1
|
Donarska B, Sławińska-Brych A, Mizerska-Kowalska M, Zdzisińska B, Płaziński W, Łączkowski KZ. Thalidomide derivatives as nanomolar human neutrophil elastase inhibitors: Rational design, synthesis, antiproliferative activity and mechanism of action. Bioorg Chem 2023; 138:106608. [PMID: 37207596 DOI: 10.1016/j.bioorg.2023.106608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
Here, we rationally designed a human neutrophil elastase (HNE) inhibitors 4a-4f derived from thalidomide. The HNE inhibition assay showed that synthesized compounds 4a, 4b, 4e and 4f demonstrated strong HNE inhibiton properties with IC50 values of 21.78-42.30 nM. Compounds 4a, 4c, 4d and 4f showed a competitive mode of action. The most potent compound 4f shows almost the same HNE inhibition as sivelestat. The molecular docking analysis revealed that the strongest interactions occur between the azetidine-2,4-dione group and the following three aminoacids: Ser195, Arg217 and His57. A high correlation between the binding energies and the experimentally determined IC50 values was also demonstrated. The study of antiproliferative activity against human T47D (breast carcinoma), RPMI 8226 (multiple myeloma), and A549 (non-small-cell lung carcinoma) revealed that designed compounds were more active compared to thalidomide, pomalidomide and lenalidomide used as the standard drugs. Additionally, the most active compound 4f derived from lenalidomide induces cell cycle arrest at the G2/M phase and apoptosis in T47D cells.
Collapse
Affiliation(s)
- Beata Donarska
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland.
| | - Adrianna Sławińska-Brych
- Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland
| | - Magdalena Mizerska-Kowalska
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland
| | - Barbara Zdzisińska
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland
| | - Wojciech Płaziński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Cracow, Poland; Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland
| | - Krzysztof Z Łączkowski
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland
| |
Collapse
|
2
|
Rocha S, Félix R, Valente MJ, Bento-Silva A, Rebelo R, Amorim CG, Araújo ADN, Moreira R, Santos-Silva A, Montenegro MCBSM. Polysulfone Membranes Doped with Human Neutrophil Elastase Inhibitors: Assessment of Bioactivity and Biocompatibility. MEMBRANES 2023; 13:89. [PMID: 36676896 PMCID: PMC9861744 DOI: 10.3390/membranes13010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/25/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The use of polysulfone (PSU) hemodialysis (HD) membranes modified with bioactive compounds has gained relevance in chronic kidney disease (CKD) management. Compounds based on the 4-oxo-β-lactam scaffold have outstanding inhibitory ability and selectivity for human neutrophil elastase (HNE). The present work aimed to evaluate the bioactivity and biocompatibility of PSU-based HD membranes doped with HNE inhibitors (HNEIs). For this, two 4-oxo-β-lactam derivates (D4L-1 and D4L-2) synthesized in house were used, as well as a commercial HNEI (Sivelestat), for comparison purposes. Their HNE inhibition efficacy was evaluated in in vitro and ex vivo (incubations with human plasma) assay conditions. All biomaterials were bioactive and hemocompatible. The inhibitory capacity of the HNEIs and HNEI-PSU membranes in vitro was D4L-1 > D4L-2 > Sivelestat and D4L-2 > Sivelestat > D4L-1, respectively. In ex vivo conditions, both HNEIs and HNEI-PSU materials presented the same relative inhibitory ability (D4L-1 > D4L-2 > Sivelestat). The difference observed between in vitro and ex vivo conditions is most likely due to the inherent lipophilicity/hydrophobicity of each HNEI influencing their affinity and accessibility to HNE when trapped in the membrane. Compared to Sivelestat, both D4L-1 and D4L-2 (and the respective doped membranes) have more potent inhibition capabilities. In conclusion, this work reports the successful development of PSU membranes functionalized with HNEIs.
