1
|
Choi S, Kim K, Kwon M, Bai SJ, Cha M, Lee BH. Modulation of Neuropathic Pain by Glial Regulation in the Insular Cortex of Rats. Front Mol Neurosci 2022; 15:815945. [PMID: 35493331 PMCID: PMC9043281 DOI: 10.3389/fnmol.2022.815945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
The insular cortex (IC) is known to process pain information. However, analgesic effects of glial inhibition in the IC have not yet been explored. The aim of this study was to investigate pain alleviation effects after neuroglia inhibition in the IC during the early or late phase of pain development. The effects of glial inhibitors in early or late phase inhibition in neuropathic pain were characterized in astrocytes and microglia expressions in the IC of an animal model of neuropathic pain. Changes in withdrawal responses during different stages of inhibition were compared, and morphological changes in glial cells with purinergic receptor expressions were analyzed. Inhibition of glial cells had an analgesic effect that persisted even after drug withdrawal. Both GFAP and CD11b/c expressions were decreased after injection of glial inhibitors. Morphological alterations of astrocytes and microglia were observed with expression changes of purinergic receptors. These findings indicate that inhibition of neuroglia activity in the IC alleviates chronic pain, and that purinergic receptors in glial cells are closely related to chronic pain development.
Collapse
Affiliation(s)
- Songyeon Choi
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyeongmin Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Minjee Kwon
- Department of Nursing, Kyungil University, Gyeongsan, South Korea
| | - Sun Joon Bai
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Myeounghoon Cha,
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
- Bae Hwan Lee,
| |
Collapse
|
2
|
Bohren Y, Timbolschi DI, Muller A, Barrot M, Yalcin I, Salvat E. Platelet-rich plasma and cytokines in neuropathic pain: A narrative review and a clinical perspective. Eur J Pain 2021; 26:43-60. [PMID: 34288258 DOI: 10.1002/ejp.1846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/18/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVE Neuropathic pain arises as a direct consequence of a lesion or disease affecting the somatosensory system. A number of preclinical studies have provided evidence for the involvement of cytokines, predominantly secreted by a variety of immune cells and by glial cells from the nervous system, in neuropathic pain conditions. Clinical trials and the use of anti-cytokine drugs in different neuropathic aetiologies support the relevance of cytokines as treatment targets. However, the use of such drugs, in particularly biotherapies, can provoke notable adverse effects. Moreover, it is challenging to select one given cytokine as a target, among the various neuropathic pain conditions. It could thus be of interest to target other proteins, such as growth factors, in order to act more widely on the neuroinflammation network. Thus, platelet-rich plasma (PRP), an autologous blood concentrate, is known to contain a natural concentration of growth factors and immune system messengers and is widely used in the clinical setting for tissue regeneration and repair. DATABASE AND DATA TREATMENT In the present review, we critically assess the current knowledge on cytokines in neuropathic pain by taking into consideration both human studies and animal models. RESULTS This analysis of the literature highlights the pathophysiological importance of cytokines. We particularly highlight the concept of time- and tissue-dependent cytokine activation during neuropathic pain conditions. RESULTS Conclusion: Thus, direct or indirect cytokines modulation with biotherapies or growth factors appears relevant. In addition, we discuss the therapeutic potential of localized injection of PRP as neuropathic pain treatment by pointing out the possible link between cytokines and the action of PRP. SIGNIFICANCE Preclinical and clinical studies highlight the idea of a cytokine imbalance in the development and maintenance of neuropathic pain. Clinical trials with anticytokine drugs are encouraging but are limited by a 'cytokine candidate approach' and adverse effect of biotherapies. PRP, containing various growth factors, is a new therapeutic used in regenerative medicine. Growth factors can be also considered as modulators of cytokine balance. Here, we emphasize a potential therapeutic effect of PRP on cytokine imbalance in neuropathic pain. We also underline the clinical interest of the use of PRP, not only for its therapeutic effect but also for its safety of use.
