid
- SCT, Stem cell transplant
- TGFB, Transforming growth factor β
- TNFα, Tumor necrosis factor α
- VEGF, Vascular endothelial growth factor
- VGPR, Very good partial response
- WT-1, Wilm's tumor suppressor gene 1
- cancer
- dendritic cell
- immunotherapy
- leukemia
- mRNA, mRNA
- myeloma
- pDCs, Plasmacytoid Dendritic cell
- trial
- vaccine
Collapse
Affiliation(s)
- Athalia R Pyzer
- Beth Israel Deaconess Medical Center; Harvard Medical School; Boston, MA USA
| | - David E Avigan
- Beth Israel Deaconess Medical Center; Harvard Medical School; Boston, MA USA
| | - Jacalyn Rosenblatt
- Beth Israel Deaconess Medical Center; Harvard Medical School; Boston, MA USA
| |
Collapse
|
39
|
Schürch CM, Riether C, Ochsenbein AF. Dendritic cell-based immunotherapy for myeloid leukemias. Front Immunol 2013; 4:496. [PMID: 24427158 PMCID: PMC3876024 DOI: 10.3389/fimmu.2013.00496] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/17/2013] [Indexed: 01/21/2023] Open
Abstract
Acute and chronic myeloid leukemia (AML, CML) are hematologic malignancies arising from oncogene-transformed hematopoietic stem/progenitor cells known as leukemia stem cells (LSCs). LSCs are selectively resistant to various forms of therapy including irradiation or cytotoxic drugs. The introduction of tyrosine kinase inhibitors has dramatically improved disease outcome in patients with CML. For AML, however, prognosis is still quite dismal. Standard treatments have been established more than 20 years ago with only limited advances ever since. Durable remission is achieved in less than 30% of patients. Minimal residual disease (MRD), reflected by the persistence of LSCs below the detection limit by conventional methods, causes a high rate of disease relapses. Therefore, the ultimate goal in the treatment of myeloid leukemia must be the eradication of LSCs. Active immunotherapy, aiming at the generation of leukemia-specific cytotoxic T cells (CTLs), may represent a powerful approach to target LSCs in the MRD situation. To fully activate CTLs, leukemia antigens have to be successfully captured, processed, and presented by mature dendritic cells (DCs). Myeloid progenitors are a prominent source of DCs under homeostatic conditions, and it is now well established that LSCs and leukemic blasts can give rise to "malignant" DCs. These leukemia-derived DCs can express leukemia antigens and may either induce anti-leukemic T cell responses or favor tolerance to the leukemia, depending on co-stimulatory or -inhibitory molecules and cytokines. This review will concentrate on the role of DCs in myeloid leukemia immunotherapy with a special focus on their generation, application, and function and how they could be improved in order to generate highly effective and specific anti-leukemic CTL responses. In addition, we discuss how DC-based immunotherapy may be successfully integrated into current treatment strategies to promote remission and potentially cure myeloid leukemias.
Collapse
Affiliation(s)
- Christian M Schürch
- Tumor Immunology, Department of Clinical Research, University of Bern , Bern , Switzerland ; Institute of Pathology, University of Bern , Bern , Switzerland
| | - Carsten Riether
- Tumor Immunology, Department of Clinical Research, University of Bern , Bern , Switzerland
| | - Adrian F Ochsenbein
- Tumor Immunology, Department of Clinical Research, University of Bern , Bern , Switzerland ; Department of Medical Oncology, Inselspital, University Hospital Bern , Bern , Switzerland
| |
Collapse
|
40
|
Liu X, Hu J, Cao W, Qu H, Wang Y, Ma Z, Li F. Effects of two different immunotherapies on triple negative breast cancer in animal model. Cell Immunol 2013; 284:111-8. [PMID: 23973874 DOI: 10.1016/j.cellimm.2013.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 07/09/2013] [Accepted: 07/29/2013] [Indexed: 01/23/2023]
Abstract
The ability of immune system to react specifically against tumors inspirited the study of triple negative breast cancer (TNBC) immunotherapies. Sixty spontaneous breast cancer TA2 mice were randomly divided into three groups: GM-CSF group, with therapy of granulocyte-macrophage colony-stimulating factor (GM-CSF) combined with breast cancer stem cells associated antigens and cytosine-phosphorothioate-guanine oligodeoxynucleotides (CpG-ODNs); DC-CIK group, with infusions of dendritic cells/cytokine-induced killer (DC/CIK) cells; and PBS group as controls. After therapy, the cellular immunity of mice in GM-CSF group and DC-CIK group was obviously increased, especially for GM-CSF group (P<0.05), tumor regression was obviously observed in GM-CSF group. The survival rate of mice in GM-CSF group was significantly higher compared to DC-CIK group and PBS group. These results indicated that tumor immunotherapy manifested strong killing activity against TNBC. The therapeutic effect of GM-CSF combined with antigens and CpG was better than DC-CIK cells.
