1
|
Torres-Ruiz M, Suárez OJ, López V, Marina P, Sanchis A, Liste I, de Alba M, Ramos V. Effects of 700 and 3500 MHz 5G radiofrequency exposure on developing zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169475. [PMID: 38199355 DOI: 10.1016/j.scitotenv.2023.169475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024]
Abstract
Telecommunications industries are rapidly deploying the fifth generation (5G) spectrum and there is public concern about the safety and health impacts of this type of Radio Frequency Radiation (RFR), in part because of the lack of comparable scientific evidence. In this study we have used a validated commercially available setting producing a uniform field to expose zebrafish embryos (ZFe) to unmodulated 700 and 3500 MHz frequencies. We have combined a battery of toxicity, developmental and behavioral assays to further explore potential RFR effects. Our neurobehavioral profiles include a tail coiling assay, a light/dark activity assay, two thigmotaxis anxiety assays (auditory and visual stimuli), and a startle response - habituation assay in response to auditory stimuli. ZFe were exposed for 1 and 4 h during the blastula period of development and endpoints evaluated up to 120 hours post fertilization (hpf). Our results show no effects on mortality, hatching or body length. However, we have demonstrated specific organ morphological effects, and behavioral effects in activity, anxiety-like behavior, and habituation that lasted in larvae exposed during the early embryonic period. A decrease in acetylcholinesterase activity was also observed and could explain some of the observed behavioral alterations. Interestingly, effects were more pronounced in ZFe exposed to the 700 MHz frequency, and especially for the 4 h exposure period. In addition, we have demonstrated that our exposure setup is robust, flexible with regard to frequency and power testing, and highly comparable. Future work will include exposure of ZFe to 5G modulated signals for different time periods to better understand the potential health effects of novel 5G RFR.
Collapse
Affiliation(s)
- Monica Torres-Ruiz
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Oscar J Suárez
- Radio Frequency Laboratory, Telecommunications General Secretary and Audiovisual Communication Services Ordenation, Madrid, Spain
| | - Victoria López
- Chronical Diseases Research Functional Unit (UFIEC), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Pablo Marina
- Telemedicine and eHealth Research Unit, Instituto de Salud Carlos III (ISCIII), Avda. Monforte de Lemos, 5, Madrid 28029, Spain
| | - Aránzazu Sanchis
- Non-Ionizing Radiation Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Isabel Liste
- Chronical Diseases Research Functional Unit (UFIEC), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Mercedes de Alba
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Victoria Ramos
- Telemedicine and eHealth Research Unit, Instituto de Salud Carlos III (ISCIII), Avda. Monforte de Lemos, 5, Madrid 28029, Spain.
| |
Collapse
|
2
|
Golomb BA, Berg BK, Han JH. Susceptibility to radiation adverse effects in veterans with Gulf War illness and healthy civilians. Sci Rep 2024; 14:874. [PMID: 38195674 PMCID: PMC10776672 DOI: 10.1038/s41598-023-50083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
We evaluated whether veterans with Gulf War illness (VGWI) report greater ionizing radiation adverse effects (RadAEs) than controls; whether radiation-sensitivity is tied to reported chemical-sensitivity; and whether environmental exposures are apparent risk factors for reported RadAEs (rRadAEs). 81 participants (41 VGWI, 40 controls) rated exposure to, and rRadAEs from, four radiation types. The relations of RadAE-propensity (defined as the ratio of rRadAEs to summed radiation exposures) to Gulf War illness (GWI) presence and severity, and to reported chemical-sensitivity were assessed. Ordinal logistic regression evaluated exposure prediction of RadAE-propensity in the full sample, in VGWI, and stratified by age and chemical-sensitivity. RadAE-propensity was increased in VGWI (vs. controls) and related to GWI severity (p < 0.01) and chemical-sensitivity (p < 0.01). Past carbon monoxide (CO) exposure emerged as a strong, robust predictor of RadAE-propensity on univariable and multivariable analyses (p < 0.001 on multivariable assessment, without and with adjustment for VGWI case status), retaining significance in age-stratified and chemical-sensitivity-stratified replication analyses. Thus, RadAE-propensity, a newly-described GWI-feature, relates to chemical-sensitivity, and is predicted by CO exposure-both features reported for nonionizing radiation sensitivity, consistent with shared mitochondrial/oxidative toxicity across radiation frequencies. Greater RadAE vulnerability fits an emerging picture of heightened drug/chemical susceptibility in VGWI.
