1
|
Rana JN, Mumtaz S, Han I, Choi EH. Formation of reactive species via high power microwave induced DNA damage and promoted intrinsic pathway-mediated apoptosis in lung cancer cells: An in vitro investigation. FUNDAMENTAL RESEARCH 2024; 4:1542-1556. [PMID: 39734544 PMCID: PMC11670698 DOI: 10.1016/j.fmre.2024.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 12/31/2024] Open
Abstract
Lung cancer continues to be the second most common cancer diagnosed and the main cause of cancer-related death globally, which requires novel and effective treatment strategies. When considering treatment options, non-small cell lung cancer (NSCLC) remained a challenge, seeking new therapeutic strategies. High-power microwave (HPM) progressions have facilitated the advancement of new technologies as well as improvements to those already in use. The impact of HPM on NSCLC has not been investigated before. In this work, we uncovered the effect of pulsed HPM on NSCLC (H460 and A549) for the first time and the most likely underlying mechanisms. Two NSCLC (H460 and A549) cells and lung normal MRC5 were exposed to HPM (15, 30, 45, and 60) pulses (2.1 mJ/pulse). After exposure, the effects were observed at 12, 24, 48, and 72 h. HPM primarily increases the level of intracellular reactive species by a strong electric field of ∼27 kV/cm, which altered NSCLC viability, mitochondrial activity, and death rates. A model for the production of intracellular reactive species by HPM was also presented. NSCLC is found to be affected by HPM through DNA damage (upregulation of ATR/ATM, Chk1/Chk2, and P53) and increased expression of apoptotic markers. NAC scavenger and CPTIO-inhibitor confirm that the reactive species are mainly accountable for cellular effects. In order to ensure suitability for real-world usage, the skin depth was calculated as 30 mm. ROS played a main role in inducing cellular effects, with NO species possibly playing a contributing role. These findings clarify the cellular mechanisms underlying HPM-induced cell death, potentially advancing therapeutic approaches for treating NSCLC, and a useful first step for future investigations in this area. Moreover, this technique has the potential to serve as an adjunct to non-surgical methods in cancer therapy.
Collapse
Affiliation(s)
- Juie Nahushkumar Rana
- Department of Plasma Bio Display, Kwangwoon University, Seoul 139701, South Korea
- Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul 139701, South Korea
| | - Sohail Mumtaz
- Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul 139701, South Korea
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 139701, South Korea
| | - Ihn Han
- Department of Plasma Bio Display, Kwangwoon University, Seoul 139701, South Korea
- Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul 139701, South Korea
| | - Eun Ha Choi
- Department of Plasma Bio Display, Kwangwoon University, Seoul 139701, South Korea
- Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul 139701, South Korea
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 139701, South Korea
| |
Collapse
|
2
|
Romeo S, Sannino A, Rosaria Scarfì M, Lagorio S, Zeni O. Genotoxicity of radiofrequency electromagnetic fields on mammalian cells in vitro: A systematic review with narrative synthesis. ENVIRONMENT INTERNATIONAL 2024; 193:109104. [PMID: 39476595 DOI: 10.1016/j.envint.2024.109104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Over the last decades, great concern has been raised about possible adverse effects to human health due to exposures to radiofrequency electromagnetic fields (RF-EMF, 100 kHz - 300 GHz) emitted by wireless communication technologies. In 2011 the International Agency for Research on Cancer classified RF-EMF as possibly carcinogenic to humans, highlighting that the evidence was weak and far from conclusive. Updated systematic reviews of the scientific literature on this topic are lacking, especially for mechanistic studies. OBJECTIVES To perform a systematic review of the scientific literature on genotoxic effects induced by RF-EMF in in vitro experimental models. The overall aim is to assess the confidence and level of evidence of the induced effects in mammalian cell cultures. METHODS Full details regarding the eligibility criteria, information sources, and methods developed to assess risk of bias in the included study, are reported in our published protocol (Romeo et al. 2021). The databases NCBI PubMed, Web of Science, and EMF-Portal were used as information sources (last searched on 31st December 2022). In developing the systematic review, we followed the guidelines provided by the National Toxicology Program-Office of Health Assessment and Translation (NTP-OHAT), adapted to the evaluation of in vitro studies. A narrative synthesis of the body of evidence was performed by tabulating data classified according to meaningful groups (endpoints) and sub-groups (exposure parameters). This report, abstract included, conforms to the PRISMA 2020 (Preferred Reporting Items for Systematic reviews and Meta-Analyses) guidelines. RESULTS Out of 7750 unique records identified, 159 articles were eligible for inclusion. From the extracted data, we identified 1111 experiments (defined as independent specific combinations of diverse biological and electromagnetic parameters). The large majority (80%) of experiments reviewed did not show statistically significant genotoxic effects of RF-EMF exposures, and most "positive" studies were rated as of moderate to low quality, with negative ratings in the key bias domains. A qualitative evidence appraisal was conducted at the endpoint level, and then integrated across endpoints. DISCUSSION To the best of our knowledge, this is the first systematic review of the scientific literature on genotoxic effects in mammalian cell cultures in relation to RF-EMF exposure, which confirms and strengthens conclusions from previous syntheses of this specific topic thanks to the use of transparently reported methods, pre-defined inclusion criteria, and formal assessment of susceptibility to bias. Limitations of the evidence included the frequent reporting of findings in graphical display only, and the large heterogeneity of experimental data, which precluded a meta-analysis. CONCLUSIONS In the assessment restricted to studies reporting a significant effect of the exposure on the outcome, we reached an overall assessment of "low" confidence in the evidence that RF-EMF induce genotoxic effects in mammalian cells. However, 80% of experiments reviewed showed no effect of RF exposure on the large majority of endpoints, especially the irreversible ones, independently of the exposure features, level, and duration (moderate evidence of no effect). Therefore, we conclude that the analysis of the papers included in this review, although only qualitative, suggests that RF exposure does not increase the occurrence of genotoxic effects in vitro. FRAMEWORK AND FUNDING This systematic review addresses one of the evidence streams considered in a larger systematic review of the scientific literature on the potential carcinogenicity of RF-EMF, performed by scientists from several Italian public research agencies. The project is supported by the Italian Workers' Compensation Authority (INAIL) in the framework of the CRA with the Istituto Superiore di Sanità "BRiC 2018/06 - Scientific evidence on the carcinogenicity of electromagnetic fields".
Collapse
Affiliation(s)
- Stefania Romeo
- Institute for Electromagnetic Sensing of the Environment (IREA), Italian National Research Council (CNR), 80124, Napoli, Italy.
| | - Anna Sannino
- Institute for Electromagnetic Sensing of the Environment (IREA), Italian National Research Council (CNR), 80124, Napoli, Italy.
| | - Maria Rosaria Scarfì
- Institute for Electromagnetic Sensing of the Environment (IREA), Italian National Research Council (CNR), 80124, Napoli, Italy.
| | - Susanna Lagorio
- Department of Oncology and Molecular Medicine, National Institute of Health, 00161 Roma, Italy.
| | - Olga Zeni
- Institute for Electromagnetic Sensing of the Environment (IREA), Italian National Research Council (CNR), 80124, Napoli, Italy.
| |
Collapse
|
3
|
Massaro L, De Sanctis S, Franchini V, Regalbuto E, Alfano G, Focaccetti C, Benvenuto M, Cifaldi L, Sgura A, Berardinelli F, Marinaccio J, Barbato F, Rossi E, Nardozi D, Masuelli L, Bei R, Lista F. Study of genotoxic and cytotoxic effects induced in human fibroblasts by exposure to pulsed and continuous 1.6 GHz radiofrequency. Front Public Health 2024; 12:1419525. [PMID: 39145180 PMCID: PMC11323689 DOI: 10.3389/fpubh.2024.1419525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Background The widespread use of radiofrequency (RF) sources, ranging from household appliances to telecommunications devices and military equipment, raises concerns among people and regulatory agencies about the potential health risks of RF exposure. Consequently, several in vitro and in vivo studies have been done to investigate the biological effects, in particular non-thermal, of this non-ionizing radiation. To date, this issue is still being debated due to the controversial results that have been reported. Furthermore, the impact of different RF signal modulations on biological systems remains poorly investigated. The present in vitro study aims to evaluate the cytotoxicity and genotoxicity of continuous or pulsed 1.6 GHz RF in human dermal fibroblasts (HDF). Methods HDF cultures were exposed to continuous and pulsed 1.6 GHz RF, for 2 h, with Specific Absorption Rate (SAR) of 0.4 W/kg. The potential biological effects of 1.6 GHz RF on HDF were assessed with a multi-methodological approach, analyzing the effects on cell cycle, ultrastructure, protein expression, mitotic spindle, CREST stained micronuclei, chromosome segregation and γ-H2AX/53BP1 foci. Results 1.6 GHz RF exposure modified proteins expression and morphology of HDF. Specifically, the expression of different heat-shock proteins (HSP) (i.e., HSP-90, HSP-60, and HSP-25) and phospho-AKT were affected. In addition, both continuous and pulsed RF modified the cytoskeletal organization in HDF and increased the number of lysosomes, while the formation of autophagosomes was observed only after pulsed RF exposure. Mitotic spindle anomalies were also found after exposure. However, no significant effect was observed on cell cycle, chromosome segregation, CREST-stained micronuclei and γ-H2AX/53BP1 foci. Conclusion The results of the present study show the absence of genotoxic damage in 1.6 GHz RF exposed HDF and, although mitotic spindle alterations were observed, they did not have an aneugenic effect. On the other hand, changes in some proteins expression and cell ultrastructure in exposed HDF suggest that RF can potentially induce cell alterations at the morphological and molecular levels.