Collapse
Affiliation(s)
- Yohann Bohren
- Centre d'Evaluation et de Traitement de la Douleur, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Daniel Ionut Timbolschi
- Centre d'Evaluation et de Traitement de la Douleur, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - André Muller
- Centre d'Evaluation et de Traitement de la Douleur, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Michel Barrot
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Eric Salvat
- Centre d'Evaluation et de Traitement de la Douleur, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| |
Collapse
|
3
|
Warfield AE, Prather JF, Todd WD. Systems and Circuits Linking Chronic Pain and Circadian Rhythms. Front Neurosci 2021; 15:705173. [PMID: 34276301 PMCID: PMC8284721 DOI: 10.3389/fnins.2021.705173] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Research over the last 20 years regarding the link between circadian rhythms and chronic pain pathology has suggested interconnected mechanisms that are not fully understood. Strong evidence for a bidirectional relationship between circadian function and pain has been revealed through inflammatory and immune studies as well as neuropathic ones. However, one limitation of many of these studies is a focus on only a few molecules or cell types, often within only one region of the brain or spinal cord, rather than systems-level interactions. To address this, our review will examine the circadian system as a whole, from the intracellular genetic machinery that controls its timing mechanism to its input and output circuits, and how chronic pain, whether inflammatory or neuropathic, may mediate or be driven by changes in these processes. We will investigate how rhythms of circadian clock gene expression and behavior, immune cells, cytokines, chemokines, intracellular signaling, and glial cells affect and are affected by chronic pain in animal models and human pathologies. We will also discuss key areas in both circadian rhythms and chronic pain that are sexually dimorphic. Understanding the overlapping mechanisms and complex interplay between pain and circadian mediators, the various nuclei they affect, and how they differ between sexes, will be crucial to move forward in developing treatments for chronic pain and for determining how and when they will achieve their maximum efficacy.
Collapse
Affiliation(s)
| | | | - William D. Todd
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
4
|
Inyang KE, Folger JK, Laumet G. Can FDA-Approved Immunomodulatory Drugs be Repurposed/Repositioned to Alleviate Chronic Pain? J Neuroimmune Pharmacol 2021; 16:531-547. [PMID: 34041656 DOI: 10.1007/s11481-021-10000-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
Pain is among the most widespread chronic health condition confronting society today and our inability to manage chronic pain contributes to the opioid abuse epidemic in America. The immune system is known to contribute to acute and chronic pain, but only limited therapeutic treatments such as non-steroid anti-inflammatory drugs have resulted from this knowledge. The last decade has shed light on neuro-immune interactions mediating the development, maintenance, and resolution of chronic pain. Here, we do not aim to perform a comprehensive review of all immune mechanisms involved in chronic pain, but to briefly review the contribution of the main cytokines and immune cells (macrophages, microglia, mast cells and T cells) to chronic pain. Given the urgent need to address the Pain crisis, we provocatively propose to repurpose/reposition FDA-approved immunomodulatory drugs for their potential to alleviate chronic pain. Repositioning or repurposing offers an attractive way to accelerate the arrival of new analgesics.
Collapse
Affiliation(s)
| | - Joseph K Folger
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
5
|
Kim HW, Won CH, Oh SB. Lack of correlation between spinal microgliosis and long-term development of tactile hypersensitivity in two different sciatic nerve crush injury. Mol Pain 2021; 17:17448069211011326. [PMID: 33906495 PMCID: PMC8108074 DOI: 10.1177/17448069211011326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Microglia activation following peripheral nerve injury has been shown to contribute to central sensitization of the spinal cord for the development of neuropathic pain. In a recent study, we reported that the amount of nerve damage does not necessarily correlate with chronic pain development. Here we compared the response of spinal microglia, using immunohistochemistry as a surrogate of microglial activation, in mice with two different types of crush injury of the sciatic nerve. We confirmed that incomplete crush of the sciatic nerve (partial crush injury, PCI) resulted in tactile hypersensitivity after the recovery of sensory function (15 days after surgery), whereas the hypersensitivity was not observed after the complete crush (full crush injury, FCI). We observed that immunoreactivity for Iba-1, a microglial marker, was greater in the ipsilateral dorsal horn of lumbar (L4) spinal cord of mice 2 days after FCI compared to PCI, positively correlating with the intensity of crush injury. Ipsilateral Iba-1 reactivity was comparable between injuries at 7 days with a significant increase compared to the contralateral side. By day 15 after injury, ipsilateral Iba-1 immunoreactivity was much reduced compared to day 7 and was not different between the groups. Our results suggest that the magnitude of the early microgliosis is dependent on injury severity, but does not necessarily correlate with the long-term development of chronic pain-like hypersensitivity after peripheral nerve injury.
