1
|
Saha A, Pushpa, Moitra S, Basak D, Brahma S, Mondal D, Molla SH, Samadder A, Nandi S. Targeting Cysteine Proteases and their Inhibitors to Combat Trypanosomiasis. Curr Med Chem 2024; 31:2135-2169. [PMID: 37340748 DOI: 10.2174/0929867330666230619160509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/21/2023] [Accepted: 05/18/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Trypanosomiasis, caused by protozoan parasites of the Trypanosoma genus, remains a significant health burden in several regions of the world. Cysteine proteases play a crucial role in the pathogenesis of Trypanosoma parasites and have emerged as potential therapeutic targets for the development of novel antiparasitic drugs. INTRODUCTION This review article aims to provide a comprehensive overview of the role of cysteine proteases in trypanosomiasis and their potential as therapeutic targets. We discuss the biological significance of cysteine proteases in Trypanosoma parasites and their involvement in essential processes, such as host immune evasion, cell invasion, and nutrient acquisition. METHODS A comprehensive literature search was conducted to identify relevant studies and research articles on the role of cysteine proteases and their inhibitors in trypanosomiasis. The selected studies were critically analyzed to extract key findings and provide a comprehensive overview of the topic. RESULTS Cysteine proteases, such as cruzipain, TbCatB and TbCatL, have been identified as promising therapeutic targets due to their essential roles in Trypanosoma pathogenesis. Several small molecule inhibitors and peptidomimetics have been developed to target these proteases and have shown promising activity in preclinical studies. CONCLUSION Targeting cysteine proteases and their inhibitors holds great potential for the development of novel antiparasitic drugs against trypanosomiasis. The identification of potent and selective cysteine protease inhibitors could significantly contribute to the combat against trypanosomiasis and improve the prospects for the treatment of this neglected tropical disease.
Collapse
Affiliation(s)
- Aloke Saha
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Pushpa
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Susmita Moitra
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Deblina Basak
- Endocrinology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sayandeep Brahma
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Dipu Mondal
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sabir Hossen Molla
- Parasitology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Asmita Samadder
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sisir Nandi
- Global Institute of Pharmaceutical Education and Research (Affiliated to Veer Madho Singh Bhandari Uttarakhand Technical University), Kashipur, 244713, India
| |
Collapse
|
2
|
Carvalho DB, das Neves AR, Portapilla GB, Soares O, Santos LBB, Oliveira JRS, Vianna LS, Judice WAS, Cardoso IA, Luccas PH, Nonato MC, Lopes NP, de Albuquerque S, Baroni ACM. Repurposing of 5‐nitrofuran‐3,5‐disubstituted isoxazoles: A thriving scaffold to antitrypanosomal agents. Arch Pharm (Weinheim) 2022; 356:e2200472. [PMID: 36534890 DOI: 10.1002/ardp.202200472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Chagas disease (CD) is a neglected disease caused by the protozoan Trypanosoma cruzi. The two drugs used in the treatment schedules exhibit adverse effects and severe toxicity. Thus, searching for new antitrypanosomal agents is urgent to provide improved treatments to those affected by this disease. 5-Nitrofuran-isoxazole analogs were synthesized by cycloaddition reactions [3+2] between chloro-oximes and acetylenes in satisfactory yields. We analyzed the structure-activity relationship of the analogs based on Hammett's and Hansch's parameters. The 5-nitrofuran-isoxazole analogs exhibited relevant in vitro antitrypanosomal activity against the amastigote forms of T. cruzi. Analog 7s was the trending hit of the series, showing an IC50 value of 40 nM and a selectivity index of 132.50. A possible explanation for this result may be the presence of an electrophile near the isoxazole core. Moreover, the most active analogs proved to act as an in vitro substrate of type I nitroreductase rather than the cruzain, enzymes commonly investigated in molecular target studies of CD drug discovery. These findings suggest that 5-nitrofuran-isoxazole analogs are promising in the studies of agents for CD treatment.
