1
|
Zheng S, Wang Z, Cao X, Wang L, Gao X, Shen Y, Du J, Liu P, Zhuang Y, Guo X. Insights into the effects of chronic combined chromium-nickel exposure on colon damage in mice through transcriptomic analysis and in vitro gastrointestinal digestion assay. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116458. [PMID: 38759536 DOI: 10.1016/j.ecoenv.2024.116458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Heavy metals interact with each other in a coexisting manner to produce complex combined toxicity to organisms. At present, the toxic effects of chronic co-exposure to heavy metals hexavalent chromium [Cr(VI)] and divalent nickel [Ni(II)] on organisms are seldom studied and the related mechanisms are poorly understood. In this study, we explored the mechanism of the colon injury in mice caused by chronic exposure to Cr or/and Ni. The results showed that, compared with the control group, Cr or/and Ni chronic exposure affected the body weight of mice, and led to infiltration of inflammatory cells in the colon, decreased the number of goblet cells, fusion of intracellular mucus particles and damaged cell structure of intestinal epithelial. In the Cr or/and Ni exposure group, the activity of nitric oxide synthase (iNOS) increased, the expression levels of MUC2 were significantly down-regulated, and those of ZO-1 and Occludin were significantly up-regulated. Interestingly, factorial analysis revealed an interaction between Cr and Ni, which was manifested as antagonistic effects on iNOS activity, ZO-1 and MUC2 mRNA expression levels. Transcriptome sequencing further revealed that the expression of genes-related to inflammation, intestinal mucus and tight junctions changed obviously. Moreover, the relative contents of Cr(VI) and Ni(II) in the Cr, Ni and Cr+Ni groups all changed with in-vitro gastrointestinal (IVG)digestion, especially in the Cr+Ni group. Our results indicated that the chronic exposure to Cr or/and Ni can lead to damage to the mice colon, and the relative content changes of Cr(VI) and Ni(II) might be the main reason for the antagonistic effect of Cr+Ni exposure on the colon damage.
Collapse
Affiliation(s)
- Shuangyan Zheng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Zilong Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xianhong Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Luqi Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yufan Shen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jun Du
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
2
|
Jakubowski H, Sikora M, Bretes E, Perła-Kaján J, Utyro O, Wojtasz I, Kaźmierski R, Frankowski M, Zioła-Frankowska A. Association of Metallic and Nonmetallic Elements with Fibrin Clot Properties and Ischemic Stroke. Life (Basel) 2024; 14:634. [PMID: 38792655 PMCID: PMC11122299 DOI: 10.3390/life14050634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Objectives-Metallic elements and fibrin clot properties have been linked to stroke. We examined metallic and nonmetallic elements, fibrin clot lysis time (CLT), and maximum absorbance (Absmax) in relation to ischemic stroke. Design-A case-control study of ischemic stroke patients vs. healthy individuals. Subjects and Methods-Plasma and serum were collected from 260 ischemic stroke patients (45.0% women; age, 68 ± 12 years) and 291 healthy controls (59.7% women; age, 50 ± 17 years). Fibrin CLT and Absmax were measured using a validated turbidimetric assay. Serum elements were quantified by inductively coupled plasma mass spectrometry (ICP-MS) and optical emission spectrometry (ICP-OES). Data were analyzed by bivariate correlations and multiple or logistic regression. Results-In female stroke patients, copper, lithium, and aluminum were significantly lower compared with controls; in male stroke patients, potassium was lower, and beryllium was elevated. In female and male stroke patients, iron, zinc, nickel, calcium, magnesium, sodium, and silicon were significantly lower, while strontium was elevated. Positive correlations between fibrin clot properties and metals, observed in healthy controls, were lost in ischemic stroke patients. In multivariate regression analysis, fibrin CLT and/or Absmax was associated with zinc, calcium, potassium, beryllium, and silicon in stroke patients and with sodium, potassium, beryllium, and aluminum in controls. In logistic regression analysis, stroke was independently associated with lithium, nickel, beryllium, strontium, boron, and silicon and with sodium, potassium, calcium, and aluminum but not with fibrin CLT/Absmax. Conclusions-Various elements were associated with fibrin clot properties and the risk of ischemic stroke. Lithium, sodium, calcium, and aluminum abrogated the association of fibrin clot properties with ischemic stroke.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers-New Jersey Medical School, International Center for Public Health, 225 Warren Street, Newark, NJ 07103, USA
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland; (E.B.); (J.P.-K.); (O.U.)
| | - Marta Sikora
- European Center for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, 61-704 Poznań, Poland;
| | - Ewa Bretes
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland; (E.B.); (J.P.-K.); (O.U.)