Collapse
Affiliation(s)
- Susana Rocha
- UCIBIO—Applied Molecular Biosciences Unit, Biochemistry Laboratory, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Rita Félix
- Faculty of Pharmacy, University of Lisbon and Research Institute for Medicines (iMed.ULisboa), 1649-003 Lisbon, Portugal
| | - Maria João Valente
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | - Rute Rebelo
- LAQV/REQUIMTE, Applied Chemistry Laboratory, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Célia Gomes Amorim
- LAQV/REQUIMTE, Applied Chemistry Laboratory, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Alberto da Nova Araújo
- LAQV/REQUIMTE, Applied Chemistry Laboratory, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Rui Moreira
- Faculty of Pharmacy, University of Lisbon and Research Institute for Medicines (iMed.ULisboa), 1649-003 Lisbon, Portugal
| | - Alice Santos-Silva
- UCIBIO—Applied Molecular Biosciences Unit, Biochemistry Laboratory, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Maria Conceição B. S. M. Montenegro
- LAQV/REQUIMTE, Applied Chemistry Laboratory, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
3
|
Discovery of New 3,3-Diethylazetidine-2,4-dione Based Thiazoles as Nanomolar Human Neutrophil Elastase Inhibitors with Broad-Spectrum Antiproliferative Activity. Int J Mol Sci 2022; 23:ijms23147566. [PMID: 35886913 PMCID: PMC9321231 DOI: 10.3390/ijms23147566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 01/03/2023] Open
Abstract
A series of 3,3-diethylazetidine-2,4-dione based thiazoles 3a–3j were designed and synthesized as new human neutrophil elastase (HNE) inhibitors in nanomolar range. The representative compounds 3c, 3e, and 3h exhibit high HNE inhibitory activity with IC50 values of 35.02–44.59 nM, with mixed mechanism of action. Additionally, the most active compounds 3c and 3e demonstrate high stability under physiological conditions. The molecular docking study showed good correlation of the binding energies with the IC50 values, suggesting that the inhibition properties are largely dependent on the stage of ligand alignment in the binding cavity. The inhibition properties are correlated with the energy level of substrates of the reaction of ligand with Ser195. Moreover, most compounds showed high and broad-spectrum antiproliferative activity against human leukemia (MV4-11), human lung carcinoma (A549), human breast adenocarcinoma (MDA-MB-231), and urinary bladder carcinoma (UMUC-3), with IC50 values of 4.59–9.86 μM. Additionally, compounds 3c and 3e can induce cell cycle arrest at the G2/M phase and apoptosis via caspase-3 activation, leading to inhibition of A549 cell proliferation. These findings suggest that these new types of drugs could be used to treat cancer and other diseases in which immunoreactive HNE is produced.
Collapse
|
4
|
Novel and Modified Neutrophil Elastase Inhibitor Loaded in Topical Formulations for Psoriasis Management. Pharmaceutics 2020; 12:pharmaceutics12040358. [PMID: 32295247 PMCID: PMC7238052 DOI: 10.3390/pharmaceutics12040358] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022] Open
Abstract
Human neutrophil elastase (HNE) is a serine protease that degrades matrix proteins. An excess of HNE may trigger several pathological conditions, such as psoriasis. In this work, we aimed to synthesize, characterize and formulate new HNE inhibitors with a 4-oxo-β-lactam scaffold with less toxicity, as well as therapeutic index in a psoriasis context. HNE inhibitors with 4-oxo-β-lactam scaffolds were synthesized and characterized by NMR, FTIR, melting point, mass spectrometry and elemental analysis. In vitro cytotoxicity and serine protease assays were performed. The compound with the highest cell viability (AAN-16) was selected to be incorporated in an emulsion (AAN-16 E) and in a microemulsion (AAN-16 ME). Formulations were characterized in terms of organoleptic properties, pH, rheology, droplet size distribution, in vitro drug release and in vivo psoriatic activity. All compounds were successfully synthesized according to analytical methodology, with good yields. Both formulations presented suitable physicochemical properties. AAN-16 E presented the most promising therapeutic effects in a murine model of psoriasis. Overall, new HNE inhibitors were synthesized with high and selective activity and incorporated into topical emulsions with potential to treat psoriasis.
Collapse
|
5
|
Bronze-da-Rocha E, Santos-Silva A. Neutrophil Elastase Inhibitors and Chronic Kidney Disease. Int J Biol Sci 2018; 14:1343-1360. [PMID: 30123081 PMCID: PMC6097478 DOI: 10.7150/ijbs.26111] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/18/2018] [Indexed: 12/11/2022] Open
Abstract
End-stage renal disease (ESRD), the last stage of chronic kidney disease (CKD), is characterized by chronic inflammation and oxidative stress. Neutrophils are the front line cells that mediate an inflammatory response against microorganisms as they can migrate, produce reactive oxygen species (ROS), secrete neutrophil serine proteases (NSPs), and release neutrophil extracellular traps (NETs). Serine proteases inhibitors regulate the activity of serine proteases and reduce neutrophil accumulation at inflammatory sites. This review intends to relate the role of neutrophil elastase in CKD and the effects of neutrophil elastase inhibitors in predicting or preventing inflammation.