Collapse
Affiliation(s)
- Beatrice Alexandra Golomb
- Department of Medicine, UC San Diego School of Medicine, University of California, San Diego, 9500 Gilman Dr. #0995, La Jolla, CA, 92093-0995, USA.
| | - Brinton Keith Berg
- Department of Medicine, UC San Diego School of Medicine, University of California, San Diego, 9500 Gilman Dr. #0995, La Jolla, CA, 92093-0995, USA
| | - Jun Hee Han
- Department of Medicine, UC San Diego School of Medicine, University of California, San Diego, 9500 Gilman Dr. #0995, La Jolla, CA, 92093-0995, USA
| |
Collapse
|
3
|
Héroux P, Belyaev I, Chamberlin K, Dasdag S, De Salles AAA, Rodriguez CEF, Hardell L, Kelley E, Kesari KK, Mallery-Blythe E, Melnick RL, Miller AB, Moskowitz JM. Cell Phone Radiation Exposure Limits and Engineering Solutions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5398. [PMID: 37048013 PMCID: PMC10094704 DOI: 10.3390/ijerph20075398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
In the 1990s, the Institute of Electrical and Electronics Engineers (IEEE) restricted its risk assessment for human exposure to radiofrequency radiation (RFR) in seven ways: (1) Inappropriate focus on heat, ignoring sub-thermal effects. (2) Reliance on exposure experiments performed over very short times. (3) Overlooking time/amplitude characteristics of RFR signals. (4) Ignoring carcinogenicity, hypersensitivity, and other health conditions connected with RFR. (5) Measuring cellphone Specific Absorption Rates (SAR) at arbitrary distances from the head. (6) Averaging SAR doses at volumetric/mass scales irrelevant to health. (7) Using unrealistic simulations for cell phone SAR estimations. Low-cost software and hardware modifications are proposed here for cellular phone RFR exposure mitigation: (1) inhibiting RFR emissions in contact with the body, (2) use of antenna patterns reducing the Percent of Power absorbed in the Head (PPHead) and body and increasing the Percent of Power Radiated for communications (PPR), and (3) automated protocol-based reductions of the number of RFR emissions, their duration, or integrated dose. These inexpensive measures do not fundamentally alter cell phone functions or communications quality. A health threat is scientifically documented at many levels and acknowledged by industries. Yet mitigation of RFR exposures to users does not appear as a priority with most cell phone manufacturers.