| | - Joanna Perła-Kaján
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland; (E.B.); (J.P.-K.); (O.U.)
| | - Olga Utyro
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland; (E.B.); (J.P.-K.); (O.U.)
| | | | - Radosław Kaźmierski
- Department of Neurology, Collegium Medicum, University of Zielona Góra, 65-046 Zielona Góra, Poland;
- Department of Neurology, Poznań University of Medical Sciences, 61-701 Poznań, Poland
| | - Marcin Frankowski
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland; (M.F.); (A.Z.-F.)
| | | |
Collapse
|
3
|
Sur A, Iflazoglu Mutlu S, Tatli Seven P, Seven I, Aslan A, Kizil M, Kulaksiz R, Yaranoglu MH, Esen S. Effects of grape seed proanthocyanidin extract on side effects of high-dose methylprednisolone administration in male rats. Toxicol Res 2023; 39:749-759. [PMID: 37779581 PMCID: PMC10541365 DOI: 10.1007/s43188-023-00196-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 10/03/2023] Open
Abstract
In this study, we investigated the effects of grape seed proanthocyanidin extract (GSPE) against the side effects of high-dose administration of methylprednisolone (MP) in male rats. A total of 32 adult Wistar male albino rats were divided into four groups: (1) control (CON), received standard food only; (2) MP, received standard food + intraperitoneal injection of 60 mg/kg MP on day 7; (3) GSPE, received standard food + 200 mg/kg/day GSPE; and (4) MP + GSPE, received standard food + 200 mg/kg/day of GSPE + intraperitoneal injection of 60 mg/kg MP on day 7. All animals in the GSPE and GSPE + MP groups were treated once a day by oral gavage for 14 consecutive days. The feed intake of rats in the MP and MP + GSPE groups decreased significantly by 24.14% and 13.52%, respectively (p < 0.05). Administration of MP resulted in significant increases in serum concentrations of blood urea nitrogen (p < 0.001), glucose (p < 0.01), alkaline phosphatase, and adrenocorticotropic hormone (p < 0.05). High-dose MP administration significantly reduced catalase (p < 0.001) and glutathione peroxidase (p < 0.05) concentrations in the liver and kidney tissues of rats, while glutathione concentrations were only reduced in liver tissue (p < 0.05). The expression levels of Bcl-2 and TNF-α in liver, kidney, and testicular tissue were significantly increased, while the expression levels of caspase-3 were reduced (p < 0.001). Furthermore, sperm concentration was significantly affected by GSPE in rats induced by high-dose MP, and sperm loss was significantly reduced in MP + GSPE (p < 0.05). These findings suggest that GSPE could be useful as a supplement to alleviate MP-induced toxicity in rats.
Collapse
Affiliation(s)
- Aslihan Sur
- Department of Veterinary Medicine, Vocational School of Kepsut, Balikesir University, 10000 Balikesir, Turkey
| | - Seda Iflazoglu Mutlu
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Firat University, 23119 Elazig, Turkey
| | - Pinar Tatli Seven
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Firat University, 23119 Elazig, Turkey
| | - Ismail Seven
- Department of Plant and Animal Production, Vocational School of Sivrice, Firat University, 23119 Elazig, Turkey
| | - Abdullah Aslan
- Department of Biology, Faculty of Science, Firat University, 23119 Elazig, Turkey
| | - Meltem Kizil
- Department of Physiology, Faculty of Veterinary Medicine, Firat University, 23119 Elazig, Turkey
| | - Recai Kulaksiz
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Balikesir University, 10000 Balikesir, Turkey
| | | | - Selim Esen
- Balikesir Directorate of Provincial Agriculture and Forestry, Republic of Turkey Ministry of Agriculture and Forestry, 10470 Balikesir, Turkey
| |
Collapse
|
4
|
Qaed E, Almoiliqy M, Al-Hamyari B, Qaid A, Alademy H, Al-Maamari A, Alyafeai E, Geng Z, Tang Z, Ma X. Procyanidins: A promising anti-diabetic agent with potential benefits on glucose metabolism and diabetes complications. Wound Repair Regen 2023; 31:688-699. [PMID: 37553788 DOI: 10.1111/wrr.13115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/06/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023]
Abstract
Diabetes mellitus (DM) is a complex disease with alarming worldwide health implications and high mortality rates, largely due to its complications such as cardiovascular disease, nephropathy, neuropathy, and retinopathy. Recent research has shown that procyanidins (PC), a type of flavonoid, have strong antioxidant and free radical elimination effects, and may be useful in improving glucose metabolism, enhancing pancreatic islet cell activity, and decreasing the prevalence of DM complications. This review article presents a systematic search for peer-reviewed articles on the use of PC in the treatment of DM, without any language restrictions. The article also discusses the potential for PC to sensitise DM medications and improve their efficacy. Recent in vivo and in vitro studies have demonstrated promising results in improving the biological activity and bioavailability of PC for the treatment of DM. The article concludes by highlighting the potential for novel materials and targeted drug delivery methods to enhance the pharmacokinetics and bioactivity of PC, leading to the creation of safer and more effective anti-DM medications in the future.