Collapse
Affiliation(s)
- Diego B. Carvalho
- Laboratório de Síntese e Química Medicinal (LASQUIM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição Universidade Federal de Mato Grossso do Sul (UFMS) Campo Grande Mato Grosso do Sul Brazil
| | - Amarith R. das Neves
- Laboratório de Síntese e Química Medicinal (LASQUIM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição Universidade Federal de Mato Grossso do Sul (UFMS) Campo Grande Mato Grosso do Sul Brazil
- Laboratório de Parasitologia Humana, Instituto de Biociências Universidade Federal de Mato Grossso do Sul (UFMS) Campo Grande Mato Grosso do Sul Brazil
| | - Gisele B. Portapilla
- Departamento de Análises Clínicas Toxicológicas e Bromatológicas Faculdade de Ciências Farmacêuticas de Ribeirão Preto—Universidade de São Paulo Ribeirão Preto São Paulo Brazil
| | - Ozildeia Soares
- Laboratório de Síntese e Química Medicinal (LASQUIM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição Universidade Federal de Mato Grossso do Sul (UFMS) Campo Grande Mato Grosso do Sul Brazil
| | - Larissa B. B. Santos
- Laboratório de Síntese e Química Medicinal (LASQUIM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição Universidade Federal de Mato Grossso do Sul (UFMS) Campo Grande Mato Grosso do Sul Brazil
| | - Jefferson R. S. Oliveira
- Laboratório de Síntese e Química Medicinal (LASQUIM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição Universidade Federal de Mato Grossso do Sul (UFMS) Campo Grande Mato Grosso do Sul Brazil
| | - Luan S. Vianna
- Interdisciplinary Center for Biochemical Research University of Mogi das Cruzes (UMC) Mogi das Cruzes SP Brazil
| | - Wagner A. S. Judice
- Interdisciplinary Center for Biochemical Research University of Mogi das Cruzes (UMC) Mogi das Cruzes SP Brazil
| | - Iara A. Cardoso
- Laboratório de Cristalografia de Proteínas, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | - Pedro H. Luccas
- Laboratório de Cristalografia de Proteínas, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | - M. Cristina Nonato
- Laboratório de Cristalografia de Proteínas, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | - Norberto P. Lopes
- Núcleo de Pesquisas em Produtos Naturais e Sintéticos, Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | - Sergio de Albuquerque
- Departamento de Análises Clínicas Toxicológicas e Bromatológicas Faculdade de Ciências Farmacêuticas de Ribeirão Preto—Universidade de São Paulo Ribeirão Preto São Paulo Brazil
| | - Adriano C. M. Baroni
- Laboratório de Síntese e Química Medicinal (LASQUIM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição Universidade Federal de Mato Grossso do Sul (UFMS) Campo Grande Mato Grosso do Sul Brazil
| |
Collapse
|
3
|
Santos SS, Gonzaga RV, Scarim CB, Giarolla J, Primi MC, Chin CM, Ferreira EI. Drug/Lead Compound Hydroxymethylation as a Simple Approach to Enhance Pharmacodynamic and Pharmacokinetic Properties. Front Chem 2022; 9:734983. [PMID: 35237565 PMCID: PMC8883432 DOI: 10.3389/fchem.2021.734983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Hydroxymethylation is a simple chemical reaction, in which the introduction of the hydroxymethyl group can lead to physical–chemical property changes and offer several therapeutic advantages, contributing to the improved biological activity of drugs. There are many examples in the literature of the pharmaceutical, pharmacokinetic, and pharmacodynamic benefits, which the hydroxymethyl group can confer to drugs, prodrugs, drug metabolites, and other therapeutic compounds. It is worth noting that this group can enhance the drug’s interaction with the active site, and it can be employed as an intermediary in synthesizing other therapeutic agents. In addition, the hydroxymethyl derivative can result in more active compounds than the parent drug as well as increase the water solubility of poorly soluble drugs. Taking this into consideration, this review aims to discuss different applications of hydroxymethyl derived from biological agents and its influence on the pharmacological effects of drugs, prodrugs, active metabolites, and compounds of natural origin. Finally, we report a successful compound synthesized by our research group and used for the treatment of neglected diseases, which is created from the hydroxymethylation of its parent drug.
