1
|
El-Damasy AK, Kim HJ, Al-Karmalawy AA, Alnajjar R, Khalifa MM, Bang EK, Keum G. Identification of Ureidocoumarin-Based Selective Discoidin Domain Receptor 1 (DDR1) Inhibitors via Drug Repurposing Approach, Biological Evaluation, and In Silico Studies. Pharmaceuticals (Basel) 2024; 17:427. [PMID: 38675389 PMCID: PMC11054573 DOI: 10.3390/ph17040427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Discoidin domain receptor 1 (DDR1) kinase has emerged as a promising target for cancer therapy, and selective DDR1 inhibitors have shown promise as effective therapeutic candidates. Herein, we have identified the first coumarin-based selective DDR1 inhibitors via repurposing of a recent series of carbonic anhydrase inhibitors. Among these, ureidocoumarins 3a, 3i, and 3q showed the best DDR1 inhibitory activities. The m-trifluoromethoxy phenyl member 3q potently inhibited DDR1 with an IC50 of 191 nM, while it showed less inhibitory activity against DDR2 (IC50 = 5080 nM). 3q also exhibited favorable selectivity in a screening platform with 23 common off-target kinases, including BCR-ABL. In the cellular context, 3q showed moderate antiproliferative effects, while 3i, with the third rank in DDR1 inhibition, exerted the best anticancer activity with sub-micromolar GI50 values over certain DDR1-dependent cell lines. Molecular docking and MD simulations disclosed the putative binding mode of this coumarin chemotype and provided insights for further optimization of this scaffold. The present findings collectively supported the potential improvement of ureidocoumarins 3i and 3q for cancer treatment.
Collapse
Affiliation(s)
- Ashraf K. El-Damasy
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Hyun Ji Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Ahmed A. Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt;
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City 12566, Egypt
| | - Radwan Alnajjar
- CADD Unit, Faculty of Pharmacy, Libyan International Medical University, Benghazi 16063, Libya;
- Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi 16063, Libya
- Department of Chemistry, University of Cape Town, Rondebosch 7700, South Africa
| | - Mohamed M. Khalifa
- Department of Pharmaceutical Medicinal Chemistry & Drug Design, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Eun-Kyoung Bang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Gyochang Keum
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| |
Collapse
|
2
|
Liu M, Zhang J, Li X, Wang Y. Research progress of DDR1 inhibitors in the treatment of multiple human diseases. Eur J Med Chem 2024; 268:116291. [PMID: 38452728 DOI: 10.1016/j.ejmech.2024.116291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Discoidin domain receptor 1 (DDR1) is a collagen-activated receptor tyrosine kinase (RTK) and plays pivotal roles in regulating cellular functions such as proliferation, differentiation, invasion, migration, and matrix remodeling. DDR1 is involved in the occurrence and progression of many human diseases, including cancer, fibrosis, and inflammation. Therefore, DDR1 represents a highly promising therapeutic target. Although no selective small-molecule inhibitors have reached clinical trials to date, many molecules have shown therapeutic effects in preclinical studies. For example, BK40143 has demonstrated significant promise in the therapy of neurodegenerative diseases. In this context, our perspective aims to provide an in-depth exploration of DDR1, encompassing its structure characteristics, biological functions, and disease relevance. Furthermore, we emphasize the importance of understanding the structure-activity relationship of DDR1 inhibitors and highlight the unique advantages of dual-target or multitarget inhibitors. We anticipate offering valuable insights into the development of more efficacious DDR1-targeted drugs.
Collapse
Affiliation(s)
- Mengying Liu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Neuro-system and Multimorbidity Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China
| | - Jifa Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Neuro-system and Multimorbidity Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China
| | - Xiaoxue Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Neuro-system and Multimorbidity Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
3
|
Ruzi Z, Bozorov K, Nie L, Zhao J, Akber Aisa H. Discovery of novel (E)-1-methyl-9-(3-methylbenzylidene)-6,7,8,9-tetrahydropyrazolo[3,4-d]pyrido[1,2-a]pyrimidin-4(1H)-one as DDR2 kinase inhibitor: Synthesis, molecular docking, and anticancer properties. Bioorg Chem 2023; 135:106506. [PMID: 37030105 DOI: 10.1016/j.bioorg.2023.106506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
We report the synthesis, molecular docking and anticancer properties of the novel compound (E)-1-methyl-9-(3-methylbenzylidene)-6,7,8,9-tetrahydropyrazolo[3,4-d]pyrido[1,2-a]pyrimidin-4(1H)-one (PP562). PP562 was screened against sixteen human cancer cell lines and exhibited excellent antiproliferative activity with IC50 values ranging from 0.016 to 5.667 μM. Experiments were carried out using the target PP562 at a single dose of 1.0 μM against a kinase panel comprising 100 different enzymes. A plausible binding mechanism for PP562 inhibition of DDR2 was determined using molecular dynamic analysis. The effect of PP562 on cell proliferation was also examined in cancer cell models with both high and low expression of the DDR2 gene; PP562 inhibition of high-expressing cells was more prominent than that for low expressing cells. PP562 also exhibits excellent anticancer potency toward the HGC-27 gastric cancer cell line. In addition, PP562 inhibits colony formation, cell migration, and adhesion, induces cell cycle arrest at the G2/M phase, and affects ROS generation and cell apoptosis. After DDR2 gene knockdown, the antitumor effects of PP562 on tumor cells were significantly impaired. These results suggested that PP562 might exert its inhibitory effect on HCG-27 proliferation through the DDR2 target.