Collapse
Affiliation(s)
- Eskandar Qaed
- Chemistry and Chemical Engineering Department, Lanzhou University, Gansu, China
| | - Marwan Almoiliqy
- Department of Pharmacy, Faculty of Medicine and Health Sciences, University of Science and Technology, Aden, Yemen
| | - Bandar Al-Hamyari
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, People's Republic of China
| | - Abdullah Qaid
- N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Haneen Alademy
- Taiz University Faculty of Medicine and Health Science, Taizz, Yemen
| | - Ahmed Al-Maamari
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Eman Alyafeai
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Zhaohong Geng
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zeyao Tang
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Xiaodong Ma
- Department of Pharmacology, Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Effect of Procyanidin on Canine Sperm Quality during Chilled Storage. Vet Sci 2022; 9:vetsci9110588. [PMID: 36356065 PMCID: PMC9697366 DOI: 10.3390/vetsci9110588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022] Open
Abstract
Procyanidin (PC) is a polyphenolic compound with antioxidant activity. The purpose of this study was to determine the influence of PC on canine sperm quality after 72 h of storage at 4 °C. The collected ejaculates were separated into four equal aliquots and treated with various concentrations of PC (0, 10, 30, and 50 μg/mL) in Tris-citric-fructose-egg yolk (TCFE) extender and stored at 4 °C for 72 h. The findings revealed that 30 μg/mL PC was the optimum concentration for significantly improving sperm motility (p < 0.05). Sperm samples treated with 30 μg/mL PC had substantially greater plasma membrane integrity, acrosome integrity, and mitochondrial membrane potential than the control group (p < 0.05). Furthermore, T-AOC and the expression levels of superoxide dismutase 1 (SOD1), catalase (CAT), and glutathione peroxidase 1 (GPx1) genes were significantly higher in sperm treated with 30 μg/mL PC than those in control (p < 0.05). In summary, this study discovered that adding PC to the TCFE extender enhanced sperm quality and that 30 μg/mL PC was the optimal concentration for canine sperm when stored at 4 °C.
Collapse
|
6
|
Adach A, Tyszka-Czochara M, Bukowska-Strakova K, Rejnhardt P, Daszkiewicz M. In situ synthesis, crystal structure, selective anticancer and proapoptotic activity of complexes isolated from the system containing zerovalent nickel and pyrazole derivatives. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Li W, He Y, Zhao H, Peng L, Li J, Rui R, Ju S. Grape Seed Proanthocyanidin Ameliorates FB 1-Induced Meiotic Defects in Porcine Oocytes. Toxins (Basel) 2021; 13:toxins13120841. [PMID: 34941679 PMCID: PMC8706835 DOI: 10.3390/toxins13120841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 01/17/2023] Open
Abstract
Fumonisin B1 (FB1), as the most prevalent and toxic fumonisin, poses a health threat to humans and animals. The cytotoxicity of FB1 is closely related to oxidative stress and apoptosis. The purpose of this study is to explore whether Grape seed proanthocyanidin (GSP), a natural antioxidant, could alleviate the meiotic maturation defects of oocytes caused by FB1 exposure. Porcine cumulus oocyte complexes (COCs) were treated with 30 μM FB1 alone or cotreated with 100, 200 and 300 μM GSP during in vitro maturation for 44 h. The results show that 200 μM GSP cotreatment observably ameliorated the toxic effects of FB1 exposure, showing to be promoting first polar body extrusion and improving the subsequent cleavage rate and blastocyst development rate. Moreover, 200 μM GSP cotreatment restored cell cycle progression, reduced the proportion of aberrant spindles, improved actin distribution and protected mitochondrial function in FB1-exposed oocytes. Furthermore, reactive oxygen species (ROS) generation was significantly decreased and the mRNA levels of CAT, SOD2 and GSH-PX were obviously increased in the 200 μM GSP cotreatment group. Notably, the incidence of early apoptosis and autophagy level were also significantly decreased after GSP cotreatment and the mRNA expression levels of BAX, CASPASE3, LC3 and ATG5 were markedly decreased, whereas BCL2 and mTOR were observably increased in the oocytes after GSP cotreatment. Together, these results indicate that GSP could exert significant preventive effects on FB1-induced oocyte defects by ameliorating oxidative stress through repairing mitochondrial dysfunction.
