1
|
Rahman MT, Chari DA, Ishiyama G, Lopez I, Quesnel AM, Ishiyama A, Nadol JB, Hansen MR. Cochlear implants: Causes, effects and mitigation strategies for the foreign body response and inflammation. Hear Res 2022; 422:108536. [PMID: 35709579 PMCID: PMC9684357 DOI: 10.1016/j.heares.2022.108536] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 04/20/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022]
Abstract
Cochlear implants provide effective auditory rehabilitation for patients with severe to profound sensorineural hearing loss. Recent advances in cochlear implant technology and surgical approaches have enabled a greater number of patients to benefit from this technology, including those with significant residual low frequency acoustic hearing. Nearly all cochleae implanted with a cochlear implant electrode array develop an inflammatory and fibrotic response. This tissue reaction can have deleterious consequences for implant function, residual acoustic hearing, and the development of the next generation of cochlear prosthetics. This article reviews the current understanding of the inflammatory/foreign body response (FBR) after cochlear implant surgery, its impact on clinical outcome, and therapeutic strategies to mitigate this response. Findings from both in human subjects and animal models across a variety of species are highlighted. Electrode array design, surgical techniques, implant materials, and the degree and type of electrical stimulation are some critical factors that affect the FBR and inflammation. Modification of these factors and various anti-inflammatory pharmacological interventions have been shown to mitigate the inflammatory/FBR response. Ongoing and future approaches that seek to limit surgical trauma and curb the FBR to the implanted biomaterials of the electrode array are discussed. A better understanding of the anatomical, cellular and molecular basis of the inflammatory/FBR response after cochlear implantation has the potential to improve the outcome of current cochlear implants and also facilitate the development of the next generation of neural prostheses.
Collapse
Affiliation(s)
- Muhammad T Rahman
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa, Iowa City, IA, USA
| | - Divya A Chari
- Department of Otolaryngology-Head & Neck Surgery, Harvard University, Boston, MA, USA
| | - Gail Ishiyama
- Department of Head & Neck Surgery, University of California Los Angeles, LA, USA
| | - Ivan Lopez
- Department of Head & Neck Surgery, University of California Los Angeles, LA, USA
| | - Alicia M Quesnel
- Department of Otolaryngology-Head & Neck Surgery, Harvard University, Boston, MA, USA
| | - Akira Ishiyama
- Department of Head & Neck Surgery, University of California Los Angeles, LA, USA
| | - Joseph B Nadol
- Department of Otolaryngology-Head & Neck Surgery, Harvard University, Boston, MA, USA
| | - Marlan R Hansen
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
2
|
Parys QA, Van Bulck P, Loos E, Verhaert N. Inner Ear Pharmacotherapy for Residual Hearing Preservation in Cochlear Implant Surgery: A Systematic Review. Biomolecules 2022; 12:biom12040529. [PMID: 35454118 PMCID: PMC9032072 DOI: 10.3390/biom12040529] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023] Open
Abstract
Cochlear implantation initiates an inflammatory cascade in which both acute insertion trauma and chronic foreign body reaction lead to intracochlear fibrosis and loss of residual hearing. Several strategies have been proposed to attenuate the local reactive process after implantation, including intracochlear drug delivery. The present study gives an overview of what is being investigated in the field of inner ear therapeutics and cochlear implant surgery. The aim is to evaluate its potential benefit in clinical practice. A systematic search was conducted in PubMed, Embase, and Cochrane Library databases identifying comparative prospective studies examining the effect of direct inner ear drug application on mechanical cochlear trauma. Both animal and human studies were considered and all studies were assessed for quality according to the validated risk of bias tools. Intracochlear administration of drugs is a feasible method to reduce the local inflammatory reaction following cochlear implantation. In animal studies, corticosteroid use had a significant effect on outcome measures including auditory brainstem response, impedance, and histological changes. This effect was, however, only durable with prolonged drug delivery. Significant differences in outcome were predominantly seen in studies where the cochlear damage was extensive. Six additional reports assessing non-steroidal agents were found. Overall, evidence of anti-inflammatory effects in humans is still scarce.
Collapse
Affiliation(s)
- Quentin-Alexandre Parys
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospitals Leuven, 3000 Leuven, Belgium; (Q.-A.P.); (P.V.B.); (E.L.)
| | - Pauline Van Bulck
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospitals Leuven, 3000 Leuven, Belgium; (Q.-A.P.); (P.V.B.); (E.L.)
| | - Elke Loos
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospitals Leuven, 3000 Leuven, Belgium; (Q.-A.P.); (P.V.B.); (E.L.)