Collapse
Affiliation(s)
- Soraya S. Santos
- Laboratório de Planejamento e Síntese de Quimioterápicos Potencialmente Ativos Em Doenças Negligenciadas (LAPEN), Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo – USP, São Paulo, Brazil
| | - Rodrigo V. Gonzaga
- Laboratório de Planejamento e Síntese de Quimioterápicos Potencialmente Ativos Em Doenças Negligenciadas (LAPEN), Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo – USP, São Paulo, Brazil
| | - Cauê B. Scarim
- Laboratório de Pesquisa e Desenvolvimento de Fármacos (LAPDESF), Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual de São Paulo “Júlio de Mesquita Filho” (UNESP), Araraquara, Brazil
| | - Jeanine Giarolla
- Laboratório de Planejamento e Síntese de Quimioterápicos Potencialmente Ativos Em Doenças Negligenciadas (LAPEN), Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo – USP, São Paulo, Brazil
| | | | - Chung M. Chin
- Laboratório de Pesquisa e Desenvolvimento de Fármacos (LAPDESF), Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual de São Paulo “Júlio de Mesquita Filho” (UNESP), Araraquara, Brazil
- Centro de Pesquisa Avançada Em Medicina (CEPAM), Faculdade de Medicina, União Das Faculdades Dos Grande Lagos (UNILAGO), São José Do Rio Preto, Brazil
| | - Elizabeth I. Ferreira
- Laboratório de Planejamento e Síntese de Quimioterápicos Potencialmente Ativos Em Doenças Negligenciadas (LAPEN), Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo – USP, São Paulo, Brazil
- *Correspondence: Elizabeth I. Ferreira,
| |
Collapse
|
4
|
El-Wakil MH, Meheissen MA, Abu-Serie MM. Nitrofurazone repurposing towards design and synthesis of novel apoptotic-dependent anticancer and antimicrobial agents: Biological evaluation, kinetic studies and molecular modeling. Bioorg Chem 2021; 113:104971. [PMID: 34051413 DOI: 10.1016/j.bioorg.2021.104971] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/13/2021] [Accepted: 05/04/2021] [Indexed: 01/02/2023]
Abstract
Drug repurposing has gained much attention as a cost-effective strategy that plays an exquisite role in identifying undescribed biological activities in clinical drugs. In the present work, we report the repurposing of the antibacterial drug nitrofurazone (NFZ) as a potential anticancer agent against CaCo-2, MDA-MB 231 and HepG-2 cancer cell lines. Novel series of nitrofurazone analogs were then designed considering the important pharmacologic features present in NFZ. Synthesis and biological evaluation of the target compounds revealed their promising anticancer activities endowed with antimicrobial potential and possessing better lipophilicity than NFZ. Compound 7, exclusively, inhibited the growth of all tested cancer cells more potently than NFZ with the least cytotoxicity against normal cells, displaying anti Gram-positive bacterial activities and antifungal potential. Analysis of the stereo-electronic properties of compound 7 via investigating the energies of HOMO, LUMO, HOMO-LUMO energy gap and MEP maps demonstrated its high reactivity and the expected molecular mechanism of action through reduction of the 5-nitrofuryl moiety. Data of the bioactivity studies indicated that the potent anticancer activity of 7 is mainly through increasing intracellular ROS levels and induction of apoptosis via significantly down-regulating the expression of Bcl-2 while up-regulating BAX, p53 and caspase 3 expression levels. Compound 7 potently inhibited the cellular expression levels of antioxidant enzymes GPx1 and GR compared to NFZ. Antioxidant enzymes kinetic studies and blind molecular docking simulations disclosed the mechanistic and structural aspects of the interaction between 7 and both GR and GPx1. Thus, the successful discovery of 7 as a potential dual anticancer-antimicrobial nitrofurazone analog might validate the applicability of drug repurposing strategy in unravelling the unrecognized bioactivity of the present conventional drugs, besides furnishing the way towards more optimization and development studies.
Collapse
Affiliation(s)
- Marwa H El-Wakil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | - Marwa Ahmed Meheissen
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Alexandria University, Alexandria 21521, Egypt
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt
| |
Collapse
|
5
|
Santiago NN, de Alcântara GP, da Costa JS, Carvalho SA, Barbosa JM, Salomão K, de Castro SL, Pereira HM, da Silva EF. Synthesis and Antitrypanosomal Profile of Novel Hydrazonoyl Derivatives. Med Chem 2020; 16:487-494. [DOI: 10.2174/1573406415666190712115237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/24/2019] [Accepted: 06/18/2019] [Indexed: 11/22/2022]
Abstract
Background:
Approximately, 5-7 million people are infected with T. cruzi in the world,
and approximately 10,000 people per year die of complications linked to this disease.
Method:
This work describes the construction of a new family of hidrazonoyl substituted derivatives,
structurally designed exploring the molecular hybridization between megazol and nitrofurazone.
Results and Discussion:
The compounds were evaluated for their in vitro activity against bloodstream
trypomastigotes of Trypanosoma cruzi, etiological agent of Chagas disease, and for their
potential toxicity to mammalian cells.
Conclusion:
Among these hydrazonoyl derivatives, we identified the derivative (4) that showed
trypanocidal activity (IC50/24 h = 15.0 µM) similar to Bz, the standard drug, and low toxicity to
mammalian cells, reaching an SI value of 18.7.