Collapse
Affiliation(s)
- Hyoung Woo Kim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Chan Hee Won
- Department of Neurobiology and Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Seog Bae Oh
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea.,Department of Neurobiology and Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Shin DA, Kim TU, Chang MC. Minocycline for Controlling Neuropathic Pain: A Systematic Narrative Review of Studies in Humans. J Pain Res 2021; 14:139-145. [PMID: 33536779 PMCID: PMC7849188 DOI: 10.2147/jpr.s292824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Minocycline is known to reduce microglial activation, suggesting that it may reduce neuropathic pain. We reviewed studies in humans that evaluated the effectiveness of minocycline in alleviating neuropathic pain. METHODS We searched the PubMed, Embase, Cochrane library, and SCOPUS databases for papers published before January 06, 2021, using the search words minocycline and pain. The inclusion criteria for the selection of articles were (1) minocycline administered to humans and (2) minocycline administered to control neuropathic pain. RESULTS The primary literature search yielded 2299 relevant papers. Based on the assessment of the titles, abstracts, and full-text, nine publications were selected for this review. Only four of the nine studies showed a positive pain-reducing outcome after minocycline administration. Two of the three studies on chemotherapy-induced neuropathic pain showed a positive pain-reducing effect. Minocycline was effective in controlling pain from diabetic and leprotic neuropathies. However, minocycline was not effective in controlling lumbar radicular pain and pain resolution after carpal tunnel release. CONCLUSION Our review provides evidence that minocycline may have some potential for reducing neuropathic pain. Further high-quality studies need to be conducted to validate this potential.
Collapse
Affiliation(s)
- Dong Ah Shin
- Department of Neurosurgery, Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Tae Uk Kim
- Department of Physical Medicine and Rehabilitation, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Min Cheol Chang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Taegu, Republic of Korea
| |
Collapse
|
7
|
Diaz-delCastillo M, Hansen RB, Appel CK, Nielsen L, Nielsen SN, Karyniotakis K, Dahl LM, Andreasen RB, Heegaard AM. Modulation of Rat Cancer-Induced Bone Pain is Independent of Spinal Microglia Activity. Cancers (Basel) 2020; 12:cancers12102740. [PMID: 32987667 PMCID: PMC7598664 DOI: 10.3390/cancers12102740] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/20/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
The dissemination of cancer to bone can cause significant cancer-induced bone pain (CIBP), severely impairing the patient's quality of life. Several rodent models have been developed to explore the nociceptive mechanisms of CIBP, including intratibial inoculation of breast carcinoma cells in syngeneic Sprague Dawley rats. Using this model, we investigated whether resident spinal microglial cells are involved in the transmission and modulation of CIBP, a long-debated disease feature. Immunohistochemical staining of ionizing calcium-binding adaptor molecule 1 (Iba-1) and phosphorylated p38-mitogen-activated protein kinase (P-p38 MAPK) showed no spinal microglial reaction in cancer-bearing rats, independently of disease stage, sex, or carcinoma cell line. As a positive control, significant upregulation of both Iba-1 and P-p38 was observed in a rat model of neuropathic pain. Additionally, intrathecal administration of the microglial inhibitor minocycline did not ameliorate pain-like behaviors in cancer-bearing rats, in contrast to spinal morphine administration. Our results indicate that microglial reaction is not a main player in CIBP, adding to the debate that even within the same models of CIBP, significant variations are seen in disease features considered potential drug targets. We suggest that this heterogeneity may reflect the clinical landscape, underscoring the need for understanding the translational value of CIBP models.
Collapse
|
8
|
Rosenberger DC, Blechschmidt V, Timmerman H, Wolff A, Treede RD. Challenges of neuropathic pain: focus on diabetic neuropathy. J Neural Transm (Vienna) 2020; 127:589-624. [PMID: 32036431 PMCID: PMC7148276 DOI: 10.1007/s00702-020-02145-7] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
Neuropathic pain is a frequent condition caused by a lesion or disease of the central or peripheral somatosensory nervous system. A frequent cause of peripheral neuropathic pain is diabetic neuropathy. Its complex pathophysiology is not yet fully elucidated, which contributes to underassessment and undertreatment. A mechanism-based treatment of painful diabetic neuropathy is challenging but phenotype-based stratification might be a way to develop individualized therapeutic concepts. Our goal is to review current knowledge of the pathophysiology of peripheral neuropathic pain, particularly painful diabetic neuropathy. We discuss state-of-the-art clinical assessment, validity of diagnostic and screening tools, and recommendations for the management of diabetic neuropathic pain including approaches towards personalized pain management. We also propose a research agenda for translational research including patient stratification for clinical trials and improved preclinical models in relation to current knowledge of underlying mechanisms.