Collapse
Affiliation(s)
- Luca Massaro
- Radiobiology Section, Defence Center for Biotechnologies, Defence Institute for Biomedical Sciences, Rome, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Stefania De Sanctis
- Radiobiology Section, Defence Center for Biotechnologies, Defence Institute for Biomedical Sciences, Rome, Italy
| | - Valeria Franchini
- Radiobiology Section, Defence Center for Biotechnologies, Defence Institute for Biomedical Sciences, Rome, Italy
| | - Elisa Regalbuto
- Radiobiology Section, Defence Center for Biotechnologies, Defence Institute for Biomedical Sciences, Rome, Italy
| | - Gaetano Alfano
- Radiobiology Section, Defence Center for Biotechnologies, Defence Institute for Biomedical Sciences, Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Antonella Sgura
- Department of Science, University of Rome “Roma Tre”, Rome, Italy
| | | | | | - Federica Barbato
- Department of Science, University of Rome “Roma Tre”, Rome, Italy
| | - Erica Rossi
- Department of Science, University of Rome “Roma Tre”, Rome, Italy
| | - Daniela Nardozi
- Department of Experimental Medicine, University of Rome “Sapienza”, Rome, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Florigio Lista
- Radiobiology Section, Defence Center for Biotechnologies, Defence Institute for Biomedical Sciences, Rome, Italy
| |
Collapse
|
4
|
Panda DK, Das DP, Behera SK, Dhal NK. Review on the impact of cell phone radiation effects on green plants. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:565. [PMID: 38773047 DOI: 10.1007/s10661-024-12623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/12/2024] [Indexed: 05/23/2024]
Abstract
The aim of this review is to assess the impact of cell phone radiation effects on green plants. Rapid progress in networking and communication systems has introduced frequency- and amplitude-modulated technologies to the world with higher allowed bands and greater speed by using high-powered radio generators, which facilitate high definition connectivity, rapid transfer of larger data files, and quick multiple accesses. These cause frequent exposure of cellular radiation to the biological world from a number of sources. Key factors like a range of frequencies, time durations, power densities, and electric fields were found to have differential impacts on the growth and development of green plants. As far as the effects on green plants are concerned in this review, alterations in their morphological characteristics like overall growth, canopy density, and pigmentation to physiological variations like chlorophyll fluorescence and change in membrane potential etc. have been found to be affected by cellular radiation. On the other hand, elevated oxidative status of the cell, macromolecular damage, and lipid peroxidation have been found frequently. On the chromosomal level, micronuclei formation, spindle detachments, and increased mitotic indexes etc. have been noticed. Transcription factors were found to be overexpressed in many cases due to the cellular radiation impact, which shows effects at the molecular level.
Collapse
Affiliation(s)
- Dinesh Kumar Panda
- Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, RRL Campus, Sachivalaya MargAcharya Vihar, Bhubaneswar, 751013, Odisha, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debi Prasad Das
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Project Engineering and Instrumentation Department, CSIR-Institutes of Minerals and Materials Technology, Sachivalaya Marg , RRL Campus, Acharya Vihar, Bhubaneswar, 751013, Odisha, India
| | - Santosh Kumar Behera
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Project Engineering and Instrumentation Department, CSIR-Institutes of Minerals and Materials Technology, Sachivalaya Marg , RRL Campus, Acharya Vihar, Bhubaneswar, 751013, Odisha, India
| | - Nabin Kumar Dhal
- Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, RRL Campus, Sachivalaya MargAcharya Vihar, Bhubaneswar, 751013, Odisha, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Sannino A, Romeo S, Scarfì MR, Pinchera D, Schettino F, Alonzo M, Allocca M, Zeni O. The effect of exposure to radiofrequency LTE signal and coexposure to mitomycin-C in Chinese hamster lung fibroblast V79 cells. Bioelectromagnetics 2024; 45:97-109. [PMID: 37493434 DOI: 10.1002/bem.22478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023]
Abstract
This study aims to investigate the cellular effects of radiofrequency exposure, 1950 MHz, long-term evolution (LTE) signal, administered alone and in combination with mitomycin-C (MMC), a well-known cytotoxic agent. Chinese hamster lung fibroblast (V79) cells were exposed/sham exposed in a waveguide-based system under strictly controlled conditions of both electromagnetic and environmental parameters, at specific absorption rate (SAR) of 0.3 and 1.25 W/kg. Chromosomal damage (micronuclei formation), oxidative stress (reactive oxygen species [ROS] formation), and cell cycle progression were analyzed after exposure and coexposure. No differences between exposed samples and sham-controls were detected following radiofrequency exposure alone, for all the experimental conditions tested and biological endpoints investigated. When radiofrequency exposure was followed by MMC treatment, 3 h pre-exposure did not modify MMC-induced micronuclei. Pre-exposure of 20 h at 0.3 W/kg did not modify the number of micronuclei induced by MMC, while 1.25 W/kg resulted in a significant reduction of MMC-induced damage. Absence of effects was also detected when CW was used, at both SAR levels. MMC-induced ROS formation resulted significantly decreased at both SAR levels investigated, while cell proliferation and cell cycle progression were not affected by coexposures. The results here reported provide no evidence of direct effects of 1950 MHz, LTE signal. Moreover, they further support our previous findings on the capability of radiofrequency pre-exposure to induce protection from a subsequent toxic treatment, and the key role of the modulated signals and the experimental conditions adopted in eliciting the effect.
Collapse
Affiliation(s)
- Anna Sannino
- National Research Council of Italy (CNR), Institute for Electromagnetic Sensing of the Environment (IREA), Naples, Italy
| | - Stefania Romeo
- National Research Council of Italy (CNR), Institute for Electromagnetic Sensing of the Environment (IREA), Naples, Italy
| | - Maria Rosaria Scarfì
- National Research Council of Italy (CNR), Institute for Electromagnetic Sensing of the Environment (IREA), Naples, Italy
| | - Daniele Pinchera
- Department of Electrical and Information Engineering "Maurizio Scarano" (DIEI), University of Cassino and Southern Lazio, Cassino, Italy
| | - Fulvio Schettino
- Department of Electrical and Information Engineering "Maurizio Scarano" (DIEI), University of Cassino and Southern Lazio, Cassino, Italy
| | - Mario Alonzo
- National Research Council of Italy (CNR), Institute for Electromagnetic Sensing of the Environment (IREA), Naples, Italy
| | - Mariateresa Allocca
- National Research Council of Italy (CNR), Institute for Electromagnetic Sensing of the Environment (IREA), Naples, Italy
| | - Olga Zeni
- National Research Council of Italy (CNR), Institute for Electromagnetic Sensing of the Environment (IREA), Naples, Italy
| |
Collapse
|
6
|
Bertuccio MP, Acri G, Ientile R, Caccamo D, Currò M. The Exposure to 2.45 GHz Electromagnetic Radiation Induced Different Cell Responses in Neuron-like Cells and Peripheral Blood Mononuclear Cells. Biomedicines 2023; 11:3129. [PMID: 38137349 PMCID: PMC10740707 DOI: 10.3390/biomedicines11123129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Electromagnetic radiation emitted by commonly used devices became an issue for public health because of their harmful effects. Notably, 2.45 GHz electromagnetic radiation exposure has been associated with DNA damage and alterations in the central nervous system. We here investigated the effects of 2.45 GHz electromagnetic radiation on cell redox status by using human SH-SY5Y neuroblastoma cells, which were differentiated to neuronal-like cells, and peripheral blood mononuclear cells (PBMCs), which were exposed to an antenna emitting 2.45 GHz electromagnetic radiation for 2, 24, and 48 h. We evaluated cell viability and mitochondrial activity alterations by measuring reactive oxygen species (ROS), mitochondrial transmembrane potential (ΔΨm), NAD+/NADH ratio, mitochondrial transcription factor A (mtTFA), and superoxide dismutase 1 (SOD1) gene transcript levels. We also investigated apoptosis and autophagy, evaluating B-cell lymphoma 2 (BCL2), BCL2-associated X protein (BAX), and microtubule-associated protein 1A/1B-light chain 3 (LC3) gene transcript levels. Cell viability was significantly reduced after 24-48 h of exposure to radiation. ROS levels significantly increased in radiation-exposed cells, compared with controls at all exposure times. ΔΨm values decreased after 2 and 24 h in exposed SH-SY5Y cells, while in PBMCs, values decreased soon after 2 h of exposure. Alterations were also found in the NAD+/NADH ratio, mtTFA, SOD1, LC3 gene expression, and BAX/BCL2 ratio. Our results showed that neuron-like cells are more prone to developing oxidative stress than PBMCs after 2.45 GHz electromagnetic radiation exposure, activating an early antioxidant defense response.