Collapse
Affiliation(s)
- Natália N. Santiago
- Instituto de Tecnologia em Farmacos, Farmanguinhos, Laboratorio de sintese 1, Fundacao Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Giulianna P. de Alcântara
- Instituto de Tecnologia em Farmacos, Farmanguinhos, Laboratorio de sintese 1, Fundacao Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Juliana S. da Costa
- Instituto de Tecnologia em Farmacos, Farmanguinhos, Laboratorio de sintese 1, Fundacao Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Samir A. Carvalho
- Instituto de Tecnologia em Farmacos, Farmanguinhos, Laboratorio de sintese 1, Fundacao Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Juliana M.C. Barbosa
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Kelly Salomão
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Solange L. de Castro
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Henrique M.G. Pereira
- Programa de Pos-Graduacao em Quimica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Edson F. da Silva
- Instituto de Tecnologia em Farmacos, Farmanguinhos, Laboratorio de sintese 1, Fundacao Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
6
|
Zuma NH, Aucamp J, N'Da DD. An update on derivatisation and repurposing of clinical nitrofuran drugs. Eur J Pharm Sci 2019; 140:105092. [DOI: 10.1016/j.ejps.2019.105092] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 10/25/2022]
|
7
|
Nitroheterocyclic derivatives: privileged scaffold for drug development against Chagas disease. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02453-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Scarim CB, de Andrade CR, da Rosa JA, dos Santos JL, Chin CM. Hydroxymethylnitrofurazone treatment in indeterminate form of chronic Chagas disease: Reduced intensity of tissue parasitism and inflammation-A histopathological study. Int J Exp Pathol 2018; 99:236-248. [PMID: 30320480 PMCID: PMC6302791 DOI: 10.1111/iep.12289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 07/25/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022] Open
Abstract
Hydroxymethylnitrofurazone (NFOH) is a nitrofurazone prodrug effective in vivo during acute infections, and it has less hepatotoxicity effect than the standard drug benznidazole (BZN) which has been used during short- and long-term treatment. In the present study, we induced the indeterminate form of Chagas disease in mice with a Y strain of Trypanosoma cruzi and analysed the histopathological data about the effects of NFOH and BZN on different tissues, including the heart, skeletal muscle, liver, kidney, colon, spleen and brain. After infection, BALB/c mice were treated with NFOH (150 mg/kg) and BZN (60 mg/kg) for 60 days and then submitted to immunosuppression using dexamethasone (5 mg/kg) for 14 days. Two trained analysts, as part of a blind evaluation, examined the results using serial sections of 3 mm diameter in two different moments. The results showed reactivation of the disease only in the infected nontreated group (POS). After treatment, amastigote nests were found in the heart, colon, liver and skeletal muscle in the POS group and in the heart and liver of the BZN group. Interestingly, amastigote nests were not found in the NFOH and NEG groups. The histopathological analysis showed fewer tissue lesions and parasite infiltrates in the NFOH group when compared with the BZN and POS groups. We have not observed any increase in the levels of hepatocellular injury biomarkers (AST/ALT) in the NFOH group. These in vivo studies show the potential for NFOH as an effective and safe compound useful as an anti-T. cruzi agent.
Collapse
Affiliation(s)
- Cauê B. Scarim
- São Paulo State University (UNESP)School of Pharmaceutical SciencesDepartment of Drugs and MedicinesLapdesf ‐ Laboratory of Research and Development of DrugsAraraquaraSão PauloBrazil
| | - Cleverton R. de Andrade
- São Paulo State University (UNESP)Faculty of DentistryDepartment of Physiology and PathologyAraraquaraSão PauloBrazil
| | - João A. da Rosa
- São Paulo State University (UNESP)School of Pharmaceutical SciencesDepartment of Biological SciencesAraraquaraSão PauloBrazil
| | - Jean L. dos Santos
- São Paulo State University (UNESP)School of Pharmaceutical SciencesDepartment of Drugs and MedicinesLapdesf ‐ Laboratory of Research and Development of DrugsAraraquaraSão PauloBrazil
| | - Chung M. Chin
- São Paulo State University (UNESP)School of Pharmaceutical SciencesDepartment of Drugs and MedicinesLapdesf ‐ Laboratory of Research and Development of DrugsAraraquaraSão PauloBrazil
| |
Collapse
|
9
|
Scarim CB, Jornada DH, Chelucci RC, de Almeida L, Dos Santos JL, Chung MC. Current advances in drug discovery for Chagas disease. Eur J Med Chem 2018; 155:824-838. [PMID: 30033393 DOI: 10.1016/j.ejmech.2018.06.040] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022]
Abstract
Chagas disease, also known as American trypanosomiasis, is one of the 17 neglected tropical diseases (NTDs) according to World Health Organization. It is estimated that 8-10 million people are infected worldwide, mainly in Latin America. Chagas disease is caused by the parasite Trypanosoma cruzi and is characterized by two phases: acute and chronic. The current therapy for Chagas disease is limited to drugs such as nifurtimox and benznidazole, which are effective in treating only the acute phase of the disease. In addition, several side effects ranging from hypersensitivity to bone marrow depression and peripheral polyneuropathy have been associated with these drugs. Therefore, the current challenge is to find new effective and safe drugs against this NTD. The aim of this review is to describe the advances in the medicinal chemistry of new anti-chagasic compounds reported in the literature in the last five years. We report promising prototypes for drug discovery identified through target-based and phenotype-based strategies and present some important targets for the development of new synthetic compounds.