Collapse
Affiliation(s)
- Daniela C Rosenberger
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Vivian Blechschmidt
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Hans Timmerman
- Department of Anesthesiology, Pain Center, University Medical Center of Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - André Wolff
- Department of Anesthesiology, Pain Center, University Medical Center of Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
9
|
Du ER, Fan RP, Rong LL, Xie Z, Xu CS. Regulatory mechanisms and therapeutic potential of microglial inhibitors in neuropathic pain and morphine tolerance. J Zhejiang Univ Sci B 2020; 21:204-217. [PMID: 32133798 PMCID: PMC7086010 DOI: 10.1631/jzus.b1900425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/24/2019] [Indexed: 12/30/2022]
Abstract
Microglia are important cells involved in the regulation of neuropathic pain (NPP) and morphine tolerance. Information on their plasticity and polarity has been elucidated after determining their physiological structure, but there is still much to learn about the role of this type of cell in NPP and morphine tolerance. Microglia mediate multiple functions in health and disease by controlling damage in the central nervous system (CNS) and endogenous immune responses to disease. Microglial activation can result in altered opioid system activity, and NPP is characterized by resistance to morphine. Here we investigate the regulatory mechanisms of microglia and review the potential of microglial inhibitors for modulating NPP and morphine tolerance. Targeted inhibition of glial activation is a clinically promising approach to the treatment of NPP and the prevention of morphine tolerance. Finally, we suggest directions for future research on microglial inhibitors.
Collapse
Affiliation(s)
- Er-rong Du
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, China
| | - Rong-ping Fan
- Department of Fourth Clinical Medicine, School of Medicine, Nanchang University, Nanchang 330006, China
| | - Li-lou Rong
- Department of Fourth Clinical Medicine, School of Medicine, Nanchang University, Nanchang 330006, China
| | - Zhen Xie
- Department of First Clinical Medicine, School of Medicine, Nanchang University, Nanchang 330006, China
| | - Chang-shui Xu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, China
- Key Laboratory of Autonomic Nervous Function and Disease of Jiangxi Province, Nanchang 330006, China
| |
Collapse
|
10
|
β-Caryophyllene, a CB2-Receptor-Selective Phytocannabinoid, Suppresses Mechanical Allodynia in a Mouse Model of Antiretroviral-Induced Neuropathic Pain. Molecules 2019; 25:molecules25010106. [PMID: 31892132 PMCID: PMC6983198 DOI: 10.3390/molecules25010106] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 12/18/2022] Open
Abstract
Neuropathic pain associated with nucleoside reverse transcriptase inhibitors (NRTIs), therapeutic agents for human immunodeficiency virus (HIV), responds poorly to available drugs. Smoked cannabis was reported to relieve HIV-associated neuropathic pain in clinical trials. Some constituents of cannabis (Cannabis sativa) activate cannabinoid type 1 (CB1) and cannabinoid type 2 (CB2) receptors. However, activation of the CB1 receptor is associated with side effects such as psychosis and physical dependence. Therefore, we investigated the effect of β-caryophyllene (BCP), a CB2-selective phytocannabinoid, in a model of NRTI-induced neuropathic pain. Female BALB/c mice treated with 2′-3′-dideoxycytidine (ddC, zalcitabine), a NRTI, for 5 days developed mechanical allodynia, which was prevented by cotreatment with BCP, minocycline or pentoxifylline. A CB2 receptor antagonist (AM 630), but not a CB1 receptor antagonist (AM 251), antagonized BCP attenuation of established ddC-induced mechanical allodynia. β-Caryophyllene prevented the ddC-induced increase in cytokine (interleukin 1 beta, tumor necrosis factor alpha and interferon gamma) transcripts in the paw skin and brain, as well as the phosphorylation level of Erk1/2 in the brain. In conclusion, BCP prevents NRTI-induced mechanical allodynia, possibly via reducing the inflammatory response, and attenuates mechanical allodynia through CB2 receptor activation. Therefore, BCP could be useful for prevention and treatment of antiretroviral-induced neuropathic pain.