- Department of Neurosciences, Research Group Experimental Oto-Rhino-Laryngology (ExpORL), KU Leuven, University of Leuven, 3000 Leuven, Belgium
| | - Nicolas Verhaert
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospitals Leuven, 3000 Leuven, Belgium; (Q.-A.P.); (P.V.B.); (E.L.)
- Department of Neurosciences, Research Group Experimental Oto-Rhino-Laryngology (ExpORL), KU Leuven, University of Leuven, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
3
|
Weiss BG, Freytag S, Kloos B, Haubner F, Sharaf K, Spiegel JL, Canis M, Ihler F, Bertlich M. Cannabinoid Receptor 2 Agonism is Capable of Preventing Lipopolysaccharide Induced Decreases of Cochlear Microcirculation - A Potential Approach for Inner Ear Pathologies. Otol Neurotol 2021; 42:e1396-e1401. [PMID: 34267099 DOI: 10.1097/mao.0000000000003280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS The ability of JWH-133, an agonist at the cannabinoid receptor 2, to abrogate the effects of lipopolysaccharide on cochlear microcirculation was investigated. BACKGROUND Cochlear inflammation and subsequent impairment of microcirculation is part of numerous pathologies affecting inner ear function, including suppurative labyrinthitis, noise trauma, and sudden sensorineural hearing loss. One way of causing cochlear inflammation is exposing the cochlea to lipopolysaccharide, a bacterial endotoxin. METHODS Twenty Dunkin-hartley guinea pigs were divided into four groups of five animals each. Two groups received topic treatment with JWH-133 and two received treatment with placebo. One group that had been treated with JWH-133 and one with placebo were then exposed to lipopolysaccharide or placebo, respectively. Cochlear microcirculation was quantified before, in between and after treatments by in vivo fluorescence microscopy. RESULTS Significantly different changes in cochlear blood flow were only seen in the group that was treated with placebo and subsequently lipopolysaccharide. Every other group showed no significant change in cochlear blood flow. CONCLUSION JWH-133 is capable of abrogating the effects of lipopolysaccharide on cochlear microcirculation. It may therefore be clinical interest in treating numerous inflammation associated cochlear pathologies.
Collapse
Affiliation(s)
- Bernhard G Weiss
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Marchioninistr. 15
- Walter Brendel Centre of Experimental Medicine, University of Munich Hospital, Marchioninistr. 27, 81377 Munich, Germany
| | - Saskia Freytag
- Population Health and Immunity Division, Walter and Eliza Hall Institute, 1G Royal Parade
- Department of Medical Biology, University of Melbourne, 3052, Parkville, Australia
| | - Benedikt Kloos
- Walter Brendel Centre of Experimental Medicine, University of Munich Hospital, Marchioninistr. 27, 81377 Munich, Germany
| | - Frank Haubner
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Marchioninistr. 15
| | - Kariem Sharaf
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Marchioninistr. 15
- Walter Brendel Centre of Experimental Medicine, University of Munich Hospital, Marchioninistr. 27, 81377 Munich, Germany
| | - Jennifer Lee Spiegel
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Marchioninistr. 15
| | - Martin Canis
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Marchioninistr. 15
- Walter Brendel Centre of Experimental Medicine, University of Munich Hospital, Marchioninistr. 27, 81377 Munich, Germany
| | - Friedrich Ihler
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Marchioninistr. 15
- Walter Brendel Centre of Experimental Medicine, University of Munich Hospital, Marchioninistr. 27, 81377 Munich, Germany
| | - Mattis Bertlich
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Marchioninistr. 15
- Walter Brendel Centre of Experimental Medicine, University of Munich Hospital, Marchioninistr. 27, 81377 Munich, Germany
| |
Collapse
|
4
|
Tarabichi O, Jensen M, Hansen MR. Advances in hearing preservation in cochlear implant surgery. Curr Opin Otolaryngol Head Neck Surg 2021; 29:385-390. [PMID: 34354014 PMCID: PMC9002354 DOI: 10.1097/moo.0000000000000742] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Advancements in cochlear implant surgical approaches and electrode designs have enabled preservation of residual acoustic hearing. Preservation of low-frequency hearing allows cochlear implant users to benefit from electroacoustic stimulation, which improves performance in complex listening situations, such as music appreciation and speech understanding in noise. Despite the relative high rates of success of hearing preservation, postoperative acoustic hearing outcomes remain unpredictable. RECENT FINDINGS Thin, flexible, lateral wall arrays are preferred for hearing preservation. Both shortened and thin, lateral wall arrays have shown success with hearing preservation and the optimal implant choice is an issue of ongoing investigation. Electrocochleography can monitor cochlear function during and after insertion of the electrode array. The pathophysiology of hearing loss acutely after cochlear implant may differ from that involved in delayed hearing loss following cochlear implant. Emerging innovations may reduce cochlear trauma and improve hearing preservation. SUMMARY Hearing preservation is possible using soft surgical techniques and electrode arrays designed to minimize cochlear trauma; however, a subset of patients suffer from partial to total loss of acoustic hearing months to years following surgery despite evidence of residual apical hair cell function. Early investigations in robotic-assisted insertion and dexamethasone-eluting implants show promise.