Collapse
Affiliation(s)
- Cauê Benito Scarim
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Araraquara, SP, Brazil.
| | - Daniela Hartmann Jornada
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Araraquara, SP, Brazil
| | - Rafael Consolin Chelucci
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Araraquara, SP, Brazil
| | - Leticia de Almeida
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, USP, Brazil
| | - Jean Leandro Dos Santos
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Araraquara, SP, Brazil
| | - Man Chin Chung
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Araraquara, SP, Brazil
| |
Collapse
|
10
|
Chiavassa LD, La-Scalea MA. Square wave voltammetry of nitrofurans in aqueous media using a carbon fiber microelectrode. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-017-3751-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
de Souza AS, de Oliveira MT, Andricopulo AD. Development of a pharmacophore for cruzain using oxadiazoles as virtual molecular probes: quantitative structure–activity relationship studies. J Comput Aided Mol Des 2017; 31:801-816. [DOI: 10.1007/s10822-017-0039-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/27/2017] [Indexed: 11/29/2022]
|
12
|
Silva DG, Rocha JR, Sartori GR, Montanari CA. Highly predictive hologram QSAR models of nitrile-containing cruzain inhibitors. J Biomol Struct Dyn 2016; 35:3232-3249. [DOI: 10.1080/07391102.2016.1252282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Daniel Gedder Silva
- Grupo de Química Medicinal, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos – SP 13566-590, Brazil
| | - Josmar Rodrigues Rocha
- Grupo de Química Medicinal, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos – SP 13566-590, Brazil
| | - Geraldo Rodrigues Sartori
- Grupo de Química Medicinal, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos – SP 13566-590, Brazil
| | - Carlos Alberto Montanari
- Grupo de Química Medicinal, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos – SP 13566-590, Brazil
| |
Collapse
|
13
|
Vital DG, Damasceno FS, Rapado LN, Silber AM, Vilella FS, Ferreira RS, Maltarollo VG, Trossini GHG. Application of bioisosterism in design of the semicarbazone derivatives as cruzain inhibitors: a theoretical and experimental study. J Biomol Struct Dyn 2016; 35:1244-1259. [DOI: 10.1080/07391102.2016.1176603] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Drielli G. Vital
- Department of Pharmacy, University of Sao Paulo, Sao Paulo, Brazil
| | - Flávia S. Damasceno
- Laboratory of Biochemistry of Tryps - LaBTryps - Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ludmila N. Rapado
- Laboratory of Biochemistry of Tryps - LaBTryps - Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ariel M. Silber
- Laboratory of Biochemistry of Tryps - LaBTryps - Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Filipe S. Vilella
- Department of Biochemistry and Immunology, University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rafaela S. Ferreira
- Department of Biochemistry and Immunology, University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | |
Collapse
|
14
|
Silva FT, Franco CH, Favaro DC, Freitas-Junior LH, Moraes CB, Ferreira EI. Design, synthesis and antitrypanosomal activity of some nitrofurazone 1,2,4-triazolic bioisosteric analogues. Eur J Med Chem 2016; 121:553-560. [PMID: 27318979 DOI: 10.1016/j.ejmech.2016.04.065] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 12/30/2022]
Abstract
Chagas disease, caused by Trypanosoma cruzi, is a parasitosis that predominates in Latin America. It is estimated that 25 million people are under the risk of infection and, in 2008, more than 10 thousand deaths were registered. The only two drugs available in the therapeutics, nifurtimox and benznidazole, showed to be more effective in the acute phase of the disease. However, there is no standard treatment protocol effective for the chronic phase. Nitrofurazone (NF), an antimicrobial drug, has activity against T. cruzi, although being toxic. Considering the need for new antichagasic drugs, the existence of promising new therapeutic targets, as 14α-sterol demethylase and cruzain, and employing the bioisosterism and molecular hybridization approaches, four novel compounds were synthesized, characterized by melting point range, elemental analysis, IR and NMR spectroscopy. The compounds were tested against T. cruzi amastigotes in infected U2OS cells. All compounds showed selectivity towards T. cruzi and showed trypanomicidal activity in low micromolar range. The compound 3 showed potency similar to benznidazole, but lower efficacy. These results highlight the importance of the 1,2,4-triazole, thiosemicarbazonic and nitro group moieties for designing new efficient compounds, potentially for the chronic phase of Chagas disease.