Collapse
|
11
|
Cao S, Fisher DW, Yu T, Dong H. The link between chronic pain and Alzheimer's disease. J Neuroinflammation 2019; 16:204. [PMID: 31694670 PMCID: PMC6836339 DOI: 10.1186/s12974-019-1608-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic pain often occurs in the elderly, particularly in the patients with neurodegenerative disorders such as Alzheimer's disease (AD). Although studies indicate that chronic pain correlates with cognitive decline, it is unclear whether chronic pain accelerates AD pathogenesis. In this review, we provide evidence that supports a link between chronic pain and AD and discuss potential mechanisms underlying this connection based on currently available literature from human and animal studies. Specifically, we describe two intertwined processes, locus coeruleus noradrenergic system dysfunction and neuroinflammation resulting from microglial pro-inflammatory activation in brain areas mediating the affective component of pain and cognition that have been found to influence both chronic pain and AD. These represent a pathological overlap that likely leads chronic pain to accelerate AD pathogenesis. Further, we discuss potential therapeutic interventions targeting noradrenergic dysfunction and microglial activation that may improve patient outcomes for those with chronic pain and AD.
Collapse
Affiliation(s)
- Song Cao
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 56300, Guizhou, China
- Guizhou Key Lab of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 56300, Guizhou, China
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Daniel W Fisher
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Tain Yu
- Guizhou Key Lab of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 56300, Guizhou, China
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA.
| |
Collapse
|
12
|
Chen G, Zhang YQ, Qadri YJ, Serhan CN, Ji RR. Microglia in Pain: Detrimental and Protective Roles in Pathogenesis and Resolution of Pain. Neuron 2019; 100:1292-1311. [PMID: 30571942 DOI: 10.1016/j.neuron.2018.11.009] [Citation(s) in RCA: 486] [Impact Index Per Article: 97.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/22/2018] [Accepted: 11/02/2018] [Indexed: 12/18/2022]
Abstract
The previous decade has seen a rapid increase in microglial studies on pain, with a unique focus on microgliosis in the spinal cord after nerve injury and neuropathic pain. Numerous signaling molecules are altered in microglia and contribute to the pathogenesis of pain. Here, we discuss how microglial signaling regulates spinal cord synaptic plasticity in acute and chronic pain conditions with different degrees and variations of microgliosis. We highlight that microglial mediators such as pro- and anti-inflammatory cytokines are powerful neuromodulators that regulate synaptic transmission and pain via neuron-glial interactions. We also reveal an emerging role of microglia in the resolution of pain, in part via specialized pro-resolving mediators including resolvins, protectins, and maresins. We also discuss a possible role of microglia in chronic itch.
Collapse
Affiliation(s)
- Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Yu-Qiu Zhang
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yawar J Qadri
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Hale Transformative Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
13
|
Koyama S, LeBlanc BW, Smith KA, Roach C, Levitt J, Edhi MM, Michishita M, Komatsu T, Mashita O, Tanikawa A, Yoshikawa S, Saab CY. An Electroencephalography Bioassay for Preclinical Testing of Analgesic Efficacy. Sci Rep 2018; 8:16402. [PMID: 30401974 PMCID: PMC6219560 DOI: 10.1038/s41598-018-34594-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022] Open
Abstract
We present a multimodal method combining quantitative electroencephalography (EEG), behavior and pharmacology for pre-clinical screening of analgesic efficacy in vivo. The method consists of an objective and non-invasive approach for realtime assessment of spontaneous nociceptive states based on EEG recordings of theta power over primary somatosensory cortex in awake rats. Three drugs were chosen: (1) pregabalin, a CNS-acting calcium channel inhibitor; (2) EMA 401, a PNS-acting angiotensin II type 2 receptor inhibitor; and (3) minocycline, a CNS-acting glial inhibitor. Optimal doses were determined based on pharmacokinetic studies and/or published data. The effects of these drugs at single or multiple doses were tested on the attenuation of theta power and paw withdrawal latency (PWL) in a rat model of neuropathic pain. We report mostly parallel trends in the reversal of theta power and PWL in response to administration of pregabalin and EMA 401, but not minocycline. We also note divergent trends at non-optimal doses and following prolonged drug administration, suggesting that EEG theta power can be used to detect false positive and false negative outcomes of the withdrawal reflex behavior, and yielding novel insights into the analgesic effects of these drugs on spontaneous nociceptive states in rats.