Collapse
Affiliation(s)
- Osama Tarabichi
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Megan Jensen
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Marlan R. Hansen
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA
| |
Collapse
|
5
|
Abstract
Biologic therapies have the ability to fundamentally change the management of hearing loss; clinicians need to familiarize themselves with their prospective applications in practice. This article reviews the current application of 4 categories of biological therapeutics-growth factors, apoptosis inhibitors, monoclonal antibodies, and gene therapy-in otology and their potential future directions and applications.
Collapse
Affiliation(s)
- Steven A Gordon
- Otolaryngology-Head & Neck Surgery, University of Utah Health, 50 North Medical Drive 3C120 SOM, Salt Lake City, UT 84132, USA
| | - Richard K Gurgel
- Otolaryngology-Head & Neck Surgery, University of Utah Health, 50 North Medical Drive 3C120 SOM, Salt Lake City, UT 84132, USA.
| |
Collapse
|
6
|
Dhukhwa A, Bhatta P, Sheth S, Korrapati K, Tieu C, Mamillapalli C, Ramkumar V, Mukherjea D. Targeting Inflammatory Processes Mediated by TRPVI and TNF-α for Treating Noise-Induced Hearing Loss. Front Cell Neurosci 2019; 13:444. [PMID: 31632242 PMCID: PMC6786284 DOI: 10.3389/fncel.2019.00444] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022] Open
Abstract
Noise trauma is the most common cause of hearing loss in adults. There are no known FDA approved drugs for prevention or rescue of noise-induced hearing loss (NIHL). In this study, we provide evidence that implicates stress signaling molecules (TRPV1, NOX3, and TNF-α) in NIHL. Furthermore, we provide evidence that inhibiting any one of these moieties can prevent and treat NIHL when administered within a window period. Hearing loss induced by loud noise is associated with the generation of reactive oxygen species (ROS), increased calcium (Ca2+) in the endolymph and hair cells, and increased inflammation in the cochlea. Increased (Ca2+) and ROS activity persists for several days after traumatic noise exposure (NE). Chronic increases in (Ca2+) and ROS have been shown to increase inflammation and apoptosis in various tissue. However, the precise role of Ca2+ up-regulation and the resulting inflammation causing a positive feedback loop in the noise-exposed cochlea to generate sustained toxic amounts of Ca2+ are unknown. Here we show cochlear TRPV1 dysregulation is a key step in NIHL, and that inflammatory TNF-α cytokine-mediated potentiation of TRPV1 induced Ca2+ entry is an essential mechanism of NIHL. In the Wistar rat model, noise produces an acute (within 48 h) and a chronic (within 21 days) increase in cochlear gene expression of TRPV1, NADPH oxidase 3 (NOX3) and pro-inflammatory mediators such as tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX2). Additionally, we also show that H2O2 (100 μM) produces a robust increase in Ca2+ entry in cell cultures which is enhanced by TNF-α via the TRPV1 channel and which involves ERK1/2 phosphorylation. Mitigation of NIHL could be achieved by using capsaicin (TRPV1 agonist that rapidly desensitizes TRPV1. This mechanism is used in the treatment of pain in diabetic peripheral neuropathy) pretreatment or by inhibition of TNF-α with Etanercept (ETA), administered up to 7 days prior to NE or within 24 h of noise. Our results demonstrate the importance of the synergistic interaction between TNF-α and TRPV1 in the cochlea and suggest that these are important therapeutic targets for treating NIHL.
Collapse
Affiliation(s)
- Asmita Dhukhwa
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Puspanjali Bhatta
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Sandeep Sheth
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, United States
| | - Krishi Korrapati
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Coral Tieu
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Chaitanya Mamillapalli
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Debashree Mukherjea
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, United States
| |
Collapse
|
7
|
Abstract
Hearing loss is present in millions of people worldwide. Current treatment for patients with severe to profound hearing loss consists of cochlear implantation. Providing the cochlear nerve is intact, patients generally benefit greatly from this intervention, frequently achieving significant improvements in speech comprehension. There are, however, some cases where current technology does not provide patients with adequate benefit. Ongoing research in cell transplantation and gene therapy promises to lead to new developments that will improve the function of cochlear implants. Translation of these experimental approaches is presently at an early stage. This review focuses on the application of biological therapies in severe hearing loss and discusses some of the barriers to translating basic scientific research into clinical reality. We emphasize the application of these novel therapies to cochlear implantation.