Collapse
Affiliation(s)
- Xiaoyi Liu
- Department of Galactophore, The Affiliated Hospital of Medical College, Qingdao University, No. 59, Haier Road, Qingdao, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Anguille S, Lion E, Van den Bergh J, Van Acker HH, Willemen Y, Smits EL, Van Tendeloo VF, Berneman ZN. Interleukin-15 dendritic cells as vaccine candidates for cancer immunotherapy. Hum Vaccin Immunother 2013; 9:1956-61. [PMID: 23778748 DOI: 10.4161/hv.25373] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Owing to their professional antigen-presenting capacity and unique potential to induce tumor antigen-specific T cell immunity, dendritic cells (DCs) have attracted much interest over the past decades for therapeutic vaccination against cancer. Clinical trials have shown that the use of tumor antigen-loaded DCs in cancer patients is safe and that it has the potential to induce anti-tumor immunity which, in some cases, culminates in striking clinical responses. Unfortunately, in a considerable number of patients, DC vaccination is unable to mount effective anti-tumor immune responses and, if it does so, the resultant immunity is often insufficient to translate into tangible clinical benefit. This underscores the necessity to re-design and optimize the current procedures for DC vaccine manufacturing. A new generation of DC vaccines with improved potency has now become available for clinical use as a result of extensive pre-clinical research. One of the promising next-generation DC vaccine candidates are interleukin (IL)-15-differentiated DCs. In this commentary, we will compile the research data that have been obtained by our group and other groups with these so-called IL-15 DCs and summarize the evidence supporting the implementation of IL-15 DCs in DC-based cancer vaccination regimens.
Collapse
Affiliation(s)
- Sébastien Anguille
- Vaccine & Infectious Disease Institute; Laboratory of Experimental Hematology; Tumor Immunology Group (TIGR); University of Antwerp; Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine; Antwerp University Hospital; Antwerp, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Current World Literature. Curr Opin Rheumatol 2013; 25:275-83. [DOI: 10.1097/bor.0b013e32835eb755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Anguille S, Lion E, Tel J, de Vries IJM, Couderé K, Fromm PD, Van Tendeloo VF, Smits EL, Berneman ZN. Interleukin-15-induced CD56(+) myeloid dendritic cells combine potent tumor antigen presentation with direct tumoricidal potential. PLoS One 2012; 7:e51851. [PMID: 23284789 PMCID: PMC3532168 DOI: 10.1371/journal.pone.0051851] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 11/07/2012] [Indexed: 11/18/2022] Open
Abstract
Dendritic cells (DCs) are the quintessential antigen-presenting cells of the human immune system and play a prime role in coordinating innate and adaptive immune responses, explaining the strong and still growing interest in their application for cancer immunotherapy. Much current research in the field of DC-based immunotherapy focuses on optimizing the culture conditions for in vitro DC generation in order to assure that DCs with the best possible immunogenic qualities are being used for immunotherapy. In this context, monocyte-derived DCs that are alternatively induced by interleukin-15 (IL-15 DCs) have attracted recent attention due to their superior immunostimulatory characteristics. In this study, we show that IL-15 DCs, in addition to potent tumor antigen-presenting function, possess tumoricidal potential and thus qualify for the designation of killer DCs. Notwithstanding marked expression of the natural killer (NK) cell marker CD56 on a subset of IL-15 DCs, we found no evidence of a further phenotypic overlap between IL-15 DCs and NK cells. Allostimulation and antigen presentation assays confirmed that IL-15 DCs should be regarded as bona fide myeloid DCs not only from the phenotypic but also from the functional point of view. Concerning their cytotoxic activity, we demonstrate that IL-15 DCs are able to induce apoptotic cell death of the human K562 tumor cell line, while sparing tumor antigen-specific T cells. The cytotoxicity of IL-15 DCs is predominantly mediated by granzyme B and, to a small extent, by tumor necrosis factor-α (TNF-α)-related apoptosis-inducing ligand (TRAIL) but is independent of perforin, Fas ligand and TNF-α. In conclusion, our data provide evidence of a previously unappreciated role for IL-15 in the differentiation of human monocytes towards killer DCs. The observation that IL-15 DCs have killer DC capacity lends further support to their implementation in DC-based immunotherapy protocols.
Collapse
Affiliation(s)
- Sébastien Anguille
- University of Antwerp, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VAXINFECTIO), Laboratory of Experimental Hematology, Antwerp, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lichtman MA. A historical perspective on the development of the cytarabine (7days) and daunorubicin (3days) treatment regimen for acute myelogenous leukemia: 2013 the 40th anniversary of 7+3. Blood Cells Mol Dis 2012; 50:119-30. [PMID: 23154039 DOI: 10.1016/j.bcmd.2012.10.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 10/17/2012] [Indexed: 12/30/2022]
Abstract
This paper reviews the development of therapy for acute myelogenous leukemia that in 1973 led to the regimen of 7days of continuous intravenous arabinosylcytosine (cytarabine) and the first 3 concurrent days of intravenous daunorubicin, given the nickname "7+3." The state of leukemia treatment in the 1950s, 1960s and early 1970s is reviewed, the discovery of the two drugs in question described, and the introduction of clinical trials to reach an optimal regimen for their use delineated. During the 1950s, following World War Two and after a period of civil reconstitution, a national effort, facilitated by the U.S. Congress and federal investments in the National Cancer Institute, was initiated to enhance cancer therapy in the United States. The development of mouse models of leukemia and advances in understanding the structure and function of DNA and RNA and the process of cell proliferation provided new targets for drug development and new concepts for their use. The year, 2013, marks the 40th year that this protocol, 7+3, is the method of induction of remission for most patients with acute myelogenous leukemia. Its inadequacies also are made clear. Many patients with the disease die soon after diagnosis, and patients who have more unfavorable oncogenetic subtypes, intrinsically drug resistant cells, and greater intolerance to therapy make up the vast majority of the affected and few are cured. It is evident to all that new paradigms are needed if acute myelogenous leukemia is to be subdued in most patients with the disease.
Collapse
Affiliation(s)
- Marshall A Lichtman
- University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|