Collapse
|
4
|
Li X, Chen H, Zhang D. Discoidin domain receptor 1 may be involved in biological barrier homeostasis. J Clin Pharm Ther 2022; 47:2397-2407. [PMID: 35665520 DOI: 10.1111/jcpt.13705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase involved in the pathological processes of several diseases, such as keloid formation, renal fibrosis, atherosclerosis, tumours, and inflammatory processes. The biological barrier is the first line of defence against pathogens, and its disruption is closely related to diseases. In this review, we attempt to elucidate the relationship between DDR1 and the biological barrier, explore the potential biological value of DDR1, and review the current research status and clinical potential of DDR1-selective inhibitors. METHODS We conducted an extensive literature search on PubMed to collect studies on the relevance of DDR1 to biological barriers and DDR1-selective inhibitors. With these studies, we explored the relationship between DDR1 and biological barriers and briefly reviewed representative DDR1-selective inhibitors that have been reported in recent years. RESULTS AND DISCUSSION First, the review of the potential mechanisms by which DDR1 regulates biological barriers, including the epithelial, vascular, glomerular filtration, blood-labyrinth, and blood-brain barriers. In the body, DDR1 dysfunction and aberrant expression may be involved in the homeostasis of the biological barrier. Secondly, the review of DDR1 inhibitors reported in recent years shows that DDR1-targeted inhibition is an attractive and promising pharmacological intervention. WHAT IS NEW AND CONCLUSIONS This review shows that DDR1 is involved in various physiological and pathological processes and in the regulation of biological barrier homeostasis. However, studies on DDR1 and biological barriers are still scarce, and further studies are needed to elucidate their specific mechanisms. The development of targeted inhibitors provides a new direction and idea to study the mechanism of DDR1.
Collapse
Affiliation(s)
- Xiaoli Li
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Huiling Chen
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Department of Gastroenterology, Key Laboratory of Digestive Diseases, LanZhou University Second Hospital, LanZhou University, Lanzhou, China
| |
Collapse
|
5
|
Prasad Shenoy G, Pal R, Gurubasavaraja Swamy P, Singh E, Manjunathaiah Raghavendra N, Sanjay Dhiwar P. Discoidin Domain Receptor Inhibitors as Anticancer Agents: A Systematic Review on Recent Development of DDRs Inhibitors, their Resistance and Structure Activity Relationship. Bioorg Chem 2022; 130:106215. [DOI: 10.1016/j.bioorg.2022.106215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/02/2022]
|
6
|
Nada H, Lee K, Gotina L, Pae AN, Elkamhawy A. Identification of novel discoidin domain receptor 1 (DDR1) inhibitors using E-pharmacophore modeling, structure-based virtual screening, molecular dynamics simulation and MM-GBSA approaches. Comput Biol Med 2022; 142:105217. [PMID: 35032738 DOI: 10.1016/j.compbiomed.2022.105217] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/03/2022] [Accepted: 01/03/2022] [Indexed: 12/11/2022]
Abstract
Dysregulation of the discoidin domain receptor (DDR1), a collagen-activated receptor tyrosine kinase, has been linked to several human cancer diseases including non-small cell lung carcinoma (NSCLC), ovarian cancer, glioblastoma, and breast cancer, in addition to several inflammatory and neurological conditions. Although there are some selective DDR1 inhibitors that have been discovered during the last two decades, a combination of elevated cytotoxicity, kinome selectivity and/or poor DMPK profile has prevented more in-depth studies from being performed. As such, no DDR1 inhibitor has reached clinical investigation to date, forming an urgent need to develop specific DDR1 inhibitor(s) using various drug discovery means. However, the recent discovery of VU6015929, a potent and selective DDR1 kinase inhibitor, with enhanced physiochemical and DMPK properties in addition to its clean kinome profile marked a milestone in the development of DDR1 inhibitors. Herein, VU6015929 was used to construct a 3D e-pharmacophore model which was validated via calculating the difference of score between the active compounds and decoys. The validated e-pharmacophore model was then utilized to screen 20 million drug-like compounds obtained from the freely accessible Zinc database. The generated hits were ranked using high throughput virtual screening technique (HTVS), and the top 8 small molecules were subjected to a molecular docking study and MM-GBSA calculations. Protein-ligand complexes of compounds 1, 2, 3 and the standard compound (VU6015929) were performed for 100 ns and compared with the DDR1 unbound protein state and the DDR1 bound to a co-crystallized ligand. The molecular docking, MD and MM-GBSA outputs revealed compounds 1-3 as potential DDR1 inhibitors, with compound 2 displaying superior binding affinity, comparable binding stability and average binding free energy for the ligand-enzyme complex compared to VU6015929.
Collapse
Affiliation(s)
- Hossam Nada
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Lizaveta Gotina
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea; Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Ae Nim Pae
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea; Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
7
|
Denny WA, Flanagan JU. Inhibitors of Discoidin Domain Receptor (DDR) Kinases for Cancer and Inflammation. Biomolecules 2021; 11:1671. [PMID: 34827669 PMCID: PMC8615839 DOI: 10.3390/biom11111671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 01/22/2023] Open
Abstract
The discoidin domain receptor tyrosine kinases DDR1 and DDR2 are distinguished from other kinase enzymes by their extracellular domains, which interact with collagen rather than with peptidic growth factors, before initiating signaling via tyrosine phosphorylation. They share significant sequence and structural homology with both the c-Kit and Bcr-Abl kinases, and so many inhibitors of those kinases are also effective. Nevertheless, there has been an extensive research effort to develop potent and specific DDR inhibitors. A key interaction for many of these compounds is H-bonding to Met-704 in a hydrophobic pocket of the DDR enzyme. The most widespread use of DDR inhibitors has been for cancer therapy, but they have also shown effectiveness in animal models of inflammatory conditions such as Alzheimer's and Parkinson's diseases, and in chronic renal failure and glomerulonephritis.