Collapse
Affiliation(s)
- Maria Paola Bertuccio
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy; (G.A.); (R.I.); (D.C.); (M.C.)
| | | | | | | | | |
Collapse
|
7
|
Winkler R, Ciria M, Ahmad M, Plank H, Marcuello C. A Review of the Current State of Magnetic Force Microscopy to Unravel the Magnetic Properties of Nanomaterials Applied in Biological Systems and Future Directions for Quantum Technologies. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2585. [PMID: 37764614 PMCID: PMC10536909 DOI: 10.3390/nano13182585] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Magnetism plays a pivotal role in many biological systems. However, the intensity of the magnetic forces exerted between magnetic bodies is usually low, which demands the development of ultra-sensitivity tools for proper sensing. In this framework, magnetic force microscopy (MFM) offers excellent lateral resolution and the possibility of conducting single-molecule studies like other single-probe microscopy (SPM) techniques. This comprehensive review attempts to describe the paramount importance of magnetic forces for biological applications by highlighting MFM's main advantages but also intrinsic limitations. While the working principles are described in depth, the article also focuses on novel micro- and nanofabrication procedures for MFM tips, which enhance the magnetic response signal of tested biomaterials compared to commercial nanoprobes. This work also depicts some relevant examples where MFM can quantitatively assess the magnetic performance of nanomaterials involved in biological systems, including magnetotactic bacteria, cryptochrome flavoproteins, and magnetic nanoparticles that can interact with animal tissues. Additionally, the most promising perspectives in this field are highlighted to make the reader aware of upcoming challenges when aiming toward quantum technologies.
Collapse
Affiliation(s)
- Robert Winkler
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
| | - Miguel Ciria
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Margaret Ahmad
- Photobiology Research Group, IBPS, UMR8256 CNRS, Sorbonne Université, 75005 Paris, France;
| | - Harald Plank
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
8
|
Akbari H, Taeb S, Adibzadeh A, Akbari H. Nonionizing Electromagnetic Irradiations; Biological Interactions, Human Safety. J Biomed Phys Eng 2023; 13:299-308. [PMID: 37609512 PMCID: PMC10440414 DOI: 10.31661/jbpe.v0i0.2010-1203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/21/2020] [Indexed: 08/24/2023]
Abstract
Human is usually exposed to environmental radiation from natural and man-made sources. Therefore, it is important to investigate the effects of exposure to environmental radiation, partly related to understanding and protecting against the risk of exposure to environmental radiation with beneficial and adverse impacts on human life. The rapid development of technologies causes a dramatic enhancement of radiation in the human environment. In this study, we address the biological effects caused by different fractions of non-ionizing electromagnetic irradiation to humans and describe possible approaches for minimizing adverse health effects initiated by radiation. The main focus was on biological mechanisms initiated by irradiation and represented protection, and safety approaches to prevent health disorders.
Collapse
Affiliation(s)
- Hamed Akbari
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
- Medical Biotechnology Research Center, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Amir Adibzadeh
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hesam Akbari
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Assessment of Inflammation in 3D Reconstructed Human Skin Exposed to Combined Exposure to Ultraviolet and Wi-Fi Radiation. Int J Mol Sci 2023; 24:ijms24032853. [PMID: 36769173 PMCID: PMC9917807 DOI: 10.3390/ijms24032853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/13/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
In the human environment, the increasing exposure to radiofrequency (RF) radiation, especially that emitted by wireless devices, could be absorbed in the body. Recently, mobile and emerging wireless technologies (UMTS, DECT, LTE, and Wi-Fi) have been using higher frequencies than 2G GSM systems (900/1800 MHz), which means that most of the circulating RF currents are absorbed into the skin and the superficial soft tissue. The harmful genotoxic, cytotoxic, and mutagenic effects of solar ultraviolet (UV) radiation on the skin are well-known. This study aimed at investigating whether 2422 MHz (Wi-Fi) RF exposure combined with UV radiation in different sequences has any effect on the inflammation process in the skin. In vitro experiments examined the inflammation process by cytokines (IL-1α, IL-6, IL-8) and MMP-1 enzyme secretion in a 3D full-thickness human skin model. In the first study, UV exposure was immediately followed by RF exposure to measure the potential additive effects, while in the second study, the possible protective phenomenon (i.e., adaptive response) was investigated when adaptive RF exposure was challenged by UV radiation. Our results suggest that 2422 MHz Wi-Fi exposure slightly, not significantly increased cytokine concentrations of the prior UV exposure. We could not detect the adaptive response phenomenon.
Collapse
|
10
|
Sun A, Zhao X, Li Z, Gao Y, Liu Q, Zhou H, Dong G, Wang C. Effects of Long-Term and Multigeneration Exposure of Caenorhabditis elegans to 9.4 GHz Microwaves. Bioelectromagnetics 2022; 43:336-346. [PMID: 35544783 DOI: 10.1002/bem.22409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 01/23/2022] [Accepted: 04/24/2022] [Indexed: 11/11/2022]
Abstract
A large number of studies on the biological effects of microwaves are carried out using rodents and cells, but the conditions are difficult to control, and the irradiation period is short; the results obtained have always been controversial and difficult to reproduce. In this study, we expose nematodes to an electromagnetic environment for a long-term and multigeneration period to explore the possible biological effects. Wild-type N2 strains of Caenorhabditis elegans are exposed to 9.4 GHz microwaves at a specific adsorption rate of 4 W/kg for 10 h per day from L1 larvae to adults. Then, adult worms are washed off, and the laid eggs are kept to hatch L1 larvae, which are continuously exposed to microwaves until passing through 20 generations. The worms of the 10th, 15th, and 20th generations are collected for index detection. Interestingly, we found that the fecundity of C. elegans decreased significantly in the exposed group from the 15th generation. At the same time, we found that the growth of C. elegans decreased, motility decreased, and oxidative stress occurred in the exposed group from the 10th generation, which may play roles in the decreased spawning in worms. We preliminarily believe that the microwave energy received by worms leads to oxidative stress, which causes a decrease in the spawning rate, and the underlying mechanism needs to be further studied. © 2022 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Aihua Sun
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Xuelong Zhao
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Zhihui Li
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Yan Gao
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Qi Liu
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Hongmei Zhou
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Guofu Dong
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Changzhen Wang
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing, China
| |
Collapse
|
11
|
Radiofrequency Electromagnetic Field Exposure and Apoptosis: A Scoping Review of In Vitro Studies on Mammalian Cells. Int J Mol Sci 2022; 23:ijms23042322. [PMID: 35216437 PMCID: PMC8877695 DOI: 10.3390/ijms23042322] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
In the last decades, experimental studies have been carried out to investigate the effects of radiofrequency (RF, 100 kHz–300 GHz) electromagnetic fields (EMF) exposure on the apoptotic process. As evidence-based critical evaluation of RF and apoptosis in vitro is lacking, we performed a scoping literature review with the aim of systematically mapping the research performed in this area and identifying gaps in knowledge. Eligible for inclusion were in vitro studies assessing apoptosis in mammalian cells exposed to RF-EMF, which met basic quality criteria (sham control, at least three independent experiments, appropriate dosimetry analysis and temperature monitoring). We conducted a systematic literature review and charted data in order to overview the main characteristics of included studies. From the 4362 papers retrieved with our search strategy, 121 were pertinent but, among them, only 42 met basic quality criteria. We pooled data with respect to exposure (frequency, exposure level and duration) and biological parameters (cell type, endpoint), and highlighted some qualitative trends with respect to the detection of significant effect of RF-EMF on the apoptotic process. We provided a qualitative picture of the evidence accumulated so far, and highlighted that the quality of experimental methodology still needs to be highly improved.