Collapse
Affiliation(s)
- Fredson T Silva
- School of Pharmaceutical Sciences, University of São Paulo, Avenida Prof. Lineu Prestes, 580, Bl. 13, São Paulo, São Paulo, Brazil
| | - Caio H Franco
- National Laboratory of Biosciences, National Center for Research on Energy and Materials, Rua Giuseppe Máximo Scolfaro, 10000, Campinas, São Paulo, Brazil
| | - Denize C Favaro
- Institute of Chemistry, University of São Paulo, Avenida Prof. Lineu Prestes, 748, São Paulo, São Paulo, Brazil; Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lucio H Freitas-Junior
- National Laboratory of Biosciences, National Center for Research on Energy and Materials, Rua Giuseppe Máximo Scolfaro, 10000, Campinas, São Paulo, Brazil
| | - Carolina B Moraes
- National Laboratory of Biosciences, National Center for Research on Energy and Materials, Rua Giuseppe Máximo Scolfaro, 10000, Campinas, São Paulo, Brazil
| | - Elizabeth I Ferreira
- School of Pharmaceutical Sciences, University of São Paulo, Avenida Prof. Lineu Prestes, 580, Bl. 13, São Paulo, São Paulo, Brazil.
| |
Collapse
|
15
|
Bermudez J, Davies C, Simonazzi A, Pablo Real J, Palma S. Current drug therapy and pharmaceutical challenges for Chagas disease. Acta Trop 2016; 156:1-16. [PMID: 26747009 DOI: 10.1016/j.actatropica.2015.12.017] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/23/2015] [Accepted: 12/25/2015] [Indexed: 12/11/2022]
Abstract
One of the most significant health problems in the American continent in terms of human health, and socioeconomic impact is Chagas disease, caused by the protozoan parasite Trypanosoma cruzi. Infection was originally transmitted by reduviid insects, congenitally from mother to fetus, and by oral ingestion in sylvatic/rural environments, but blood transfusions, organ transplants, laboratory accidents, and sharing of contaminated syringes also contribute to modern day transmission. Likewise, Chagas disease used to be endemic from Northern Mexico to Argentina, but migrations have earned it global. The parasite has a complex life cycle, infecting different species, and invading a variety of cells - including muscle and nerve cells of the heart and gastrointestinal tract - in the mammalian host. Human infection outcome is a potentially fatal cardiomyopathy, and gastrointestinal tract lesions. In absence of a vaccine, vector control and treatment of patients are the only tools to control the disease. Unfortunately, the only drugs now available for Chagas' disease, Nifurtimox and Benznidazole, are relatively toxic for adult patients, and require prolonged administration. Benznidazole is the first choice for Chagas disease treatment due to its lower side effects than Nifurtimox. However, different strategies are being sought to overcome Benznidazole's toxicity including shorter or intermittent administration schedules-either alone or in combination with other drugs. In addition, a long list of compounds has shown trypanocidal activity, ranging from natural products to specially designed molecules, re-purposing drugs commercialized to treat other maladies, and homeopathy. In the present review, we will briefly summarize the upturns of current treatment of Chagas disease, discuss the increment on research and scientific publications about this topic, and give an overview of the state-of-the-art research aiming to produce an alternative medication to treat T. cruzi infection.