Collapse
Affiliation(s)
- William A. Denny
- Auckland Cancer Society Research Centre, Maurice Wilkins Centre, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand;
| | - Jack U. Flanagan
- Auckland Cancer Society Research Centre, Maurice Wilkins Centre, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand;
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
8
|
Elkamhawy A, Ammar UM, Paik S, Abdellattif MH, Elsherbeny MH, Lee K, Roh EJ. Scaffold Repurposing of In-House Small Molecule Candidates Leads to Discovery of First-in-Class CDK-1/HER-2 Dual Inhibitors: In Vitro and In Silico Screening. Molecules 2021; 26:molecules26175324. [PMID: 34500757 PMCID: PMC8433807 DOI: 10.3390/molecules26175324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, multitargeted drugs are considered a potential approach in treating cancer. In this study, twelve in-house indole-based derivatives were preliminary evaluated for their inhibitory activities over VEGFR-2, CDK-1/cyclin B and HER-2. Compound 15l showed the most inhibitory activities among the tested derivatives over CDK-1/cyclin B and HER-2. Compound 15l was tested for its selectivity in a small kinase panel. It showed dual selectivity for CDK-1/cyclin B and HER-2. Moreover, in vitro cytotoxicity assay was assessed for the selected series against nine NCI cell lines. Compound 15l showed the most potent inhibitory activities among the tested compounds. A deep in silico molecular docking study was conducted for compound 15l to identify the possible binding modes into CDK-1/cyclin B and HER-2. The docking results revealed that compound 15l displayed interesting binding modes with the key amino acids in the binding sites of both kinases. In vitro and in silico studies demonstrate the indole-based derivative 15l as a selective dual CDK-1 and HER-2 inhibitor. This emphasizes a new challenge in drug development strategies and signals a significant milestone for further structural and molecular optimization of these indole-based derivatives in order to achieve a drug-like property.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Correspondence: or (A.E.); (K.L.); (E.J.R.)
| | - Usama M. Ammar
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0NR, UK;
| | - Sora Paik
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (S.P.); (M.H.E.)
| | - Magda H. Abdellattif
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mohamed H. Elsherbeny
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (S.P.); (M.H.E.)
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza 12566, Egypt
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea
- Correspondence: or (A.E.); (K.L.); (E.J.R.)
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (S.P.); (M.H.E.)
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
- Correspondence: or (A.E.); (K.L.); (E.J.R.)
| |
Collapse
|
9
|
Development of New Meridianin/Leucettine-Derived Hybrid Small Molecules as Nanomolar Multi-Kinase Inhibitors with Antitumor Activity. Biomedicines 2021; 9:biomedicines9091131. [PMID: 34572319 PMCID: PMC8468039 DOI: 10.3390/biomedicines9091131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/23/2021] [Accepted: 08/27/2021] [Indexed: 12/31/2022] Open
Abstract
Although the sea ecosystem offers a broad range of bioactivities including anticancer, none of the FDA-approved antiproliferative protein kinase inhibitors are derived from a marine source. In a step to develop new marine-inspired potent kinase inhibitors with antiproliferative activities, a new series of hybrid small molecules (5a–5g) was designed and synthesized based on chemical moieties derived from two marine natural products (Meridianin E and Leucettamine B). Over a panel of 14 cancer-related kinases, a single dose of 10 µM of the parent hybrid 5a possessing the benzo[d][1,3]dioxole moiety of Leucettamine B was able to inhibit the activity of FMS, LCK, LYN, and DAPK1 kinases with 82.5 ± 0.6, 81.4 ± 0.6, 75.2 ± 0.0, and 55 ± 1.1%, respectively. Further optimization revealed the most potent multiple kinase inhibitor of this new series (5g) with IC50 values of 110, 87.7, and 169 nM against FMS, LCK, and LYN kinases, respectively. Compared to imatinib (FDA-approved multiple kinase inhibitor), compound 5g was found to be ~ 9- and 2-fold more potent than imatinib over both FMS and LCK kinases, respectively. In silico docking simulation models of the synthesized compounds within the active site of FMS, LCK, LYN, and DAPK1 kinases offered reasonable explanations of the elicited biological activities. In an in vitro anticancer assay using a library of 60 cancer cell lines that include blood, lung, colon, CNS, skin, ovarian, renal, prostate, and breast cancers, it was found that compound 5g was able to suppress 60 and 70% of tumor growth in leukemia SR and renal RXF 393 cell lines, respectively. Moreover, an ADME study indicated a suitable profile of compound 5g concerning cell permeability and blood-brain barrier (BBB) impermeability, avoiding possible CNS side effects. Accordingly, compound 5g is reported as a potential lead towards novel antiproliferative marine-derived kinase modulators.