Collapse
|
12
|
Panagopoulos DJ, Karabarbounis A, Yakymenko I, Chrousos GP. Human‑made electromagnetic fields: Ion forced‑oscillation and voltage‑gated ion channel dysfunction, oxidative stress and DNA damage (Review). Int J Oncol 2021; 59:92. [PMID: 34617575 PMCID: PMC8562392 DOI: 10.3892/ijo.2021.5272] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Exposure of animals/biological samples to human‑made electromagnetic fields (EMFs), especially in the extremely low frequency (ELF) band, and the microwave/radio frequency (RF) band which is always combined with ELF, may lead to DNA damage. DNA damage is connected with cell death, infertility and other pathologies, including cancer. ELF exposure from high‑voltage power lines and complex RF exposure from wireless communication antennas/devices are linked to increased cancer risk. Almost all human‑made RF EMFs include ELF components in the form of modulation, pulsing and random variability. Thus, in addition to polarization and coherence, the existence of ELFs is a common feature of almost all human‑made EMFs. The present study reviews the DNA damage and related effects induced by human‑made EMFs. The ion forced‑oscillation mechanism for irregular gating of voltage‑gated ion channels on cell membranes by polarized/coherent EMFs is extensively described. Dysfunction of ion channels disrupts intracellular ionic concentrations, which determine the cell's electrochemical balance and homeostasis. The present study shows how this can result in DNA damage through reactive oxygen species/free radical overproduction. Thus, a complete picture is provided of how human‑made EMF exposure may indeed lead to DNA damage and related pathologies, including cancer. Moreover, it is suggested that the non‑thermal biological effects attributed to RF EMFs are actually due to their ELF components.
Collapse
Affiliation(s)
- Dimitris J. Panagopoulos
- Laboratory of Health Physics, Radiobiology and Cytogenetics, Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Center for Scientific Research 'Demokritos', 15310 Athens, Greece
- Choremeion Research Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Electromagnetic Field-Biophysics Research Laboratory, 10681 Athens, Greece
| | - Andreas Karabarbounis
- Department of Physics, Section of Nuclear and Particle Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Igor Yakymenko
- Institute of Experimental Pathology, Oncology and Radiobiology of National Academy of Science of Ukraine, 03022 Kyiv, Ukraine
- Department of Public Health, Kyiv Medical University, 02000 Kyiv, Ukraine
| | - George P. Chrousos
- Choremeion Research Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
13
|
Owolabi J, Ilesanmi OS, Luximon-Ramma A. Perceptions and Experiences About Device-Emitted Radiofrequency Radiation and Its Effects on Selected Brain Health Parameters in Southwest Nigeria. Cureus 2021; 13:e18211. [PMID: 34703703 PMCID: PMC8541654 DOI: 10.7759/cureus.18211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction Radiofrequency radiation (RFR) is a form of non-ionising radiation that is used or emitted by a number of technologies and innovative devices including mobile phones and computers and gadgets. Exposure to RFR has been reported to have certain negative effects on human health. It is clear that quality and reliable data will be required with respect to the specific nature of RFR effects on mental health. This research considered the perceptions and exposure-related experiences of people within a Nigerian population with respect to RFR. Methods Structured and validated questionnaires were used to profile self-reported patterns of behaviour and sleep in humans. Questionnaire administration-electronic was opened for exactly one week, consisting of 25 specific questions and five open-ended questions [total = 30 questions]. A total population approach was adopted [N=~240]. Bivariate analysis using Chi-square tests were conducted to determine the association between knowledge of electronic gadgets as a source of radiofrequency radiation and sociodemographic characteristics of respondents. Binary logistic regression was used to determine the factors associated with good knowledge of electronic gadgets as a source of radiofrequency radiation. The level of statistical significance was set at p ≤ 0.05. Results The response rate was approximately 84%. Fatigue/tiredness [69.6%], attention deficit [69.1%] and headache [62.4%] ranked top amongst RFR-associated negative effects on mental health. Among the respondents, 29 (56.9%) among those above 20 years had good knowledge of radiofrequency radiation from electronic gadgets compared to 72 (47.2%) aged 20 years and below (X2 = 1.285, p = 0.257). Also, 45 (59.2%) of persons who lived in a town/village had good knowledge of radiofrequency radiation from electronic gadgets compared to 56 (44.4%) who lived in the city (X2 = 4.135, p = 0.042). Persons who lived in a town/village had nearly two times the odds of having good knowledge of RFR from electronic gadgets. Conclusion The study showed that respondents had experienced significant and negative effects of RFR on their mental health. The current level of knowledge and awareness on the nature of RFR and exposures was just about average, indicating a critical and urgent need to educate the public on the subject.
Collapse
Affiliation(s)
- Joshua Owolabi
- Anatomy/Neuroscience, Babcock University, Ilishan-Remo, NGA.,Anatomy/Neuroscience, University of Global Health Equity, Kigali, RWA
| | | | | |
Collapse
|
14
|
Schuermann D, Mevissen M. Manmade Electromagnetic Fields and Oxidative Stress-Biological Effects and Consequences for Health. Int J Mol Sci 2021; 22:ijms22073772. [PMID: 33917298 PMCID: PMC8038719 DOI: 10.3390/ijms22073772] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
Concomitant with the ever-expanding use of electrical appliances and mobile communication systems, public and occupational exposure to electromagnetic fields (EMF) in the extremely-low-frequency and radiofrequency range has become a widely debated environmental risk factor for health. Radiofrequency (RF) EMF and extremely-low-frequency (ELF) MF have been classified as possibly carcinogenic to humans (Group 2B) by the International Agency for Research on Cancer (IARC). The production of reactive oxygen species (ROS), potentially leading to cellular or systemic oxidative stress, was frequently found to be influenced by EMF exposure in animals and cells. In this review, we summarize key experimental findings on oxidative stress related to EMF exposure from animal and cell studies of the last decade. The observations are discussed in the context of molecular mechanisms and functionalities relevant to health such as neurological function, genome stability, immune response, and reproduction. Most animal and many cell studies showed increased oxidative stress caused by RF-EMF and ELF-MF. In order to estimate the risk for human health by manmade exposure, experimental studies in humans and epidemiological studies need to be considered as well.
Collapse
Affiliation(s)
- David Schuermann
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
- Correspondence: (D.S.); (M.M.)
| | - Meike Mevissen
- Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, CH-3012 Bern, Switzerland
- Correspondence: (D.S.); (M.M.)
| |
Collapse
|
15
|
Jain SS, Suresh A, Pirogova E. Effects of oscillating electric fields on conotoxin peptide conformation: A molecular dynamic simulation study. J Mol Graph Model 2021; 103:107799. [DOI: 10.1016/j.jmgm.2020.107799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
|
16
|
Romeo S, Zeni O, Sannino A, Lagorio S, Biffoni M, Scarfì MR. Genotoxicity of radiofrequency electromagnetic fields: Protocol for a systematic review of in vitro studies. ENVIRONMENT INTERNATIONAL 2021; 148:106386. [PMID: 33486297 DOI: 10.1016/j.envint.2021.106386] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/30/2020] [Accepted: 01/06/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Exposure to radiofrequency electromagnetic fields (RF-EMF, 100 kHz - 300 GHz) emitted by wireless communication technologies is pervasive and ubiquitous. Concern has been raised about possible adverse effects to human health. In 2011 the International Agency for Research on Cancer has classified RF-EMF as possibly carcinogenic to humans, highlighting that the evidence is weak and far from conclusive. Updated systematic reviews of the scientific literature on this topic are lacking, especially for mechanistic studies. OBJECTIVES To develop a protocol for a systematic review of experimental studies investigating genotoxic effects induced by RF-EMF in in vitro cellular models. Genotoxicity is one of the key-biological indicators of carcinogenicity, and the most common characteristics of established carcinogens. The predefined procedures for conducting the systematic review are outlined below. METHODS We will follow the guidelines developed by the National Toxicology Program-Office of Health Assessment and Translation (NTP-OHAT), adapted to the evaluation of in vitro studies. ELIGIBILITY CRITERIA We will include experimental in vitro studies addressing the relationship between controlled exposures to RF-EMF and genotoxicity in mammalian cells only. Eligibility for inclusion will be further restricted to peer reviewed articles reporting findings from primary studies. INFORMATION SOURCES We will search the scientific literature databases NCBI PubMed, Web of Science, and EMF-Portal. No filter on publication date will be applied. Only studies published in English will be considered. The reference lists of the included papers and available reviews will be screened for unidentified relevant papers. References will be managed through Endnote X9 software. DATA EXTRACTION AND SYNTHESIS OF RESULTS Data from included papers will be extracted according to predefined forms. Heterogeneity within the available evidence will determine the type of evidence synthesis that is appropriate. Findings will be summarized in tables, graphical displays and in a narrative synthesis of the available evidences. A meta-analysis will be carried out if subgroups of studies homogeneous in terms of exposure characteristics, endpoint, and cell types will be identified. RISK OF BIAS The internal validity of included studies will be assessed using the NTP-OHAT Risk of Bias Rating Tool for animal studies, adapted to in vitro studies. This stage of the process will be managed through the Health Assessment Workspace Collaborative (HAWC). EVIDENCE APPRAISAL To rate confidence in the body of evidence, we will use the OHAT GRADE-based approach for animal studies. FRAMEWORK AND FUNDING This protocol concerns one of the evidence streams considered in a larger systematic review of the scientific literature on the potential carcinogenicity of RF-EMF, performed by scientists from several Italian public research agencies. The project is supported by the Italian Workers' Compensation Authority (INAIL) in the framework of the CRA with the Istituto Superiore di Sanità "BRiC 2018/06 - Scientific evidence on the carcinogenicity of radiofrequency electromagnetic fields".