Collapse
Affiliation(s)
- Elsa Bronze-da-Rocha
- UCIBIO/REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | | |
Collapse
|
6
|
Lucas SD, Gonçalves LM, Carvalho LAR, Correia HF, Da Costa EMR, Guedes RA, Moreira R, Guedes RC. Optimization of O3-Acyl Kojic Acid Derivatives as Potent and Selective Human Neutrophil Elastase Inhibitors. J Med Chem 2013; 56:9802-6. [DOI: 10.1021/jm4011725] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Susana D. Lucas
- Instituto de Investigação do Medicamento
(iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Lídia M. Gonçalves
- Instituto de Investigação do Medicamento
(iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Luís A. R. Carvalho
- Instituto de Investigação do Medicamento
(iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Henrique F. Correia
- Instituto de Investigação do Medicamento
(iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Eduardo M. R. Da Costa
- Instituto de Investigação do Medicamento
(iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Romina A. Guedes
- Instituto de Investigação do Medicamento
(iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Rui Moreira
- Instituto de Investigação do Medicamento
(iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Rita C. Guedes
- Instituto de Investigação do Medicamento
(iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
7
|
Neutrophil elastase inhibitors: recent advances in the development of mechanism-based and nonelectrophilic inhibitors. Future Med Chem 2012; 4:651-60. [PMID: 22458683 DOI: 10.4155/fmc.12.17] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Due to its implication in pathologies of prevalent diseases such as chronic obstructive pulmonary disease, fibrosis, bronchiectasis and ARDS, the serine protease, human neutrophil elastase, has been in focus for drug-development efforts over the last two decades. In recent years, continued efforts to identify and optimize novel mechanism-based inhibitors have led to a number of new inhibitors being reported. These compounds show promising potency and selectivity profiles, although their use is still limited by their inherent stability. Recently, two novel classes of potent and selective, synthetic, nonelectrophilic human neutrophil elastase inhibitors that display improved stability and overall drug-like properties have been reported. The most advanced compound from these classes, AZD9668, has been reported to show significant effects on relevant biomarkers in bronchiectasis and cystic fibrosis patient populations.
Collapse
|
8
|
Asadollahi-Baboli M. Quantitative structure-activity relationship analysis of human neutrophil elastase inhibitors using shuffling classification and regression trees and adaptive neuro-fuzzy inference systems. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2012; 23:505-520. [PMID: 22452268 DOI: 10.1080/1062936x.2012.665811] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The purpose of this study was to develop quantitative structure-activity relationship models for N-benzoylindazole derivatives as inhibitors of human neutrophil elastase. These models were developed with the aid of classification and regression trees (CART) and an adaptive neuro-fuzzy inference system (ANFIS) combined with a shuffling cross-validation technique using interpretable descriptors. More than one hundred meaningful descriptors, representing various structural characteristics for all 51 N-benzoylindazole derivatives in the data set, were calculated and used as the original variables for shuffling CART modelling. Five descriptors of average Wiener index, Kier benzene-likeliness index, subpolarity parameter, average shape profile index of order 2 and folding degree index selected by the shuffling CART technique have been used as inputs of the ANFIS for prediction of inhibition behaviour of N-benzoylindazole derivatives. The results of the developed shuffling CART-ANFIS model compared to other techniques, such as genetic algorithm (GA)-partial least square (PLS)-ANFIS and stepwise multiple linear regression (MLR)-ANFIS, are promising and descriptive. The satisfactory results r2p = 0.845, Q2(LOO) = 0.861, r2(L25%O) = 0.829, RMSE(LOO) = 0.305 and RMSE(L25%O) = 0.336) demonstrate that shuffling CART-ANFIS models present the relationship between human neutrophil elastase inhibitor activity and molecular descriptors, and they yield predictions in excellent agreement with the experimental values.
Collapse
|
9
|
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) constitutes a worldwide health problem. There is currently an urgent and unmet need for the development of small molecule therapeutics capable of blocking and/or reversing the progression of the disorder. Recent studies have greatly illuminated our understanding of the multiple pathogenic processes associated with COPD. Of paramount importance is the key role played by proteases, oxidative stress, apoptosis and inflammation. Insights gained from these studies have made possible the exploration of new therapeutic approaches. AREAS COVERED An overview of major developments in COPD research with emphasis on low-molecular mass neutrophil elastase inhibitors is described in this review. EXPERT OPINION Great strides have been made toward our understanding of the biochemical and cellular events associated with COPD. However, our knowledge regarding the inter-relationships among the multiple pathogenic mechanisms and their mediators involved is still limited. The problem is further compounded by the unavailability of suitable validated biomarkers for assessing the efficacy of potential therapeutic interventions. The complexity of COPD suggests that effective therapeutic interventions may require the administration of more than one agent such as a human neutrophil elastase or MMP-12 inhibitor with an anti-inflammatory agent such as a PDE4 inhibitor or a dual function agent capable of disrupting the cycle of proteolysis, apoptosis, inflammation and oxidative stress.
Collapse
Affiliation(s)
- William C Groutas
- Wichita State University, Department of Chemistry, Wichita, KS 67260, USA.
| | | | | |
Collapse
|