Collapse
|
10
|
Elkamhawy A, Ali EMH, Lee K. New horizons in drug discovery of lymphocyte-specific protein tyrosine kinase (Lck) inhibitors: a decade review (2011-2021) focussing on structure-activity relationship (SAR) and docking insights. J Enzyme Inhib Med Chem 2021; 36:1574-1602. [PMID: 34233563 PMCID: PMC8274522 DOI: 10.1080/14756366.2021.1937143] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lymphocyte-specific protein tyrosine kinase (Lck), a non-receptor Src family kinase, has a vital role in various cellular processes such as cell cycle control, cell adhesion, motility, proliferation, and differentiation. Lck is reported as a key factor regulating the functions of T-cell including the initiation of TCR signalling, T-cell development, in addition to T-cell homeostasis. Alteration in expression and activity of Lck results in numerous disorders such as cancer, asthma, diabetes, rheumatoid arthritis, atherosclerosis, and neuronal diseases. Accordingly, Lck has emerged as a novel target against different diseases. Herein, we amass the research efforts in literature and pharmaceutical patents during the last decade to develop new Lck inhibitors. Additionally, structure-activity relationship studies (SAR) and docking models of these new inhibitors within the active site of Lck were demonstrated offering deep insights into their different binding modes in a step towards the identification of more potent, selective, and safe Lck inhibitors.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea.,Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Eslam M H Ali
- Center for Biomaterials, Korea Institute of Science & Technology (KIST School), Seoul, Republic of Korea.,University of Science & Technology (UST), Daejeon, Republic of Korea.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
11
|
Elkamhawy A, Lu Q, Nada H, Woo J, Quan G, Lee K. The Journey of DDR1 and DDR2 Kinase Inhibitors as Rising Stars in the Fight Against Cancer. Int J Mol Sci 2021; 22:ijms22126535. [PMID: 34207360 PMCID: PMC8235339 DOI: 10.3390/ijms22126535] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/07/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022] Open
Abstract
Discoidin domain receptor (DDR) is a collagen-activated receptor tyrosine kinase that plays critical roles in regulating essential cellular processes such as morphogenesis, differentiation, proliferation, adhesion, migration, invasion, and matrix remodeling. As a result, DDR dysregulation has been attributed to a variety of human cancer disorders, for instance, non-small-cell lung carcinoma (NSCLC), ovarian cancer, glioblastoma, and breast cancer, in addition to some inflammatory and neurodegenerative disorders. Since the target identification in the early 1990s to date, a lot of efforts have been devoted to the development of DDR inhibitors. From a medicinal chemistry perspective, we attempted to reveal the progress in the development of the most promising DDR1 and DDR2 small molecule inhibitors covering their design approaches, structure-activity relationship (SAR), biological activity, and selectivity.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Qili Lu
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
| | - Hossam Nada
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
| | - Jiyu Woo
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
| | - Guofeng Quan
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea or (A.E.); (Q.L.); (H.N.); (J.W.); (G.Q.)
- Correspondence:
| |
Collapse
|
12
|
Effects of a Novel Thiadiazole Derivative with High Anticancer Activity on Cancer Cell Immunogenic Markers: Mismatch Repair System, PD-L1 Expression, and Tumor Mutation Burden. Pharmaceutics 2021; 13:pharmaceutics13060885. [PMID: 34203761 PMCID: PMC8232699 DOI: 10.3390/pharmaceutics13060885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/31/2022] Open
Abstract
Microsatellite instability (MSI), tumor mutation burden (TMB), and programmed cell death ligand-1 (PD-L1) are particularly known as immunotherapy predictive biomarkers. MSI and TMB are closely related to DNA mismatch repair (MMR) pathway functionality, while the PD-L1 checkpoint mediates cancer cell evasion from immune surveillance via the PD-L1/PD-1 axis. Among all the novel triazolo[3,4-b]thiadiazole derivatives, the compound KA39 emerged as the most potent anticancer agent. In the present study, potential alterations in MSI, TMB, and/or PD-L1 expression upon cell treatment with KA39 are explored. We tested three MMR-deficient (DLD-1, LS174T, and DU-145) and two MMR-proficient (HT-29 and PC-3) human cancer cell lines. Our findings support KA39-induced PD-L1 overexpression in all cancer cell lines, although the most outstanding increase was observed in MMR-proficient HT-29 cells. MSI analysis showed that KA39 affects the MMR system, impairing its recognition or repair activity, particularly in MMR-deficient DLD-1 and DU-145 cells, enhancing oligonucleotide production. There were no remarkable alterations in the TMB between untreated and treated cells, indicating that KA39 does not belong to mutagenic agents. Taking together the significant in vitro anticancer activity with PD-L1 upregulation and MSI increase, KA39 should be investigated further for its implication in chemo-immunotherapy of cancer.
Collapse
|
13
|
Saralkar P, Mdzinarishvili A, Arsiwala TA, Lee YK, Sullivan PG, Pinti MV, Hollander JM, Kelley EE, Ren X, Hu H, Simpkins J, Brown C, Hazlehurst LE, Huber JD, Geldenhuys WJ. The Mitochondrial mitoNEET Ligand NL-1 Is Protective in a Murine Model of Transient Cerebral Ischemic Stroke. Pharm Res 2021; 38:803-817. [PMID: 33982226 PMCID: PMC8298128 DOI: 10.1007/s11095-021-03046-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Therapeutic strategies to treat ischemic stroke are limited due to the heterogeneity of cerebral ischemic injury and the mechanisms that contribute to the cell death. Since oxidative stress is one of the primary mechanisms that cause brain injury post-stroke, we hypothesized that therapeutic targets that modulate mitochondrial function could protect against reperfusion-injury after cerebral ischemia, with the focus here on a mitochondrial protein, mitoNEET, that modulates cellular bioenergetics. METHOD In this study, we evaluated the pharmacology of the mitoNEET ligand NL-1 in an in vivo therapeutic role for NL-1 in a C57Bl/6 murine model of ischemic stroke. RESULTS NL-1 decreased hydrogen peroxide production with an IC50 of 5.95 μM in neuronal cells (N2A). The in vivo activity of NL-1 was evaluated in a murine 1 h transient middle cerebral artery occlusion (t-MCAO) model of ischemic stroke. We found that mice treated with NL-1 (10 mg/kg, i.p.) at time of reperfusion and allowed to recover for 24 h showed a 43% reduction in infarct volume and 68% reduction in edema compared to sham-injured mice. Additionally, we found that when NL-1 was administered 15 min post-t-MCAO, the ischemia volume was reduced by 41%, and stroke-associated edema by 63%. CONCLUSION As support of our hypothesis, as expected, NL-1 failed to reduce stroke infarct in a permanent photothrombotic occlusion model of stroke. This report demonstrates the potential therapeutic benefits of using mitoNEET ligands like NL-1 as novel mitoceuticals for treating reperfusion-injury with cerebral stroke.