Collapse
Affiliation(s)
- Paul Héroux
- Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine, McGill University, Montreal, QC H3A 1G1, Canada
| | - Igor Belyaev
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 814 38 Bratislava, Slovakia
| | - Kent Chamberlin
- Department of Electrical and Computer Engineering, University of New Hampshire, Durham, NH 03824, USA
| | - Suleyman Dasdag
- Biophysics Department, Medical School, Istanbul Medeniyet University, Istanbul 34700, Turkey
| | - Alvaro Augusto Almeida De Salles
- Graduate Program on Electrical Engineering (PPGEE), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil
| | | | - Lennart Hardell
- Department of Oncology, Orebro University Hospital, 701 85 Orebro, Sweden (Retired)
- The Environment and Cancer Research Foundation, 702 17 Orebro, Sweden
| | - Elizabeth Kelley
- ICBE-EMF and International EMF Scientist Appeal, and Electromagnetic Safety Alliance, Tempe, AZ 85282, USA
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
| | - Erica Mallery-Blythe
- Physicians’ Health Initiative for Radiation and Environment, East Sussex TN6, UK
- British Society of Ecological Medicine, London W1W 6DB, UK
- Oceania Radiofrequency Scientific Advisory Association, Scarborough, QLD 4020, Australia
| | - Ronald L. Melnick
- National Toxicology Program (Retired), National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
- Ron Melnick Consulting LLC, North Logan, UT 84341, USA
| | - Anthony B. Miller
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Joel M. Moskowitz
- School of Public Health, University of California, Berkeley, CA 94704, USA
| | | |
Collapse
|
4
|
Barnes F, Greenebaum B. Setting Guidelines for Electromagnetic Exposures and Research Needs. Bioelectromagnetics 2020; 41:392-397. [DOI: 10.1002/bem.22267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/23/2020] [Accepted: 04/08/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Frank Barnes
- Department of Electrical, Computer and Energy Engineering University of Colorado Boulder Colorado
| | - Ben Greenebaum
- Department of Physics University of Wisconsin‐Parkside Kenosha Wisconsin
| |
Collapse
|
5
|
Kostoff RN, Heroux P, Aschner M, Tsatsakis A. Adverse health effects of 5G mobile networking technology under real-life conditions. Toxicol Lett 2020; 323:35-40. [PMID: 31991167 DOI: 10.1016/j.toxlet.2020.01.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 12/23/2022]
Abstract
This article identifies adverse effects of non-ionizing non-visible radiation (hereafter called wireless radiation) reported in the premier biomedical literature. It emphasizes that most of the laboratory experiments conducted to date are not designed to identify the more severe adverse effects reflective of the real-life operating environment in which wireless radiation systems operate. Many experiments do not include pulsing and modulation of the carrier signal. The vast majority do not account for synergistic adverse effects of other toxic stimuli (such as chemical and biological) acting in concert with the wireless radiation. This article also presents evidence that the nascent 5G mobile networking technology will affect not only the skin and eyes, as commonly believed, but will have adverse systemic effects as well.
Collapse
Affiliation(s)
- Ronald N Kostoff
- Research Affiliate, School of Public Policy, Georgia Institute of Technology, Georgia, United States.
| | - Paul Heroux
- Toxicology and Health Effects of Electromagnetism, McGill University, Canada
| | - Michael Aschner
- Molecular Pharmacology, Einstein Center of Toxicology, Albert Einstein College of Medicine, United States
| | - Aristides Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece; Department of Analytical, Toxicology, Pharmaceutical Chemistry and Pharmacognosy, Sechenov University, 119991 Moscow, Russia.
| |
Collapse
|
6
|
Miller AB, Sears ME, Morgan LL, Davis DL, Hardell L, Oremus M, Soskolne CL. Risks to Health and Well-Being From Radio-Frequency Radiation Emitted by Cell Phones and Other Wireless Devices. Front Public Health 2019; 7:223. [PMID: 31457001 PMCID: PMC6701402 DOI: 10.3389/fpubh.2019.00223] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022] Open
Abstract
Radiation exposure has long been a concern for the public, policy makers, and health researchers. Beginning with radar during World War II, human exposure to radio-frequency radiation (RFR) technologies has grown substantially over time. In 2011, the International Agency for Research on Cancer (IARC) reviewed the published literature and categorized RFR as a "possible" (Group 2B) human carcinogen. A broad range of adverse human health effects associated with RFR have been reported since the IARC review. In addition, three large-scale carcinogenicity studies in rodents exposed to levels of RFR that mimic lifetime human exposures have shown significantly increased rates of Schwannomas and malignant gliomas, as well as chromosomal DNA damage. Of particular concern are the effects of RFR exposure on the developing brain in children. Compared with an adult male, a cell phone held against the head of a child exposes deeper brain structures to greater radiation doses per unit volume, and the young, thin skull's bone marrow absorbs a roughly 10-fold higher local dose. Experimental and observational studies also suggest that men who keep cell phones in their trouser pockets have significantly lower sperm counts and significantly impaired sperm motility and morphology, including mitochondrial DNA damage. Based on the accumulated evidence, we recommend that IARC re-evaluate its 2011 classification of the human carcinogenicity of RFR, and that WHO complete a systematic review of multiple other health effects such as sperm damage. In the interim, current knowledge provides justification for governments, public health authorities, and physicians/allied health professionals to warn the population that having a cell phone next to the body is harmful, and to support measures to reduce all exposures to RFR.