Collapse
Affiliation(s)
- A Roemer
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - H Staecker
- Department of Otolaryngology - Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS, USA
| | - S Sasse
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - T Lenarz
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - A Warnecke
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
8
|
Canis M, Bertlich M. Cochlear Capillary Pericytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1122:115-123. [PMID: 30937866 DOI: 10.1007/978-3-030-11093-2_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Capillary pericytes in the cochlea of mammals are-compared to pericytes in other tissues, like the CNS-relatively poorly researched. To begin with, there is still a considerable debate as to whether the very last precapillary arterioles should-due to their contractile properties-may be considered to be pericytes.However, cochlear capillary pericytes have shifted into the center of attention in the past decade. Most mammals show a considerable number of pericytes in the stria vascularis of the cochlea-up to 1300 in a mouse alone. This high number may be explained by the observation that cochlear capillary pericytes may be differentiated into different subgroups, depending on the immune markers that are expressed by them. Corresponding with these subpopulations, cochlear pericytes fulfill three core functions in the physiology of the cochlea: Formation of the intrastrial blood-fluid barrier-Pericytes monitor the ion, fluid, and nutrient household and aid in the homeostasis thereof. Regulation of cochlear blood flow-By contraction on relaxation, pericytes contribute to the regulation of cochlear blood flow, a paramount function parameter of the cochlea. Immune response-Pericytes actually contribute to the immune response in inflammation of the cochlea. Due to these central roles in the physiology of the cochlea, pericytes actually play a major role in numerous cochlear pathologies, including, but not limited to, sudden sensorineural hearing loss, acoustic trauma, and inflammation of the cochlea.
Collapse
Affiliation(s)
- Martin Canis
- The Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Munich, Germany
| | - Mattis Bertlich
- The Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Munich, Germany.
| |
Collapse
|
9
|
Bertlich M, Ihler F, Weiss BG, Freytag S, Strupp M, Canis M. Cochlear Pericytes Are Capable of Reversibly Decreasing Capillary Diameter In Vivo After Tumor Necrosis Factor Exposure. Otol Neurotol 2018; 38:e545-e550. [PMID: 29135875 DOI: 10.1097/mao.0000000000001523] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The aim of this work was to evaluate the effect of tumor necrosis factor (TNF) and its neutralization with etanercept on the capability of cochlear pericytes to alter capillary diameter in the stria vascularis. METHODS Twelve Dunkin-Hartley guinea pigs were randomly assigned to one of three groups. Each group was treated either with placebo and then placebo, TNF and then placebo, or TNF and then etanercept. Cochlear pericytes were visualized using diaminofluorescein-2-diacetate and intravasal blood flow by fluorescein-dextrane. Vessel diameter at sites of pericyte somas and downstream controls were quantified by specialized software. Values were obtained before treatment, after first treatment with tumor necrosis factor or placebo and after second treatment with etanercept or placebo. RESULTS Overall, 199 pericytes in 12 animals were visualized. After initial treatment with TNF, a significant decrease in vessel diameter at sites of pericyte somas (3.6 ±4.3%, n = 141) compared with placebo and downstream controls was observed. After initial treatment with TNF, the application of etanercept caused a significant increase (3.3 ±5.5%, n = 59) in vessel diameter at the sites of pericyte somata compared with placebo and downstream controls. CONCLUSION We have been able to show that cochlear pericytes are capable of reducing capillary diameter after exposition to TNF. Moreover, the reduction in capillary diameter observed after the application of TNF is revertible after neutralization of tumor necrosis factor by the application of etanercept. It seems that contraction of cochlear pericytes contributes to the regulation of cochlear blood flow.