Collapse
Affiliation(s)
- Pushkar Saralkar
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 1 Medical Center Drive, Morgantown, West Virginia, 26506, USA
| | - Alexander Mdzinarishvili
- Department of Neurology, College of Medicine, University of Oklahoma HSC, Oklahoma City, Oklahoma, USA
| | - Tasneem A Arsiwala
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 1 Medical Center Drive, Morgantown, West Virginia, 26506, USA
| | - Yoon-Kwang Lee
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Patrick G Sullivan
- Department of Neuroscience, Spinal and Brain Injury Research Center, School of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Mark V Pinti
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University, Morgantown, West Virginia, USA
| | - John M Hollander
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University, Morgantown, West Virginia, USA
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Eric E Kelley
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia, USA
| | - Xuefang Ren
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Heng Hu
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - James Simpkins
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Candice Brown
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Lori E Hazlehurst
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 1 Medical Center Drive, Morgantown, West Virginia, 26506, USA
| | - Jason D Huber
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 1 Medical Center Drive, Morgantown, West Virginia, 26506, USA
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 1 Medical Center Drive, Morgantown, West Virginia, 26506, USA.
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, West Virginia, USA.
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University, Morgantown, West Virginia, USA.
| |
Collapse
|
14
|
The Yin and Yang of Discoidin Domain Receptors (DDRs): Implications in Tumor Growth and Metastasis Development. Cancers (Basel) 2021; 13:cancers13071725. [PMID: 33917302 PMCID: PMC8038660 DOI: 10.3390/cancers13071725] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The tumor microenvironment plays an important role in tumor development and metastasis. Collagens are major components of the extracellular matrix and can influence tumor development and metastasis by activating discoidin domain receptors (DDRs). This work shows the different roles of DDRs in various cancers and highlights the complexity of anti-DDR therapies in cancer treatment. Abstract The tumor microenvironment is a complex structure composed of the extracellular matrix (ECM) and nontumoral cells (notably cancer-associated fibroblasts (CAFs) and immune cells). Collagens are the main components of the ECM and they are extensively remodeled during tumor progression. Some collagens are ligands for the discoidin domain receptor tyrosine kinases, DDR1 and DDR2. DDRs are involved in different stages of tumor development and metastasis formation. In this review, we present the different roles of DDRs in these processes and discuss controversial findings. We conclude by describing emerging DDR inhibitory strategies, which could be used as new alternatives for the treatment of patients.
Collapse
|
15
|
Trafalis DT, Sagredou S, Dalezis P, Voura M, Fountoulaki S, Nikoleousakos N, Almpanakis K, Deligiorgi MV, Sarli V. Anticancer Activity of Triazolo-Thiadiazole Derivatives and Inhibition of AKT1 and AKT2 Activation. Pharmaceutics 2021; 13:pharmaceutics13040493. [PMID: 33916378 PMCID: PMC8066331 DOI: 10.3390/pharmaceutics13040493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
The fusion of 1,2,4-triazole and 1,3,4-thiadiazole rings results in a class of heterocycles compounds with an extensive range of pharmacological properties. A series of 1,2,4-triazolo[3,4-b]-1,2,4-thiadiazoles was synthesized and tested for its enzyme inhibition potential and anticancer activity. The results show that 1,2,4-triazolo[3,4-b]-1,2,4-thiadiazoles display potent anticancer properties in vitro against a panel of cancer cells and in vivo efficacy in HT-29 human colon tumor xenograft in CB17 severe combined immunodeficient (SCID) mice. Preliminary mechanistic studies revealed that KA25 and KA39 exhibit time- and concentration-dependent inhibition of Akt Ser-473 phosphorylation. Molecular modeling experiments indicated that 1,2,4-triazolo[3,4-b]-1,2,4-thiadiazoles bind well to the ATP binding site in Akt1 and Akt2. The low acute toxicity combined with in vitro and in vivo anticancer activity render triazolo[3,4-b]thiadiazoles KA25, KA26, and KA39 promising cancer therapeutic agents.
Collapse
Affiliation(s)
- Dimitrios T. Trafalis
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (S.S.); (P.D.); (N.N.); (M.V.D.)
- Correspondence: (D.T.T.); (V.S.)
| | - Sofia Sagredou
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (S.S.); (P.D.); (N.N.); (M.V.D.)
| | - Panayiotis Dalezis
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (S.S.); (P.D.); (N.N.); (M.V.D.)
| | - Maria Voura
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 541 24 Thessaloniki, Greece; (M.V.); (S.F.); (K.A.)
| | - Stella Fountoulaki
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 541 24 Thessaloniki, Greece; (M.V.); (S.F.); (K.A.)
| | - Nikolaos Nikoleousakos
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (S.S.); (P.D.); (N.N.); (M.V.D.)
| | - Konstantinos Almpanakis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 541 24 Thessaloniki, Greece; (M.V.); (S.F.); (K.A.)
| | - Maria V. Deligiorgi
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (S.S.); (P.D.); (N.N.); (M.V.D.)
| | - Vasiliki Sarli
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 541 24 Thessaloniki, Greece; (M.V.); (S.F.); (K.A.)