Collapse
Affiliation(s)
- Suguru Koyama
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA.,Laboratory for Pharmacology, Asahi KASEI Pharma Corporation, Shizuoka, Japan
| | - Brian W LeBlanc
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Kelsey A Smith
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Catherine Roach
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Joshua Levitt
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Muhammad M Edhi
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Mai Michishita
- Laboratory for Pharmacology, Asahi KASEI Pharma Corporation, Shizuoka, Japan
| | - Takayuki Komatsu
- Laboratory for Pharmacology, Asahi KASEI Pharma Corporation, Shizuoka, Japan
| | - Okishi Mashita
- Laboratory for Safety Assessment & ADME, Asahi KASEI Pharma Corporation, Shizuoka, Japan
| | - Aki Tanikawa
- Laboratory for Safety Assessment & ADME, Asahi KASEI Pharma Corporation, Shizuoka, Japan
| | - Satoru Yoshikawa
- Laboratory for Pharmacology, Asahi KASEI Pharma Corporation, Shizuoka, Japan
| | - Carl Y Saab
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA. .,Department of Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
14
|
Siemian JN, LaMacchia ZM, Spreuer V, Tian J, Ignatowski TA, Paez PM, Zhang Y, Li JX. The imidazoline I 2 receptor agonist 2-BFI attenuates hypersensitivity and spinal neuroinflammation in a rat model of neuropathic pain. Biochem Pharmacol 2018; 153:260-268. [PMID: 29366977 DOI: 10.1016/j.bcp.2018.01.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/18/2018] [Indexed: 11/25/2022]
Abstract
Chronic pain is a large, unmet public health problem. Recent studies have demonstrated the importance of neuroinflammation in the establishment and maintenance of chronic pain. However, pharmacotherapies that reduce neuroinflammation have not been successfully developed to treat chronic pain thus far. Several preclinical studies have established imidazoline I2 receptor (I2R) agonists as novel candidates for chronic pain therapies, and while some I2R ligands appear to modulate neuroinflammation in certain scenarios, whether they exert anti-neuroinflammatory effects in models of chronic pain is unknown. This study examined the effects of the prototypical I2R agonist 2-(2-benzofuranyl)-2-imidazoline hydrochloride (2-BFI) on hypersensitivity and neuroinflammation induced by chronic constriction injury (CCI), a neuropathic pain model in rats. In CCI rats, twice-daily treatment with 10 mg/kg 2-BFI for seven days consistently increased mechanical and thermal nociception thresholds, reduced GFAP and Iba-1 levels in the dorsal horn of the spinal cord, and reduced levels of TNF-α relative to saline treatment. These results were recapitulated in primary mouse cortical astrocyte cultures. Incubation with 2-BFI attenuated GFAP expression and supernatant TNF-α levels in LPS-stimulated cultures. These results suggest that I2R agonists such as 2-BFI may reduce neuroinflammation which may partially account for their antinociceptive effects.
Collapse
Affiliation(s)
- Justin N Siemian
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, USA
| | - Zach M LaMacchia
- Department of Pathology and Anatomical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, USA
| | - Vilma Spreuer
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, USA
| | - Jingwei Tian
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, USA; School of Pharmacy, Yantai University, Yantai, Shandong, China
| | - Tracey A Ignatowski
- Department of Pathology and Anatomical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, USA
| | - Pablo M Paez
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, USA
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, NC, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
15
|
Liu Z, Liang Y, Wang H, Lu Z, Chen J, Huang Q, Sheng L, Ma Y, Du H, Gong Q. LncRNA expression in the spinal cord modulated by minocycline in a mouse model of spared nerve injury. J Pain Res 2017; 10:2503-2514. [PMID: 29123421 PMCID: PMC5661508 DOI: 10.2147/jpr.s147055] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neuropathic pain is a common and refractory chronic pain that affects millions of people worldwide. Its underlying mechanisms are still unclear, but they may involve long noncoding RNAs (lncRNAs), which play crucial roles in a variety of biological functions, including nociception. We used microarrays to investigate the possible interactions between lncRNAs and neuropathic pain and identified 22,213 lncRNAs and 19,528 mRNAs in the spinal cord in a mouse model of spared nerve injury (SNI)-induced neuropathic pain. The abundance levels of 183 lncRNAs and 102 mRNAs were significantly modulated by both SNI and administration of minocycline. A quantitative real-time polymerase chain reaction analysis validated expression changes in three lncRNAs (NR_015491, ENSMUST00000174263, and ENSMUST00000146263). Class distribution analysis of differentially expressed lncRNAs revealed intergenic lncRNAs as the largest category. Functional analysis indicated that SNI-induced gene regulations might be involved in the activities of cytokines (IL17A and IL17F) and chemokines (CCL2, CCL5, and CCL7), whereas minocycline might exert a pain-alleviating effect on mice through actin binding, thereby regulating nociception by controlling the cytoskeleton. Thus, lncRNAs might be responsible for SNI-induced neuropathic pain and the attenuation caused by minocycline. Our study could implicate lncRNAs as potential targets for future treatment of neuropathic pain.