Collapse
|
8
|
Primožič J, Poljšak B, Jamnik P, Kovač V, Čanadi Jurešić G, Spalj S. Risk Assessment of Oxidative Stress Induced by Metal Ions Released from Fixed Orthodontic Appliances during Treatment and Indications for Supportive Antioxidant Therapy: A Narrative Review. Antioxidants (Basel) 2021; 10:1359. [PMID: 34572993 PMCID: PMC8471328 DOI: 10.3390/antiox10091359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
The treatment with fixed orthodontic appliances could have an important role in the induction of oxidative stress and associated negative consequences. Because of the simultaneous effects of corrosion, deformation, friction, and mechanical stress on fixed orthodontic appliances during treatment, degradation of orthodontic brackets and archwires occurs, causing higher concentrations of metal ions in the oral cavity. Corroded appliances cause the release of metal ions, which may lead to the increased values of reactive oxygen species (ROS) due to metal-catalyzed free radical reactions. Chromium, iron, nickel, cobalt, titanium, and molybdenum all belong to the group of transition metals that can be subjected to redox reactions to form ROS. The estimation of health risk due to the amount of heavy metals released and the level of selected parameters of oxidative stress generated for the time of treatment with fixed orthodontic appliances is presented. Approaches to avoid oxidative stress and recommendations for the preventive use of topical or systemic antioxidants during orthodontic treatment are discussed.
Collapse
Affiliation(s)
- Jasmina Primožič
- Department of Orthodontics and Jaw Orthopedics, Medical Faculty, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia;
| | - Borut Poljšak
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia;
| | - Polona Jamnik
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Vito Kovač
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia;
| | - Gordana Čanadi Jurešić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Stjepan Spalj
- Department of Orthodontics, Faculty of Dental Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| |
Collapse
|
9
|
Li W, Yao R, Xie L, Liu J, Weng X, Yue X, Li F. Dietary supplementation of grape seed tannin extract stimulated testis development, changed fatty acid profiles and increased testis antioxidant capacity in pre-puberty hu lambs. Theriogenology 2021; 172:160-168. [PMID: 34174754 DOI: 10.1016/j.theriogenology.2021.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/25/2021] [Accepted: 06/17/2021] [Indexed: 01/06/2023]
Abstract
Grape seed tannin extract (GPE) from wine grape pomace has many effective anti-oxidative effects and is used as a promising natural feed additive in the animal feed industry. This study investigated the effect of GPE as a source of tannin on the antioxidant capacity and testis development in Hu lambs. Twenty-seven 3-month-old ram lambs were randomly assigned to three groups. For each treatment group, nine lambs were allocated to nine pens (one lamb per pen). The lambs in the control group were fed a control diet without GPE for 61 days from D21 to D80. Group I (TAN1) was fed with 0.36% GPE diet, and Group II (TAN2) was fed with 0.72% GPE diet. After an 81-day feeding trial, all lambs except the heaviest and lightest in each group were humanely slaughtered and investigated. Results showed that feeding GPE did not affect the body weight, average daily gain, dry matter intake, scrotal circumference, and testis index. Meanwhile, feeding with 0.36% GPE diet increased testis weight, testis volume, and epididymis weight (P ≤ 0.05) compared with those of the control, but no difference was found between TAN1 and TAN2 groups. Copper-zinc superoxide dismutase (Cu-ZnSOD), steroid acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme (P450scc), follicle-stimulating hormone receptor (FSHR), elongation of very long chain fatty acid protein 2 (ELOVL2), fatty acid desaturase (FADS2), and proliferating cell nuclear antigen (PCNA) mRNA in TAN1 and TAN2 groups were significantly up-regulated (P < 0.05). GPE also markedly increased the antioxidant status of testis. Compared with the control group, the treatment groups showed significantly increased superoxide dismutase (SOD) activity (314.23 ± 18.64 U/mg prot in control, 505.22 ± 63.47 U/mg prot in TAN1 and 587.88 ± 55.94 U/mg prot in TAN2, P < 0.05) and total antioxidant capacity (T-AOC) (98.23 ± 18.99 U/g prot in control, 202.15 ± 34.19 U/g prot in TAN1 and 189.57 ± 18.95 U/g prot in TAN2, P < 0.05). Consuming 0.72% GPE also changed the fatty acid profiles in testis with increased C15:1, C22:6n3, and total n-3 fatty acids (P < 0.05) but decreased C22:5n3 (P < 0.05). Therefore, feeding lambs with GPE stimulated testis seminiferous tubule development and increased the number of Sertoli cells (10.56 ± 0.44 in control, 14.10 ± 0.57 in TAN1 and 13.60 ± 0.42, P < 0.05), and seminiferous tubule diameter (109.30 ± 4.56 μm in control, 164.49 ± 5.37 μm in TAN1 and 146.56 ± 4.53 μm in TAN2, P < 0.05). These results suggested that feeding GPE in the early reproductive development stage of lambs upregulated the expression of antioxidative, steroidogenesis, and polyunsaturated fatty acid metabolism-related genes, changed the fatty acid profiles, increased the antioxidant capacity in lamb's testis, and contributed to testis development and spermatogenesis.