- Correspondence: (D.T.T.); (V.S.)
| |
Collapse
|
16
|
Gao Y, Zhou J, Li J. Discoidin domain receptors orchestrate cancer progression: A focus on cancer therapies. Cancer Sci 2021; 112:962-969. [PMID: 33377205 PMCID: PMC7935774 DOI: 10.1111/cas.14789] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 12/18/2022] Open
Abstract
Discoidin domain receptors (DDR), including DDR1 and DDR2, are special types of the transmembrane receptor tyrosine kinase superfamily. DDR are activated by binding to the triple-helical collagen and, in turn, DDR can activate signal transduction pathways that regulate cell-collagen interactions involved in multiple physiological and pathological processes such as cell proliferation, migration, apoptosis, and cytokine secretion. Recently, DDR have been found to contribute to various diseases, including cancer. In addition, aberrant expressions of DDR have been reported in various human cancers, which indicates that DDR1 and DDR2 could be new targets for cancer treatment. Considerable effort has been made to design DDR inhibitors and several molecules have shown therapeutic effects in pre-clinical models. In this article, we review the recent literature on the role of DDR in cancer progression, the development status of DDR inhibitors, and the clinical potential of targeting DDR in cancer therapies.
Collapse
Affiliation(s)
- Yuan Gao
- Tongji University School of Medicine, Shanghai, China
| | - Jiuli Zhou
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Nada H, Elkamhawy A, Lee K. Structure Activity Relationship of Key Heterocyclic Anti-Angiogenic Leads of Promising Potential in the Fight against Cancer. Molecules 2021; 26:molecules26030553. [PMID: 33494492 PMCID: PMC7865909 DOI: 10.3390/molecules26030553] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Pathological angiogenesis is a hallmark of cancer; accordingly, a number of anticancer FDA-approved drugs act by inhibiting angiogenesis via different mechanisms. However, the development process of the most potent anti-angiogenics has met various hurdles including redundancy, multiplicity, and development of compensatory mechanisms by which blood vessels are remodeled. Moreover, identification of broad-spectrum anti-angiogenesis targets is proved to be required to enhance the efficacy of the anti-angiogenesis drugs. In this perspective, a proper understanding of the structure activity relationship (SAR) of the recent anti-angiogenics is required. Various anti-angiogenic classes have been developed over the years; among them, the heterocyclic organic compounds come to the fore as the most promising, with several drugs approved by the FDA. In this review, we discuss the structure–activity relationship of some promising potent heterocyclic anti-angiogenic leads. For each lead, a molecular modelling was also carried out in order to correlate its SAR and specificity to the active site. Furthermore, an in silico pharmacokinetics study for some representative leads was presented. Summarizing, new insights for further improvement for each lead have been reviewed.
Collapse
Affiliation(s)
- Hossam Nada
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea
| | - Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea
| |
Collapse
|
18
|
Sagredou S, Dalezis P, Nikoleousakos N, Nikolaou M, Voura M, Almpanakis K, Panayiotidis MI, Sarli V, Trafalis DT. 3,6-Disubstituted 1,2,4-Triazolo[3,4- b]Thiadiazoles with Anticancer Activity Targeting Topoisomerase II Alpha. Onco Targets Ther 2020; 13:7369-7386. [PMID: 32801761 PMCID: PMC7395825 DOI: 10.2147/ott.s254856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/30/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Topoisomerase IIα (topIIα) maintains the topology of DNA in order to ensure the proper functioning of numerous DNA processes. Inhibition of topIIα leads to the killing of cancer cells thus constituting such inhibitors as useful tools in cancer therapeutics. Triazolo[3,4-b]thiadiazole derivatives are known for their wide range of pharmacological activities while previous studies have documented their in vitro anticancer activity. The purpose of the current study was to investigate if these chemical compounds can act as topIIα inhibitors in cell-free and cell-based systems. MATERIALS AND METHODS The MTT assay was performed in DLD-1, HT-29, and LoVo cancer cells so as to evaluate the antiproliferative activity of KA25, KA26, and KA39 triazolo[3,4-b]thiadiazole derivatives. The KA39 compound was tested as a potential topIIα inhibitor using the plasmid-based topoisomerase II drug screening kit. The inhibitory effect of the three derivatives on topIIα phosphorylation was studied in HT-29 and LoVo cancer cells according to Human Phospho-TOP2A/Topoisomerase II Alpha Cell-Based Phosphorylation ELISA Kit. Moreover, flow cytometry was utilized in order to explore apoptotic induction and cell cycle growth arrest, upon treatment with KA39, in DLD-1 and HT-29 cells, respectively. In silico studies were also carried out for further investigation. RESULTS All three triazolo[3,4-b]thiadiazole derivatives showed an in vitro antiproliferative effect with the KA39 compound being the most potent one. Our results indicated that KA39 induced both early and late apoptosis as well as cell cycle growth arrest in S phase. In addition, the compound blocked the relaxation of supercoiled DNA while it also inhibited topIIα phosphorylation (upon treatment; P<0.001). CONCLUSION Among the three triazolo[3,4-b]thiadiazole derivatives, KA39 was shown to be the most potent anticancer agent and catalytic inhibitor of topIIα phosphorylation as well.