Collapse
Affiliation(s)
- Stefania Romeo
- Institute for Electromagnetic Sensing of the Environment (IREA), Italian National Research Council (CNR), 80124 Napoli, Italy.
| | - Olga Zeni
- Institute for Electromagnetic Sensing of the Environment (IREA), Italian National Research Council (CNR), 80124 Napoli, Italy.
| | - Anna Sannino
- Institute for Electromagnetic Sensing of the Environment (IREA), Italian National Research Council (CNR), 80124 Napoli, Italy.
| | - Susanna Lagorio
- Department of Oncology and Molecular Medicine, National Institute of Health, 00161 Roma, Italy.
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine, National Institute of Health, 00161 Roma, Italy.
| | - Maria Rosaria Scarfì
- Institute for Electromagnetic Sensing of the Environment (IREA), Italian National Research Council (CNR), 80124 Napoli, Italy.
| |
Collapse
|
17
|
Kazarinov KD, Shchelkonogov VA, Baranova OA, Chekanov AV, Solovieva EU, Fedin AI. The Effect of Microwave Radiation on Cell Sensitivity to Monohydric Alcohols in Platelet-Rich Plasma. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s000635092006007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
Del Re B, Bersani F, Giorgi G. Effect of electromagnetic field exposure on the transcription of repetitive DNA elements in human cells. Electromagn Biol Med 2019; 38:262-270. [DOI: 10.1080/15368378.2019.1669634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Brunella Del Re
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Ferdinando Bersani
- Department of Physics and Astronomy, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gianfranco Giorgi
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
19
|
Jooyan N, Goliaei B, Bigdeli B, Faraji-Dana R, Zamani A, Entezami M, Mortazavi SMJ. Direct and indirect effects of exposure to 900 MHz GSM radiofrequency electromagnetic fields on CHO cell line: Evidence of bystander effect by non-ionizing radiation. ENVIRONMENTAL RESEARCH 2019; 174:176-187. [PMID: 31036329 DOI: 10.1016/j.envres.2019.03.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/13/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
INTRODUCTION The rapid rise in global concerns about the adverse health effects of exposure to radiofrequency radiation (RFR) generated by common devices such as mobile phones has prompted scientists to further investigate the biological effects of these environmental exposures. Non-targeted effects (NTEs) are responses which do not need a direct exposure to be expressed and are particularly significant at low energy radiations. Although NTEs of ionizing radiation are well documented, there are scarcely any studies on non-targeted responses such as bystander effect (BE) after exposure to non-ionizing radiation. The main goal of this research is to study possible RFR-induced BE. MATERIAL AND METHODS Chinese hamster ovary cells were exposed to 900 MHz GSM RFR at an average specific absorption rate (SAR) of 2 W/kg for 4, 12 and 24 hours (h). To generate a uniformly distributed electromagnetic field and avoid extraneous RF exposures a cavity was desined and used. Cell membrane permeability, cell redox activity, metabolic and mitotic cell death and DNA damages were analyzed. Then the most effective exposure durations and statistically significant altered parameters were chosen to assess the induction of BE through medium transfer procedure. Furthermore, intra and extra cellular reactive oxygen species (ROS) levels were measured to assess the molecular mechanism of BE induced by non-ionizing radiation. RESULTS No statistically significant alteration was found in cell membrane permeability, cell redox activity, metabolic cell activity and micronuclei (MN) frequency in the cells directly exposed to RFR for 4, 12, or 24 h. However, RFR exposure for 24 h caused a statistically significant decrease in clonogenic ability as well as a statistically significant increase in olive moment in both directly exposed and bystander cells which received media from RFR-exposed cells (conditioned culture medium; CCM). Exposure to RFR also statistically significant elevated both intra and extra cellular levels of ROS. CONCLUSION Our observation clearly indicated the induction of BE in cells treated with CCM. To our knowledge, this is the first report that a non-ionizing radiation (900 MHz GSM RFR) can induce bystander effect. As reported for ionizing radiation, our results proposed that ROS can be a potential molecule in indirect effect of RFR. On the other hand, we found the importance of ROS in direct effect of RFR but in different ways.
Collapse
Affiliation(s)
- Najmeh Jooyan
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Bahram Goliaei
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Bahareh Bigdeli
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Reza Faraji-Dana
- School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Ali Zamani
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Entezami
- School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Seyed Mohammad Javad Mortazavi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran; Department of Diagnostic Imaging, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA, 19111, USA.
| |
Collapse
|
20
|
Comparing DNA damage induced by mobile telephony and other types of man-made electromagnetic fields. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:53-62. [PMID: 31416578 DOI: 10.1016/j.mrrev.2019.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/04/2019] [Accepted: 03/09/2019] [Indexed: 12/22/2022]
Abstract
The number of studies showing adverse effects on living organisms induced by different types of man-made Electromagnetic Fields (EMFs) has increased tremendously. Hundreds of peer reviewed published studies show a variety of effects, the most important being DNA damage which is linked to cancer, neurodegenerative diseases, reproductive declines etc. Those studies that are far more effective in showing effects employ real-life Mobile Telephony (MT) exposures emitted by commercially available mobile phones. The present review - of results published by my group from 2006 until 2016 - compares DNA fragmentation induced by six different EMFs on the same biological system - the oogenesis of Drosophila melanogaster - under identical conditions and procedures. Such a direct comparison between different EMFs - especially those employed in daily life - on the same biological endpoint, is very useful for drawing conclusions on their bioactivity, and novel. It shows that real MT EMFs are far more damaging than 50 Hz alternating magnetic field (MF) - similar or much stronger to those of power lines - or a pulsed electric field (PEF) found before to increase fertility. The MT EMFs were significantly more bioactive even for much shorter exposure durations than the other EMFs. Moreover, they were more damaging than previously tested cytotoxic agents like certain chemicals, starvation, dehydration. Individual parameters of the real MT EMFs like intensity, frequency, exposure duration, polarization, pulsing, modulation, are discussed in terms of their role in bioactivity. The crucial parameter for the intense bioactivity seems to be the extreme variability of the polarized MT signals, mainly due to the large unpredictable intensity changes.
Collapse
|
21
|
Gao H, Aresu M, Vergnaud AC, McRobie D, Spear J, Heard A, Kongsgård HW, Singh D, Muller DC, Elliott P. Personal radio use and cancer risks among 48,518 British police officers and staff from the Airwave Health Monitoring Study. Br J Cancer 2019; 120:375-378. [PMID: 30585256 PMCID: PMC6354010 DOI: 10.1038/s41416-018-0365-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Radiofrequency electromagnetic fields (RF-EMF) from mobile phones have been classified as potentially carcinogenic. No study has investigated use of Terrestrial Trunked Radio (TETRA), a source of RF-EMF with wide occupational use, and cancer risks. METHODS We investigated association of monthly personal radio use and risk of cancer using Cox proportional hazards regression among 48,518 police officers and staff of the Airwave Health Monitoring Study in Great Britain. RESULTS During median follow-up of 5.9 years, 716 incident cancer cases were identified. Among users, the median of the average monthly duration of use in the year prior to enrolment was 30.5 min (inter-quartile range 8.1, 68.1). Overall, there was no association between personal radio use and risk of all cancers (hazard ratio [HR] = 0.98, 95% confidence interval [CI]: 0.93, 1.03). For head and neck cancers HR = 0.72 (95% CI: 0.30, 1.70) among personal radio users vs non-users, and among users it was 1.06 (95% CI: 0.91, 1.23) per doubling of minutes of personal radio use. CONCLUSIONS With the limited follow-up to date, we found no evidence of association of personal radio use with cancer risk. Continued follow-up of the cohort is warranted.
Collapse
Affiliation(s)
- He Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Maria Aresu
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Anne-Claire Vergnaud
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Dennis McRobie
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Jeanette Spear
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Andy Heard
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Håvard Wahl Kongsgård
- Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Deepa Singh
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - David C Muller
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.