Collapse
|
16
|
Espíndola JWP, Cardoso MVDO, Filho GBDO, Oliveira e Silva DA, Moreira DRM, Bastos TM, Simone CAD, Soares MBP, Villela FS, Ferreira RS, Castro MCABD, Pereira VRA, Murta SMF, Sales Junior PA, Romanha AJ, Leite ACL. Synthesis and structure–activity relationship study of a new series of antiparasitic aryloxyl thiosemicarbazones inhibiting Trypanosoma cruzi cruzain. Eur J Med Chem 2015; 101:818-35. [DOI: 10.1016/j.ejmech.2015.06.048] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 11/28/2022]
|
17
|
Davies C, Dey N, Negrette OS, Parada LA, Basombrio MA, Garg NJ. Hepatotoxicity in mice of a novel anti-parasite drug candidate hydroxymethylnitrofurazone: a comparison with Benznidazole. PLoS Negl Trop Dis 2014; 8:e3231. [PMID: 25329323 PMCID: PMC4199569 DOI: 10.1371/journal.pntd.0003231] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 08/31/2014] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Treatment of Chagas disease, caused by Trypanosoma cruzi, relies on nifurtimox and benznidazole (BZL), which present side effects in adult patients, and natural resistance in some parasite strains. Hydroxymethylnitrofurazone (NFOH) is a new drug candidate with demonstrated trypanocidal activity; however, its safety is not known. METHODS HepG2 cells dose response to NFOH and BZL (5-100 µM) was assessed by measurement of ROS, DNA damage and survival. Swiss mice were treated with NFOH or BZL for short-term (ST, 21 d) or long-term (LT, 60 d) periods. Sera levels of cellular injury markers, liver inflammatory and oxidative stress, and fibrotic remodeling were monitored. RESULTS HepG2 cells exhibited mild stress, evidenced by increased ROS and DNA damage, in response to NFOH, while BZL at 100 µM concentration induced >33% cell death in 24 h. In mice, NFOH ST treatment resulted in mild-to-no increase in the liver injury biomarkers (GOT, GPT), and liver levels of inflammatory (myeloperoxidase, TNF-α), oxidative (lipid peroxides) and nitrosative (3-nitrotyrosine) stress. These stress responses in NFOH LT treated mice were normalized to control levels. BZL-treated mice exhibited a >5-fold increase in GOT, GPT and TNF-α (LT) and a 20-40% increase in liver levels of MPO activity (ST and LT) in comparison with NFOH-treated mice. The liver inflammatory infiltrate was noted in the order of BZL>vehicle≥NFOH and BZL>NFOH≥vehicle, respectively, after ST and LT treatments. Liver fibrotic remodeling, identified after ST treatment, was in the order of BZL>vehicle>NFOH; lipid deposits, indicative of mitochondrial dysfunction and in the order of NFOH>vehicle>BZL were evidenced after LT treatment. CONCLUSIONS NFOH induces mild ST hepatotoxicity that is normalized during LT treatment in mice. Our results suggest that additional studies to determine the efficacy and toxicity of NFOH are warranted.
Collapse
Affiliation(s)
- Carolina Davies
- Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta, Argentina
| | - Nilay Dey
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Olga Sanchez Negrette
- Cátedra de Quimica Biológica, Facultad de Ciencias Exactas, Universidad Nacional de Salta, Argentina
| | - Luis Antonio Parada
- Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta, Argentina
| | - Miguel A. Basombrio
- Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta, Argentina
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
18
|
Conformational restriction of aryl thiosemicarbazones produces potent and selective anti-Trypanosoma cruzi compounds which induce apoptotic parasite death. Eur J Med Chem 2014; 75:467-78. [DOI: 10.1016/j.ejmech.2014.02.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/30/2014] [Accepted: 02/02/2014] [Indexed: 11/21/2022]
|
19
|
Blau L, Menegon RF, Trossini GH, Molino JVD, Vital DG, Cicarelli RMB, Passerini GD, Bosquesi PL, Chin CM. Design, synthesis and biological evaluation of new aryl thiosemicarbazone as antichagasic candidates. Eur J Med Chem 2013; 67:142-51. [DOI: 10.1016/j.ejmech.2013.04.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/29/2013] [Accepted: 04/08/2013] [Indexed: 10/26/2022]
|
20
|
Ni Y, Wang P, Kokot S. Voltammetric investigation of DNA damage induced by nitrofurazone and short-lived nitro-radicals with the use of an electrochemical DNA biosensor. Biosens Bioelectron 2012; 38:245-51. [DOI: 10.1016/j.bios.2012.05.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/17/2012] [Accepted: 05/28/2012] [Indexed: 10/28/2022]
|
21
|
Menezes CMS, Rivera G, Alves MA, do Amaral DN, Thibaut JPB, Noël F, Barreiro EJ, Lima LM. Synthesis, biological evaluation, and structure-activity relationship of clonazepam, meclonazepam, and 1,4-benzodiazepine compounds with schistosomicidal activity. Chem Biol Drug Des 2012; 79:943-9. [PMID: 22321778 DOI: 10.1111/j.1747-0285.2012.01354.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The inherent morbidity and mortality caused by schistosomiasis is a serious public health problem in developing countries. Praziquantel is the only drug in therapeutic use, leading to a permanent risk of parasite resistance. In search for new schistosomicidal drugs, meclonazepam, the 3-methyl-derivative of clonazepam, is still considered an interesting lead-candidate because it has a proven schistosomicidal effect in humans but adverse effects on the central nervous system did not allow its clinical use. Herein, the synthesis, in vitro biological evaluation, and molecular modeling of clonazepam, meclonazepam, and analogues are reported to establish the first structure-activity relationship for schistosomicidal benzodiazepines. Our findings indicate that the amide moiety [N(1) H-C(2) (=O)] is the principal pharmacophoric unit of 1,4-benzodiazepine schistosomicidal compounds and that substitution on the amide nitrogen atom (N(1) position) is not tolerated.