Collapse
Affiliation(s)
- Sofia Sagredou
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens11527, Greece
| | - Panagiotis Dalezis
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens11527, Greece
| | - Nikolaos Nikoleousakos
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens11527, Greece
| | - Michail Nikolaou
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens11527, Greece
| | - Maria Voura
- Department of Chemistry, Aristotle University of Thessaloniki , Thessaloniki, 54124, Greece
| | | | - Mihalis I Panayiotidis
- Department of Electron Microscopy & Molecular Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia2371, Cyprus
- The Cyprus School of Molecular Medicine, Nicosia1683, Cyprus
| | - Vasiliki Sarli
- Department of Chemistry, Aristotle University of Thessaloniki , Thessaloniki, 54124, Greece
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens11527, Greece
| |
Collapse
|
19
|
Enrichment of novel quinazoline derivatives with high antitumor activity in mitochondria tracked by its self-fluorescence. Eur J Med Chem 2019; 178:417-432. [DOI: 10.1016/j.ejmech.2019.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/30/2022]
|
20
|
Reger de Moura C, Battistella M, Sohail A, Caudron A, Feugeas JP, Podgorniak MP, Pages C, Mazouz Dorval S, Marco O, Menashi S, Fridman R, Lebbé C, Mourah S, Jouenne F. Discoidin domain receptors: A promising target in melanoma. Pigment Cell Melanoma Res 2019; 32:697-707. [PMID: 31271515 DOI: 10.1111/pcmr.12809] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/09/2019] [Accepted: 06/02/2019] [Indexed: 01/01/2023]
Abstract
The discoidin domain receptor 1 (DDR1) is a member of the receptor tyrosine kinase family that signals in response to collagen and that has been implicated in cancer progression. In the present study, we investigated the expression and role of DDR1 in human melanoma progression. Immunohistochemical staining of human melanoma specimens (n = 52) shows high DDR1 expression in melanoma lesions that correlates with poor prognosis. DDR1 expression was associated with the clinical characteristics of Clark level and ulceration and with BRAF mutations. Downregulation of DDR1 by small interfering RNA (siRNA) in vitro inhibited melanoma cells malignant properties, migration, invasion, and survival in several human melanoma cell lines. A DDR tyrosine kinase inhibitor (DDR1-IN-1) significantly inhibited melanoma cell proliferation in vitro, and ex vivo and in tumor xenografts, underlining the promising potential of DDR1 inhibition in melanoma.
Collapse
Affiliation(s)
- Coralie Reger de Moura
- Inserm, UMR_S976, Université de Paris, Paris, France.,Laboratory of Pharmacogenomics, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Maxime Battistella
- Department of Pathology, Hôpital Saint-Louis, AP-HP, Paris, France.,Université de Paris, Paris, France.,Inserm, UMR_S1165, Université de Paris, Paris, France
| | - Anjum Sohail
- Department of Pathology and Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Anne Caudron
- Inserm, UMR_S976, Université de Paris, Paris, France
| | - Jean Paul Feugeas
- Université de Paris, Paris, France.,Inserm, UMR_1137, Université de Paris, Paris, France.,Department of Biochemistry, Hôpital Saint-Louis, AP-HP, Paris, France
| | | | - Cecile Pages
- Department of Dermatology, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Sarra Mazouz Dorval
- Université de Paris, Paris, France.,Department of Plastic, Reconstructive and Esthetic Surgery, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Oren Marco
- Université de Paris, Paris, France.,Department of Plastic, Reconstructive and Esthetic Surgery, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Suzanne Menashi
- CNRS-UMR 7149, Laboratory CRRET, Créteil, France.,Université Paris 12, Créteil, France
| | - Rafael Fridman
- Department of Pathology and Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Celeste Lebbé
- Inserm, UMR_S976, Université de Paris, Paris, France.,Université de Paris, Paris, France.,Department of Dermatology, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Samia Mourah
- Inserm, UMR_S976, Université de Paris, Paris, France.,Laboratory of Pharmacogenomics, Hôpital Saint-Louis, AP-HP, Paris, France.,Université de Paris, Paris, France
| | - Fanélie Jouenne
- Inserm, UMR_S976, Université de Paris, Paris, France.,Laboratory of Pharmacogenomics, Hôpital Saint-Louis, AP-HP, Paris, France.,Université de Paris, Paris, France
| |
Collapse
|
21
|
Tandon R, Singh I, Luxami V, Tandon N, Paul K. Recent Advances and Developments ofin vitroEvaluation of Heterocyclic Moieties on Cancer Cell Lines. CHEM REC 2018; 19:362-393. [DOI: 10.1002/tcr.201800024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/06/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Runjhun Tandon
- Department of Chemistry, School of Physical SciencesLovely Professional University Phagwara- 144411 India
| | - Iqubal Singh
- School of Chemistry and BiochemistryThapar Institute of Engineering and Technology Patiala- 147001 India
| | - Vijay Luxami
- School of Chemistry and BiochemistryThapar Institute of Engineering and Technology Patiala- 147001 India
| | - Nitin Tandon
- Department of Chemistry, School of Physical SciencesLovely Professional University Phagwara- 144411 India
| | - Kamaldeep Paul
- School of Chemistry and BiochemistryThapar Institute of Engineering and Technology Patiala- 147001 India
| |
Collapse
|
22
|
Henriet E, Sala M, Abou Hammoud A, Tuariihionoa A, Di Martino J, Ros M, Saltel F. Multitasking discoidin domain receptors are involved in several and specific hallmarks of cancer. Cell Adh Migr 2018; 12:363-377. [PMID: 29701112 PMCID: PMC6411096 DOI: 10.1080/19336918.2018.1465156] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/11/2022] Open
Abstract
Discoidin domain receptors, DDR1 and DDR2, are two members of collagen receptor family that belong to tyrosine kinase receptor subgroup. Unlike other matrix receptor-like integrins, these collagen receptors have not been extensively studied. However, more and more studies are focusing on their involvement in cancer. These two receptors are present in several subcellular localizations such as intercellular junction or along type I collagen fibers. Consequently, they are involved in multiple cellular functions, for instance, cell cohesion, proliferation, adhesion, migration and invasion. Furthermore, various signaling pathways are associated with these multiple functions. In this review, we highlight and characterize hallmarks of cancer in which DDRs play crucial roles. We discuss recent data from studies that demonstrate the involvement of DDRs in tumor proliferation, cancer mutations, drug resistance, inflammation, neo-angiogenesis and metastasis. DDRs could be potential targets in cancer and we conclude this review by discussing the different ways to inhibits them.