- NIHR Health Protection Research Unit in Health Effects of Environmental Hazards, Imperial College London, London, UK.
- UK Dementia Research Institute (DRI) at Imperial College, Imperial College London, London, UK.
- Health Data Research-UK (HDR) London Centre at Imperial College, Imperial College London, London, UK.
| |
Collapse
|
22
|
Zhou H, Dong G, Zheng W, Wang S, Wang L, Zhi W, Wang C. Radiofrequency radiation at 2.856 GHz does not affect key cellular endpoints in neuron-like PC12 cells. Electromagn Biol Med 2018; 38:102-110. [PMID: 30482060 DOI: 10.1080/15368378.2018.1550787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To investigate the potential cytotoxicity of radiofrequency (RF) radiation on central nervous system, rat pheochromocytoma (PC12) cells were exposed to 2.856 GHz RF radiation at a specific absorption rate (SAR) of 4 W/kg for 8 h a day for 2 days in 35 mm Petri dishes. During exposure, the real-time variation of the culture medium temperature was monitored in the first hour. Reactive oxygen species (ROS) production, intracellular Ca2+ concentration, and cell apoptosis rate were assessed immediately after exposure by flow cytometry. The results showed that the medium temperature raised about 0.93 °C, but no significant changes were observed in apoptosis, ROS levels or intracellular Ca2+ concentration after treatment. Although several studies suggested that RF radiation does indeed cause neurological effects, this study presented inconsistent results, indicating that 2.856 GHz RF radiation exposure at a SAR of 4 W/kg does not have a dramatic impact on PC12 cells, and suggests the need for further investigation on the key cellular endpoints of other nerve cells after exposure to RF radiation.
Collapse
Affiliation(s)
- Hongmei Zhou
- a Department of Experimental Pathology , Beijing Institute of Radiation Medicine , Beijing P. R. China
| | - Guofu Dong
- a Department of Experimental Pathology , Beijing Institute of Radiation Medicine , Beijing P. R. China
| | - Wen Zheng
- a Department of Experimental Pathology , Beijing Institute of Radiation Medicine , Beijing P. R. China
| | - Shuiming Wang
- a Department of Experimental Pathology , Beijing Institute of Radiation Medicine , Beijing P. R. China
| | - Lifeng Wang
- a Department of Experimental Pathology , Beijing Institute of Radiation Medicine , Beijing P. R. China
| | - Weijia Zhi
- a Department of Experimental Pathology , Beijing Institute of Radiation Medicine , Beijing P. R. China
| | - Changzhen Wang
- a Department of Experimental Pathology , Beijing Institute of Radiation Medicine , Beijing P. R. China
| |
Collapse
|
23
|
Role of Mitochondria in the Oxidative Stress Induced by Electromagnetic Fields: Focus on Reproductive Systems. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5076271. [PMID: 30533171 PMCID: PMC6250044 DOI: 10.1155/2018/5076271] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022]
Abstract
Modern technologies relying on wireless communication systems have brought increasing levels of electromagnetic field (EMF) exposure. This increased research interest in the effects of these radiations on human health. There is compelling evidence that EMFs affect cell physiology by altering redox-related processes. Considering the importance of redox milieu in the biological competence of oocyte and sperm, we reviewed the existing literature regarding the effects of EMFs on reproductive systems. Given the role of mitochondria as the main source of reactive oxygen species (ROS), we focused on the hypothesis of a mitochondrial basis of EMF-induced reproductive toxicity. MEDLINE, Web of Science, and Scopus database were examined for peer-reviewed original articles by searching for the following keywords: “extremely low frequency electromagnetic fields (ELF-EMFs),” “radiofrequency (RF),” “microwaves,” “Wi-Fi,” “mobile phone,” “oxidative stress,” “mitochondria,” “fertility,” “sperm,” “testis,” “oocyte,” “ovarian follicle,” and “embryo.” These keywords were combined with other search phrases relevant to the topic. Although we reported contradictory data due to lack of uniformity in the experimental designs, a growing body of evidence suggests that EMF exposure during spermatogenesis induces increased ROS production associated with decreased ROS scavenging activity. Numerous studies revealed the detrimental effects of EMFs from mobile phones, laptops, and other electric devices on sperm quality and provide evidence for extensive electron leakage from the mitochondrial electron transport chain as the main cause of EMF damage. In female reproductive systems, the contribution of oxidative stress to EMF-induced damages and the evidence of mitochondrial origin of ROS overproduction are reported, as well. In conclusion, mitochondria seem to play an important role as source of ROS in both male and female reproductive systems under EMF exposure. Future and more standardized studies are required for a better understanding of molecular mechanisms underlying EMF potential challenge to our reproductive system in order to improve preventive strategies.
Collapse
|
24
|
Bilgici B, Gun S, Avci B, Akar A, K. Engiz B. What is adverse effect of wireless local area network, using 2.45 GHz, on the reproductive system? Int J Radiat Biol 2018; 94:1054-1061. [DOI: 10.1080/09553002.2018.1503430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Birşen Bilgici
- Department of Biochemistry, Ondokuz Mayıs University, Samsun, Turkey
| | - Seda Gun
- Department of Pathology, Ondokuz Mayıs University, Samsun, Turkey
| | - Bahattin Avci
- Department of Biochemistry, Ondokuz Mayıs University, Samsun, Turkey
| | - Ayşegül Akar
- Department of Biophysics, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Begüm K. Engiz
- Department of Electrical and Electronics Engineering, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
25
|
Franchini V, Regalbuto E, De Amicis A, De Sanctis S, Di Cristofaro S, Coluzzi E, Marinaccio J, Sgura A, Ceccuzzi S, Doria A, Gallerano GP, Giovenale E, Ravera GL, Bei R, Benvenuto M, Modesti A, Masuelli L, Lista F. Genotoxic Effects in Human Fibroblasts Exposed to Microwave Radiation. HEALTH PHYSICS 2018; 115:126-139. [PMID: 29787439 DOI: 10.1097/hp.0000000000000871] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the last decades, technological development has led to an increasing use of devices and systems based on microwave radiation. The increased employment of these devices has elicited questions about the potential long-term health consequences associated with microwave radiation exposure. From this perspective, biological effects of microwave radiation have been the focus of many studies, but the reported scientific data are unclear and contradictory. The aim of this study is to evaluate the potential genotoxic and cellular effects associated with in vitro exposure of human fetal and adult fibroblasts to microwave radiation at the frequency of 25 GHz. For this purpose, several genetic and biological end points were evaluated. Results obtained from comet assay, phosphorylation of H2AX histone, and antikinetochore antibody (CREST)-negative micronuclei frequency excluded direct DNA damage to human fetal and adult fibroblasts exposed to microwaves. No induction of apoptosis or changes in prosurvival signalling proteins were detected. Moreover, CREST analysis showed for both the cell lines an increase in the total number of micronuclei and centromere positive micronuclei in exposed samples, indicating aneuploidy induction due to chromosome loss.