Collapse
Affiliation(s)
- Carla M S Menezes
- Laboratório de Avaliação e Síntese de Substâncias Bioativas, Universidade Federal do Rio de Janeiro, P O Box 68024, 21944-971, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Studies toward the structural optimization of novel thiazolylhydrazone-based potent antitrypanosomal agents. Bioorg Med Chem 2010; 18:7826-35. [DOI: 10.1016/j.bmc.2010.09.056] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/16/2010] [Accepted: 09/22/2010] [Indexed: 11/24/2022]
|
23
|
Davies C, Marino Cardozo R, Sánchez Negrette O, Mora MC, Chung MC, Basombrío MA. Hydroxymethylnitrofurazone is active in a murine model of Chagas' disease. Antimicrob Agents Chemother 2010; 54:3584-9. [PMID: 20566772 PMCID: PMC2934987 DOI: 10.1128/aac.01451-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 11/25/2009] [Accepted: 06/04/2010] [Indexed: 11/20/2022] Open
Abstract
The addition of a hydroxymethyl group to the antimicrobial drug nitrofurazone generated hydroxymethylnitrofurazone (NFOH), which had reduced toxicity when its activity against Trypanosoma cruzi was tested in a murine model of Chagas' disease. Four groups of 12 Swiss female mice each received 150 mg of body weight/kg/day of NFOH, 150 mg/kg/day of nitrofurazone (parental compound), 60 mg/kg/day of benznidazole (BZL), or the solvent as a placebo. Treatments were administered orally once a day 6 days a week until the completion of 60 doses. NFOH was as effective as BZL in keeping direct parasitemia at undetectable levels, and PCR results were negative. No histopathological lesions were seen 180 days after completion of the treatments, a time when the levels of anti-T. cruzi antibodies were very low in mice treated with either NFOH or BZL. Nitrofurazone was highly toxic, which led to an overall rate of mortality of 75% and necessitated interruption of the treatment. In contrast, the group treated with its hydroxymethyl derivative, NFOH, displayed the lowest mortality (16%), followed by the BZL (33%) and placebo (66%) groups. The findings of histopathological studies were consistent with these results, with the placebo group showing the most severe parasite infiltrates in skeletal muscle and heart tissue and the NFOH group showing the lowest. The present evidence suggests that NFOH is a promising anti-T. cruzi agent.
Collapse
Affiliation(s)
- Carolina Davies
- Instituto de Patología Experimental, Facultad de Ciencias de la Salud, CONICET, Universidad Nacional de Salta, Avda. Bolivia 5150, Salta 4400, Argentina.
| | | | | | | | | | | |
Collapse
|
24
|
Cerecetto H, González M. Synthetic Medicinal Chemistry in Chagas' Disease: Compounds at The Final Stage of "Hit-To-Lead" Phase. Pharmaceuticals (Basel) 2010; 3:810-838. [PMID: 27713281 PMCID: PMC4034012 DOI: 10.3390/ph3040810] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 03/15/2010] [Accepted: 03/19/2010] [Indexed: 11/16/2022] Open
Abstract
Chagas' disease, or American trypanosomosiasis, has been the most relevant illness produced by protozoa in Latin America. Synthetic medicinal chemistry efforts have provided an extensive number of chemodiverse hits at the "active-to-hit" stage. However, only a more limited number of these have been studied in vivo in models of Chagas' disease. Herein, we survey some of the cantidates able to surpass the "hit-to-lead" stage discussing their limitations or merit to enter in clinical trials in the short term.
Collapse
Affiliation(s)
- Hugo Cerecetto
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
| | - Mercedes González
- Laboratorio de Química Orgánica, Instituto de Química Biológica-Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
| |
Collapse
|