Collapse
Affiliation(s)
- Zihao Liu
- Department of Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ying Liang
- Department of Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Honghua Wang
- Department of Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenhe Lu
- Department of Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinsheng Chen
- Department of Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiaodong Huang
- Department of Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lei Sheng
- Department of Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yinghong Ma
- Department of Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huiying Du
- Department of Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingjuan Gong
- Department of Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
16
|
Cahill CM, Taylor AM. Neuroinflammation-a co-occurring phenomenon linking chronic pain and opioid dependence. Curr Opin Behav Sci 2017; 13:171-177. [PMID: 28451629 DOI: 10.1016/j.cobeha.2016.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic pain is a disease that encompasses both sensory and emotional elements. Opioids are highly effective analgesics because they target both of these elements, by inhibiting pain pathways and alleviating negative affect (including depression) by engaging reward or hedonic pathways. Unfortunately, chronic opioid use is limited by the development of unwanted side effects, such as tolerance, hyperalgesia, and abuse liability. Thus, the challenge of providing effective pain treatment while minimizing these unwanted side effects is an ongoing issue with significant clinical and societal impact. In this review, we posit that neuroinflammation within the central nervous system is a shared phenomenon between chronic pain and opioids that contributes to pain sensitization and negative affect. The implications for pain progression, addiction liability, and alternative treatment strategies are discussed.
Collapse
Affiliation(s)
- Catherine M Cahill
- Department of Anesthesiology and Perioperative Care, University of California, Irvine 837 Health Sciences Road, Irvine, CA 90095, USA.,Department of Biomedical and Molecular Sciences, Queen's University, 5117 Botterell Hall, Kingston, Ontario K7L 3N6, Canada
| | - Anna Mw Taylor
- Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles 675 Charles E Young Drive South, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Abstract
Opioid drugs are potent modulators of many physiological and psychological processes. When given acutely, they can elicit the signature responses of euphoria and analgesia that societies have coveted for centuries. Repeated, or chronic, use of opioids induces adaptive or allostatic changes that modify neuronal circuitry and create an altered normality — the “drug-dependent” state. This state, at least that exhibited by those maintained continuously on long-acting opioid drugs such as methadone or buprenorphine, is generally indistinguishable from the drug-naïve state for most overt behaviors. The consequences of the allostatic changes (cellular, circuit, and system adaptations) that accompany the drug-dependent state are revealed during drug withdrawal. Drug cessation triggers a temporally orchestrated allostatic re-establishment of neuronal systems, which is manifested as opposing physiological and psychological effects to those exhibited by acute drug intoxication. Some withdrawal symptoms, such as physical symptoms (sweating, shaking, and diarrhea) resolve within days, whilst others, such as dysphoria, insomnia, and anxiety, can linger for months, and some adaptations, such as learned associations, may be established for life. We will briefly discuss the cellular mechanisms and neural circuitry that contribute to the opioid drug-dependent state, inferring an emerging role for neuroinflammation. We will argue that opioid addictive behaviors result from a learned relationship between opioids and relief from an existing or withdrawal-induced anxiogenic and/or dysphoric state. Furthermore, a future stressful life event can recall the memory that opioid drugs alleviate negative affect (despair, sadness, and anxiety) and thereby precipitate craving, resulting in relapse. A learned association of relief of aversive states would fuel drug craving in vulnerable people living in an increasingly stressful society. We suggest that this route to addiction is contributive to the current opioid epidemic in the USA.
Collapse
Affiliation(s)
- Christopher J Evans
- Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, 90095, USA
| | - Catherine M Cahill
- Departments of Anesthesiology & Perioperative Care and Pharmacology, University of California, Irvine, CA, 90095, USA; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
18
|
Minocycline does not evoke anxiolytic and antidepressant-like effects in C57BL/6 mice. Behav Brain Res 2016; 301:96-101. [DOI: 10.1016/j.bbr.2015.12.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/02/2015] [Accepted: 12/11/2015] [Indexed: 12/15/2022]
|