Collapse
Affiliation(s)
- Valeria Franchini
- Scientific Department of Army Medical Center of Rome, Via Santo Stefano Rotondo, 4-00184, Rome, Italy
- University of Rome Roma Tre, Department of Science, Viale Guglielmo Marconi, 446, 00146, Rome, Italy
| | - Elisa Regalbuto
- Scientific Department of Army Medical Center of Rome, Via Santo Stefano Rotondo, 4-00184, Rome, Italy
- University of Rome Roma Tre, Department of Science, Viale Guglielmo Marconi, 446, 00146, Rome, Italy
| | - Andrea De Amicis
- Scientific Department of Army Medical Center of Rome, Via Santo Stefano Rotondo, 4-00184, Rome, Italy
| | - Stefania De Sanctis
- Scientific Department of Army Medical Center of Rome, Via Santo Stefano Rotondo, 4-00184, Rome, Italy
| | - Sara Di Cristofaro
- Scientific Department of Army Medical Center of Rome, Via Santo Stefano Rotondo, 4-00184, Rome, Italy
| | - Elisa Coluzzi
- University of Rome Roma Tre, Department of Science, Viale Guglielmo Marconi, 446, 00146, Rome, Italy
| | - Jessica Marinaccio
- University of Rome Roma Tre, Department of Science, Viale Guglielmo Marconi, 446, 00146, Rome, Italy
| | - Antonella Sgura
- University of Rome Roma Tre, Department of Science, Viale Guglielmo Marconi, 446, 00146, Rome, Italy
| | - Silvio Ceccuzzi
- Radiation Sources, Antennas and Diagnostics Laboratory, ENEA Research Center, Frascati, Italy
| | - Andrea Doria
- Radiation Sources, Antennas and Diagnostics Laboratory, ENEA Research Center, Frascati, Italy
| | - Gian Piero Gallerano
- Radiation Sources, Antennas and Diagnostics Laboratory, ENEA Research Center, Frascati, Italy
| | - Emilio Giovenale
- Radiation Sources, Antennas and Diagnostics Laboratory, ENEA Research Center, Frascati, Italy
| | - Gian Luca Ravera
- Radiation Sources, Antennas and Diagnostics Laboratory, ENEA Research Center, Frascati, Italy
| | - Roberto Bei
- University of Rome Tor Vergata, Department of Clinical Sciences and Translational Medicine, Rome, Italy
| | - Monica Benvenuto
- University of Rome Tor Vergata, Department of Clinical Sciences and Translational Medicine, Rome, Italy
| | - Andrea Modesti
- University of Rome Tor Vergata, Department of Clinical Sciences and Translational Medicine, Rome, Italy
| | - Laura Masuelli
- University of Rome La Sapienza, Department of Experimental Medicine, Rome, Italy
| | - Florigio Lista
- Scientific Department of Army Medical Center of Rome, Via Santo Stefano Rotondo, 4-00184, Rome, Italy
| |
Collapse
|
26
|
Wang X, Qi H, Zhang J, Pei J, Sun L, Chen S. Multivariable quantitative relation between cell viability and the exposure parameters of 9.33 GHz RF-EMP irradiation. Electromagn Biol Med 2018; 37:146-154. [PMID: 29902088 DOI: 10.1080/15368378.2018.1482221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Qualitative analysis of the influence of a certain exposure parameter is commonly performed in bioelectromagnetic studies. However, since the exposure condition requires the control of multiple parameters, the diverse results caused by different combinations of these parameters requires further quantitative study of the multivariable (exposure parameters)-bioeffect relation to identify the rule describing bioelectromagnetic effects. The present work investigated the relation between cell viability and the three main exposure parameters (electric intensity (Es), pulse duration (τ) and pulse number (N)) of 9.33 GHz radiofrequency electromagnetic field (RF-EMP). Experiments showed that the inhibitory rate of cell viability (ρ) had a proportional relationship with Es and exponential relationship with N; the equation [Formula: see text] is proposed to quantitatively describe the relation between the cell viability and these three exposure parameters. This equation can be used to predict the significance of a 9.33 GHz RF-EMP-induced bioeffect under the conditions Es <106 kV/m, N < 100, and 300 < τ < 750 ns, under which nonthermal bioeffects dominate for 9.33GHz RF-EMP exposure.
Collapse
Affiliation(s)
- Xianghui Wang
- a Biophysics Lab, School of Physics and Material Science , East China Normal University , Shanghai , P R China
| | - Hongxin Qi
- a Biophysics Lab, School of Physics and Material Science , East China Normal University , Shanghai , P R China
| | - Jie Zhang
- a Biophysics Lab, School of Physics and Material Science , East China Normal University , Shanghai , P R China
| | - Jian Pei
- a Biophysics Lab, School of Physics and Material Science , East China Normal University , Shanghai , P R China
| | - Lifang Sun
- a Biophysics Lab, School of Physics and Material Science , East China Normal University , Shanghai , P R China
| | - Shude Chen
- a Biophysics Lab, School of Physics and Material Science , East China Normal University , Shanghai , P R China
| |
Collapse
|
27
|
Fragopoulou AF, Polyzos A, Papadopoulou M, Sansone A, Manta AK, Balafas E, Kostomitsopoulos N, Skouroliakou A, Chatgilialoglu C, Georgakilas A, Stravopodis DJ, Ferreri C, Thanos D, Margaritis LH. Hippocampal lipidome and transcriptome profile alterations triggered by acute exposure of mice to GSM 1800 MHz mobile phone radiation: An exploratory study. Brain Behav 2018; 8:e01001. [PMID: 29786969 PMCID: PMC5991598 DOI: 10.1002/brb3.1001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The widespread use of wireless devices during the last decades is raising concerns about adverse health effects of the radiofrequency electromagnetic radiation (RF-EMR) emitted from these devices. Recent research is focusing on unraveling the underlying mechanisms of RF-EMR and potential cellular targets. The "omics" high-throughput approaches are powerful tools to investigate the global effects of RF-EMR on cellular physiology. METHODS In this work, C57BL/6 adult male mice were whole-body exposed (nExp = 8) for 2 hr to GSM 1800 MHz mobile phone radiation at an average electric field intensity range of 4.3-17.5 V/m or sham-exposed (nSE = 8), and the RF-EMR effects on the hippocampal lipidome and transcriptome profiles were assessed 6 hr later. RESULTS The data analysis of the phospholipid fatty acid residues revealed that the levels of four fatty acids [16:0, 16:1 (6c + 7c), 18:1 9c, eicosapentaenoic acid omega-3 (EPA, 20:5 ω3)] and the two fatty acid sums of saturated and monounsaturated fatty acids (SFA and MUFA) were significantly altered (p < 0.05) in the exposed group. The observed changes indicate a membrane remodeling response of the tissue phospholipids after nonionizing radiation exposure, reducing SFA and EPA, while increasing MUFA residues. The microarray data analysis demonstrated that the expression of 178 genes changed significantly (p < 0.05) between the two groups, revealing an impact on genes involved in critical biological processes, such as cell cycle, DNA replication and repair, cell death, cell signaling, nervous system development and function, immune system response, lipid metabolism, and carcinogenesis. CONCLUSIONS This study provides preliminary evidence that mobile phone radiation induces hippocampal lipidome and transcriptome changes that may explain the brain proteome changes and memory deficits previously shown by our group.
Collapse
Affiliation(s)
- Adamantia F. Fragopoulou
- Department of Cell Biology and BiophysicsFaculty of BiologyUniversity of AthensZografouAthensGreece
- Department of Women’s and Children’s HealthKarolinska InstitutetStockholmSweden
| | - Alexandros Polyzos
- Institute of Molecular Biology, Genetics and BiotechnologyBiomedical Research FoundationAcademy of AthensAthensGreece
- Present address:
Joan and Sanford I. Weill Department of MedicineWeill Cornell Medical CollegeNew York10065New York
| | - Maria‐Despoina Papadopoulou
- Institute of Molecular Biology, Genetics and BiotechnologyBiomedical Research FoundationAcademy of AthensAthensGreece
| | - Anna Sansone
- Consiglio Nazionale delle RicercheISOFBolognaItaly
| | - Areti K. Manta
- Department of Cell Biology and BiophysicsFaculty of BiologyUniversity of AthensZografouAthensGreece
| | - Evangelos Balafas
- Laboratory Animal FacilitiesCenter of Clinical, Experimental Surgery and Translational ResearchBiomedical Research FoundationAcademy of AthensAthensGreece
| | - Nikolaos Kostomitsopoulos
- Laboratory Animal FacilitiesCenter of Clinical, Experimental Surgery and Translational ResearchBiomedical Research FoundationAcademy of AthensAthensGreece
| | | | - Chryssostomos Chatgilialoglu
- Consiglio Nazionale delle RicercheISOFBolognaItaly
- Institute of Nanoscience and Nanotechnology (INN)NCSR DemokritosAthensGreece
| | - Alexandros Georgakilas
- DNA Damage LaboratoryDepartment of PhysicsSchool of Applied Mathematical and Physical SciencesNational Technical University of Athens (NTUA)AthensGreece
| | - Dimitrios J. Stravopodis
- Department of Cell Biology and BiophysicsFaculty of BiologyUniversity of AthensZografouAthensGreece
| | | | - Dimitris Thanos
- Institute of Molecular Biology, Genetics and BiotechnologyBiomedical Research FoundationAcademy of AthensAthensGreece
| | - Lukas H. Margaritis
- Department of Cell Biology and BiophysicsFaculty of BiologyUniversity of AthensZografouAthensGreece
| |
Collapse
|
28
|
Mobile phone specific electromagnetic fields induce transient DNA damage and nucleotide excision repair in serum-deprived human glioblastoma cells. PLoS One 2018; 13:e0193677. [PMID: 29649215 PMCID: PMC5896905 DOI: 10.1371/journal.pone.0193677] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/13/2018] [Indexed: 02/07/2023] Open
Abstract
Some epidemiological studies indicate that the use of mobile phones causes cancer in humans (in particular glioblastomas). It is known that DNA damage plays a key role in malignant transformation; therefore, we investigated the impact of the UMTS signal which is widely used in mobile telecommunications, on DNA stability in ten different human cell lines (six brain derived cell lines, lymphocytes, fibroblasts, liver and buccal tissue derived cells) under conditions relevant for users (SAR 0.25 to 1.00 W/kg). We found no evidence for induction of damage in single cell gel electrophoresis assays when the cells were cultivated with serum. However, clear positive effects were seen in a p53 proficient glioblastoma line (U87) when the cells were grown under serum free conditions, while no effects were found in p53 deficient glioblastoma cells (U251). Further experiments showed that the damage disappears rapidly in U87 and that exposure induced nucleotide excision repair (NER) and does not cause double strand breaks (DSBs). The observation of NER induction is supported by results of a proteome analysis indicating that several proteins involved in NER are up-regulated after exposure to UMTS; additionally, we found limited evidence for the activation of the γ-interferon pathway. The present findings show that the signal causes transient genetic instability in glioma derived cells and activates cellular defense systems.