Collapse
Affiliation(s)
- Mattis Bertlich
- *Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Center Göttingen, Göttingen, Germany †Population Health and Immunity Division, Walter and Eliza Hall Institute ‡Department of Medical Biology, University of Melbourne, Parkville, Australia §Department of Neurology, Munich University Hospital, Munich, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Ren Y, Stankovic KM. The Role of Tumor Necrosis Factor Alpha (TNFα)in Hearing Loss and Vestibular Schwannomas. CURRENT OTORHINOLARYNGOLOGY REPORTS 2018; 6:15-23. [PMID: 31485383 DOI: 10.1007/s40136-018-0186-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose of review The aim of this review is to highlight relevant literature on the role of tumor necrosis factor alpha (TNFα) in sensorineural hearing loss (SNHL) and vestibular schwannomas (VS). Recent Findings A comprehensive review of publically available databases including PubMed was performed. The mechanism by which hearing loss occurs in VS is still unknown and likely multifactorial. Genetic differences between VSs and tumor secreted proteins may be responsible, at least in part, for VS-associated SNHL. TNFα has pleotropic roles in promoting inflammation, maintaining cellular homeostasis, inducing apoptosis, and mediating ototoxicity in patients with sporadic VS. TNFα-targeted therapies have shown efficacy in both animal models of sensorineural hearing loss and clinical trials in patients with immune-mediated hearing loss. Efforts are underway to develop novel nanotechnology-based methods to target TNFα and other pathogenic molecules in VS. Summary Development of molecularly targeted therapies against TNFα represents an important area of research in ameliorating VS-associated hearing loss.
Collapse
Affiliation(s)
- Yin Ren
- Department of Otolaryngology, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA 02114, USA.,Department of Otolaryngology, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Konstantina M Stankovic
- Department of Otolaryngology, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA 02114, USA.,Department of Otolaryngology, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA.,Eaton Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA 02114, USA.,Harvard Program in Speech and Hearing Bioscience and Technology, 25 Shattuck Street, Boston, MA 02115, USA
| |
Collapse
|
11
|
Fingolimod (FTY-720) is Capable of Reversing Tumor Necrosis Factor Induced Decreases in Cochlear Blood Flow. Otol Neurotol 2017; 38:1213-1216. [DOI: 10.1097/mao.0000000000001510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Abstract
Local drug application to the inner ear offers a number of advantages over systemic delivery. Local drug therapy currently encompasses extracochlear administration (i. e., through intratympanic injection), intracochlear administration (particularly for gene and stem cell therapy), as well as various combinations with auditory neurosensory prostheses, either evaluated in preclinical or clinical studies, or off-label. To improve rehabilitation with cochlear implants (CI), one focus is the development of drug-releasing electrode carriers, e. g., for delivery of glucocorticosteroids, antiapoptotic substances, or neurotrophins to the inner ear. The performance of cochlear implants may thus be improved by protecting neuronal structures from insertion trauma, reducing fibrosis in the inner ear, and by stimulating growth of neuronal structures in the direction of the electrodes. Controlled drug release after extracochlear or intracochlear application in conjunction with a CI can also be achieved by use of a biocompatible, resorbable controlled-release drug-delivery system. Two case reports for intracochlear controlled release drug delivery in combination with cochlear implants are presented. In order to treat progressive reduction in speech discrimination and increased impedance, two cochlear implant patients successfully underwent intracochlear placement of a biocompatible, resorbable drug-delivery system for controlled release of dexamethasone. The drug levels reached in inner ear fluids after different types of local drug application strategies can be calculated using a computer model. The intracochlear drug concentrations calculated in this way were compared for different dexamethasone application strategies.
Collapse
|
13
|
Roemer A, Staecker H, Sasse S, Lenarz T, Warnecke A. [Biological therapies in otology. German version]. HNO 2017; 65:571-585. [PMID: 28204850 DOI: 10.1007/s00106-016-0304-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Millions of people worldwide suffer from hearing loss. Current treatment for patients with severe to profound hearing loss consists of cochlear implants. Providing the cochlear nerve is intact, patients generally benefit enormously from this intervention, frequently achieving significant improvements in speech comprehension. There are, however, some cases where current technology does not provide patients with adequate benefit. New therapeutic concepts based on cell transplantation and gene therapy are developing rapidly, at least in the research sector. Compared to the wealth of basic research available in this area, translation of these new experimental approaches into clinical application is presently at a very early stage. The current review focuses on translatable treatment concepts and discusses the barriers that need to be overcome in order to translate basic scientific research into clinical reality. Furthermore, the first examples of clinical application of biological therapies in severe hearing loss are presented, particularly in connection with cochlear implants.
Collapse
Affiliation(s)
- A Roemer
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500 Hannover Medical School, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland.
| | - H Staecker
- Department of Otolaryngology - Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS, USA
| | - S Sasse
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500 Hannover Medical School, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland
| | - T Lenarz
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500 Hannover Medical School, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland
| | - A Warnecke
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500 Hannover Medical School, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland
| |
Collapse
|
14
|
|