Collapse
Affiliation(s)
- Elodie Henriet
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Margaux Sala
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Aya Abou Hammoud
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Adjanie Tuariihionoa
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Julie Di Martino
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Manon Ros
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore
| | - Frédéric Saltel
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| |
Collapse
|
23
|
Wang Z, Zhang Y, Bartual SG, Luo J, Xu T, Du W, Xun Q, Tu Z, Brekken RA, Ren X, Bullock AN, Liang G, Lu X, Ding K. Tetrahydroisoquinoline-7-carboxamide Derivatives as New Selective Discoidin Domain Receptor 1 (DDR1) Inhibitors. ACS Med Chem Lett 2017; 8:327-332. [PMID: 28337325 DOI: 10.1021/acsmedchemlett.6b00497] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/09/2017] [Indexed: 11/28/2022] Open
Abstract
Acute lung injury (ALI) is a deadly symptom for serious lung inflammation. Discoidin Domain Receptor 1 (DDR1) is a new potential target for anti-inflammatory drug discovery. A new selective tetrahydroisoquinoline-7-carboxamide based DDR1 inhibitor 7ae was discovered to tightly bind the DDR1 protein and potently inhibit its kinase function with a Kd value of 2.2 nM and an IC50 value of 6.6 nM, respectively. The compound dose-dependently inhibited lipopolysaccharide (LPS)-induced interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) release in mouse primary peritoneal macrophages (MPMs). In addition, 7ae also exhibited promising in vivo anti-inflammatory effects in a LPS-induced mouse ALI model. To the best of our knowledge, this is the first "proof of concept" investigation on the potential application of a small molecule DDR1 inhibitor to treat ALI.
Collapse
Affiliation(s)
- Zhen Wang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Yali Zhang
- Chemical Biology Research
Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Sergio G. Bartual
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, U.K
| | - Jinfeng Luo
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Tingting Xu
- Department of Pulmonary Medicine, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Wenting Du
- Division
of Surgical Oncology, Department of Surgery and the Hamon Center for
Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas 75390-8593, United States
| | - Qiuju Xun
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Zhengchao Tu
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Rolf A. Brekken
- Division
of Surgical Oncology, Department of Surgery and the Hamon Center for
Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas 75390-8593, United States
| | - Xiaomei Ren
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Alex N. Bullock
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, U.K
| | - Guang Liang
- Chemical Biology Research
Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xiaoyun Lu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Ke Ding
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
24
|
Wang Z, Bian H, Bartual SG, Du W, Luo J, Zhao H, Zhang S, Mo C, Zhou Y, Xu Y, Tu Z, Ren X, Lu X, Brekken RA, Yao L, Bullock AN, Su J, Ding K. Structure-Based Design of Tetrahydroisoquinoline-7-carboxamides as Selective Discoidin Domain Receptor 1 (DDR1) Inhibitors. J Med Chem 2016; 59:5911-6. [PMID: 27219676 PMCID: PMC5053573 DOI: 10.1021/acs.jmedchem.6b00140] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
The structure-based design of 1,
2, 3, 4-tetrahydroisoquinoline
derivatives as selective DDR1 inhibitors is reported. One of the representative
compounds, 6j, binds to DDR1 with a Kd value of 4.7 nM and suppresses its kinase activity with
an IC50 value of 9.4 nM, but it is significantly less potent
for a panel of 400 nonmutated kinases. 6j also demonstrated
reasonable pharmacokinetic properties and a promising oral therapeutic
effect in a bleomycin-induced mouse pulmonary fibrosis model.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of the Chinese Academy of Sciences , 19 Yuquan Road, Beijing 100049, China
| | - Huan Bian
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University , 17 Changle Western Road, Xi'an, Shaanxi 710032, P. R. China
| | - Sergio G Bartual
- Structural Genomics Consortium, University of Oxford , Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, U.K
| | - Wenting Du
- Division of Surgical Oncology, Department of Surgery and the Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center , Dallas Texas 75390-8593, United States
| | - Jinfeng Luo
- State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Hu Zhao
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University , 17 Changle Western Road, Xi'an, Shaanxi 710032, P. R. China
| | - Shasha Zhang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Cheng Mo
- State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of the Chinese Academy of Sciences , 19 Yuquan Road, Beijing 100049, China
| | - Yang Zhou
- State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of the Chinese Academy of Sciences , 19 Yuquan Road, Beijing 100049, China
| | - Yong Xu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Zhengchao Tu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Xiaomei Ren
- State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Xiaoyun Lu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , 190 Kaiyuan Avenue, Guangzhou 510530, China.,School of Pharmacy, Jinan University , 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Rolf A Brekken
- Division of Surgical Oncology, Department of Surgery and the Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center , Dallas Texas 75390-8593, United States
| | - Libo Yao
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University , 17 Changle Western Road, Xi'an, Shaanxi 710032, P. R. China
| | - Alex N Bullock
- Structural Genomics Consortium, University of Oxford , Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, U.K
| | - Jin Su
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University , 17 Changle Western Road, Xi'an, Shaanxi 710032, P. R. China
| | - Ke Ding
- State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , 190 Kaiyuan Avenue, Guangzhou 510530, China.,School of Pharmacy, Jinan University , 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|