Collapse
Affiliation(s)
- Anthony B. Miller
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Margaret E. Sears
- Ottawa Hospital Research Institute, Prevent Cancer Now, Ottawa, ON, Canada
| | - L. Lloyd Morgan
- Environmental Health Trust, Teton Village, WY, United States
| | - Devra L. Davis
- Environmental Health Trust, Teton Village, WY, United States
| | - Lennart Hardell
- The Environment and Cancer Research Foundation, Örebro, Sweden
| | - Mark Oremus
- School of Public Health and Health Systems, University of Waterloo, Waterloo, ON, Canada
| | - Colin L. Soskolne
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Health Research Institute, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
7
|
Martínez MA, Úbeda A, Moreno J, Trillo MÁ. Power Frequency Magnetic Fields Affect the p38 MAPK-Mediated Regulation of NB69 Cell Proliferation Implication of Free Radicals. Int J Mol Sci 2016; 17:510. [PMID: 27058530 PMCID: PMC4848966 DOI: 10.3390/ijms17040510] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/21/2016] [Accepted: 03/31/2016] [Indexed: 12/13/2022] Open
Abstract
The proliferative response of the neuroblastoma line NB69 to a 100 µT, 50 Hz magnetic field (MF) has been shown mediated by activation of the MAPK-ERK1/2 pathway. This work investigates the MF effect on the cell cycle of NB69, the participation of p38 and c-Jun N-terminal (JNK) kinases in the field-induced proliferative response and the potential involvement of reactive oxygen species (ROS) in the activation of the MAPK-ERK1/2 and -p38 signaling pathways. NB69 cultures were exposed to the 100 µT MF, either intermittently for 24, 42 or 63 h, or continuously for periods of 15 to 120 min, in the presence or absence of p38 or JNK inhibitors: SB203580 and SP600125, respectively. Antioxidant N-acetylcysteine (NAC) was used as ROS scavenger. Field exposure induced transient activation of p38, JNK and ERK1/2. The MF proliferative effect, which was mediated by changes in the cell cycle, was blocked by the p38 inhibitor, but not by the JNK inhibitor. NAC blocked the field effects on cell proliferation and p38 activation, but not those on ERK1/2 activation. The MF-induced proliferative effects are exerted through sequential upregulation of MAPK-p38 and -ERK1/2 activation, and they are likely mediated by a ROS-dependent activation of p38.
Collapse
Affiliation(s)
- María Antonia Martínez
- Servicio de Investigación-BEM, University Hospital Ramón y Cajal-IRYCIS, 28034 Madrid, Spain.
| | - Alejandro Úbeda
- Servicio de Investigación-BEM, University Hospital Ramón y Cajal-IRYCIS, 28034 Madrid, Spain.
| | - Jorge Moreno
- Departamento de Ingeniería Eléctrica, Electrónica y de Automatización y Física Aplicada, Technical School of Engineering and Industrial Design (ETSID), UPM, 28012 Madrid, Spain.
| | - María Ángeles Trillo
- Servicio de Investigación-BEM, University Hospital Ramón y Cajal-IRYCIS, 28034 Madrid, Spain.
| |
Collapse
|