Collapse
|
29
|
Ding XF, Wu Y, Qu WR, Fan M, Zhao YQ. Quinacrine pretreatment reduces microwave-induced neuronal damage by stabilizing the cell membrane. Neural Regen Res 2018; 13:449-455. [PMID: 29623929 PMCID: PMC5900507 DOI: 10.4103/1673-5374.228727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Quinacrine, widely used to treat parasitic diseases, binds to cell membranes. We previously found that quinacrine pretreatment reduced microwave radiation damage in rat hippocampal neurons, but the molecular mechanism remains poorly understood. Considering the thermal effects of microwave radiation and the protective effects of quinacrine on heat damage in cells, we hypothesized that quinacrine would prevent microwave radiation damage to cells in a mechanism associated with cell membrane stability. To test this, we used retinoic acid to induce PC12 cells to differentiate into neuron-like cells. We then pretreated the neurons with quinacrine (20 and 40 mM) and irradiated them with 50 mW/cm2 microwaves for 3 or 6 hours. Flow cytometry, atomic force microscopy and western blot assays revealed that irradiated cells pretreated with quinacrine showed markedly less apoptosis, necrosis, and membrane damage, and greater expression of heat shock protein 70, than cells exposed to microwave irradiation alone. These results suggest that quinacrine stabilizes the neuronal membrane structure by upregulating the expression of heat shock protein 70, thus reducing neuronal injury caused by microwave radiation.
Collapse
Affiliation(s)
- Xue-Feng Ding
- Department of Cognitive Sciences, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yan Wu
- Department of Cognitive Sciences, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Wen-Rui Qu
- Hand & Foot Surgery and Reparative & Reconstructive Surgery Center, Orthopedic Hospital of the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ming Fan
- Department of Cognitive Sciences, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yong-Qi Zhao
- Department of Cognitive Sciences, Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
30
|
Köhler T, Wölfel M, Ciba M, Bochtler U, Thielemann C. Terrestrial Trunked Radio (TETRA) exposure of neuronal in vitro networks. ENVIRONMENTAL RESEARCH 2018; 162:1-7. [PMID: 29272813 DOI: 10.1016/j.envres.2017.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 06/07/2023]
Abstract
Terrestrial Trunked Radio (TETRA) is a worldwide common mobile communication standard, used by authorities and organizations with security tasks. Previous studies reported on health effects of TETRA, with focus on the specific pulse frequency of 17.64Hz, which affects calcium efflux in neuronal cells. Likewise among others, it was reported that TETRA affects heart rate variability, neurophysiology and leads to headaches. In contrast, other studies conclude that TETRA does not affect calcium efflux of cells and has no effect on people's health. In the present study we examine whether TETRA short- and long-term exposure could affect the electrophysiology of neuronal in vitro networks. Experiments were performed with a carrier frequency of 395MHz, a pulse frequency of 17.64Hz and a differential quaternary phase-shift keying (π/4 DQPSK) modulation. Specific absorption rates (SAR) of 1.17W/kg and 2.21W/kg were applied. In conclusion, the present results do not indicate any effect of TETRA exposure on electrophysiology of neuronal in vitro networks, neither for short-term nor long-term exposure. This applies to the examined parameters spike rate, burst rate, burst duration and network synchrony.
Collapse
Affiliation(s)
- Tim Köhler
- BioMEMS Lab, University of Applied Sciences Aschaffenburg, Würzburger Straße 45, D-63743 Aschaffenburg, Germany.
| | - Maximilian Wölfel
- Laboratory for EMC, University of Applied Sciences Aschaffenburg, Würzburger Straße 45, D-63743 Aschaffenburg, Germany.
| | - Manuel Ciba
- BioMEMS Lab, University of Applied Sciences Aschaffenburg, Würzburger Straße 45, D-63743 Aschaffenburg, Germany.
| | - Ulrich Bochtler
- Laboratory for EMC, University of Applied Sciences Aschaffenburg, Würzburger Straße 45, D-63743 Aschaffenburg, Germany.
| | - Christiane Thielemann
- BioMEMS Lab, University of Applied Sciences Aschaffenburg, Würzburger Straße 45, D-63743 Aschaffenburg, Germany.
| |
Collapse
|
31
|
Romanenko S, Begley R, Harvey AR, Hool L, Wallace VP. The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: risks and potential. J R Soc Interface 2017; 14:20170585. [PMID: 29212756 PMCID: PMC5746568 DOI: 10.1098/rsif.2017.0585] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/14/2017] [Indexed: 12/18/2022] Open
Abstract
Since regular radio broadcasts started in the 1920s, the exposure to human-made electromagnetic fields has steadily increased. These days we are not only exposed to radio waves but also other frequencies from a variety of sources, mainly from communication and security devices. Considering that nearly all biological systems interact with electromagnetic fields, understanding the affects is essential for safety and technological progress. This paper systematically reviews the role and effects of static and pulsed radio frequencies (100-109 Hz), millimetre waves (MMWs) or gigahertz (109-1011 Hz), and terahertz (1011-1013 Hz) on various biomolecules, cells and tissues. Electromagnetic fields have been shown to affect the activity in cell membranes (sodium versus potassium ion conductivities) and non-selective channels, transmembrane potentials and even the cell cycle. Particular attention is given to millimetre and terahertz radiation due to their increasing utilization and, hence, increasing human exposure. MMWs are known to alter active transport across cell membranes, and it has been reported that terahertz radiation may interfere with DNA and cause genomic instabilities. These and other phenomena are discussed along with the discrepancies and controversies from published studies.
Collapse
Affiliation(s)
- Sergii Romanenko
- School of Physics, The University of Western Australia, Perth, Western Australia, Australia
| | - Ryan Begley
- School of Physics, The University of Western Australia, Perth, Western Australia, Australia
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Perth, Western Australia, Australia
| | - Livia Hool
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Vincent P Wallace
- School of Physics, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
32
|
Vlasova II, Mikhalchik EV, Gusev AA, Balabushevich NG, Gusev SA, Kazarinov KD. Extremely high-frequency electromagnetic radiation enhances neutrophil response to particulate agonists. Bioelectromagnetics 2017; 39:144-155. [PMID: 29194676 DOI: 10.1002/bem.22103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 11/14/2017] [Indexed: 11/12/2022]
Abstract
The growing use of extremely high-frequency electromagnetic radiation (EHF EMR) in information and communication technology and in biomedical applications has raised concerns regarding the potential biological impact of millimeter waves (MMWs). Here, we elucidated the effects of MMW radiation on neutrophil activation induced by opsonized zymosan or E. coli in whole blood ex vivo. After agonist addition to blood, two samples were prepared. A control sample was incubated at ambient conditions without any treatment, and a test sample was exposed to EHF EMR (32.9-39.6 GHz, 100 W/m2 ). We used methods that allowed us to assess the functional status of neutrophils immediately after exposure: oxidant production levels were measured by luminol-dependent chemiluminescence, and morphofunctional changes to neutrophils were observed in blood smears. Results revealed that the response of neutrophils to both agonists was intensified if blood was exposed to MMW radiation for 15 min. Neutrophils were intact in both the control and irradiated samples if no agonist was added to blood before incubation. Similarly, exposing suspensions of isolated neutrophils in plasma to MMW radiation enhanced cell response to both zymosan and E. coli. Heating blood samples was shown to be the primary mechanism underlying enhanced EHF EMR-induced oxidant production by neutrophils in response to particulate agonists. Bioelectromagnetics. 39:144-155, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Irina I Vlasova
- Research and Clinical Center for Physico-Chemical Medicine, Moscow, Russia.,Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences (Fryasino branch), Fryasino, Russia
| | - Elena V Mikhalchik
- Research and Clinical Center for Physico-Chemical Medicine, Moscow, Russia
| | - Alexandr A Gusev
- Research and Clinical Center for Physico-Chemical Medicine, Moscow, Russia
| | | | - Sergey A Gusev
- Research and Clinical Center for Physico-Chemical Medicine, Moscow, Russia
| | - Konstantin D Kazarinov
- Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences (Fryasino branch), Fryasino, Russia
| |
Collapse
|