Collapse
Affiliation(s)
- Wanhong Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| | - Rongyu Yao
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Lixia Xie
- Wuwei Occupational College, Wuwei, 733000, China
| | - Jiamei Liu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xiuxiu Weng
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xiangpeng Yue
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Fadi Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China; Gansu Runmu Biological Engineering Co., Ltd., Yongchang, 737200, China; Biotechnology Engineering Laboratory of Gansu Meat Sheep Breeding, Minqin, 733300, China.
| |
Collapse
|
10
|
Štefančík M, Válková L, Veverková J, Balvan J, Vičar T, Babula P, Mašek J, Kulich P, Pávková Goldbergová M. Ni and TiO 2 nanoparticles cause adhesion and cytoskeletal changes in human osteoblasts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6018-6029. [PMID: 32981019 DOI: 10.1007/s11356-020-10908-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Titanium-based alloys have established a crucial role in implantology. As material deteriorates overtime, nanoparticles of TiO2 and Ni are released. This study is focused on the impact of TiO2 and Ni nanoparticles with size of 100 nm on cytoskeletal and adhesive changes in human physiological and osteoarthritic osteoblasts. The impact of nanoparticles with concentration of 1.5 ng/mL on actin and tubulin expression and gene expression of FAK and ICAM-1 was studied. The cell size and actin expression of physiological osteoblasts decreased in presence of Ni nanoparticles, while TiO2 nanoparticles caused increase in cell size and actin expression. Both cell lines expressed more FAK as a response to TiO2 nanoparticles. ICAM-1 gene was overexpressed in both cell lines as a reaction to both types of nanoparticles. The presented study shows a crucial role of Ni and TiO2 nanoparticles in human osteoblast cytoskeletal and adhesive changes, especially connected with the osteoarthritic cells. Graphical abstract.
Collapse
Affiliation(s)
- Michal Štefančík
- Institute of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Lucie Válková
- Institute of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Jana Veverková
- Institute of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Jan Balvan
- Institute of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Tomáš Vičar
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Josef Mašek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Pavel Kulich
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Monika Pávková Goldbergová
- Institute of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| |
Collapse
|
11
|
Salimi A, Jamali Z, Atashbar S, Khezri S, Ghorbanpour AM, Etefaghi N. Pathogenic Mechanisms and Therapeutic Implication in Nickel-Induced Cell Damage. Endocr Metab Immune Disord Drug Targets 2020; 20:968-984. [DOI: 10.2174/1871530320666200214123118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/24/2019] [Accepted: 03/07/2019] [Indexed: 11/22/2022]
Abstract
Background:
Nickel (Ni) is mostly applied in a number of industrial areas such as printing
inks, welding, alloys, electronics and electrical professions. Occupational or environmental exposure to
nickel may lead to cancer, allergy reaction, nephrotoxicity, hepatotoxicity, neurotoxicity, as well as
cell damage, apoptosis and oxidative stress.
Methods:
In here, we focused on published studies about cell death, carcinogenicity, allergy reactions
and neurotoxicity, and promising agents for the prevention and treatment of the toxicity by Ni.
Results:
Our review showed that in the last few years, more researches have focused on reactive oxygen
species formation, oxidative stress, DNA damages, apoptosis, interaction with involving receptors
in allergy and mitochondrial damages in neuron induced by Ni.
Conclusion:
The collected data in this paper provide useful information about the main toxicities induced
by Ni, also, their fundamental mechanisms, and how to discover new ameliorative agents for
prevention and treatment by reviewing agents with protective and therapeutic consequences on Ni
induced toxicity.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zhaleh Jamali
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Saman Atashbar
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saleh Khezri
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amir M. Ghorbanpour
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nahid Etefaghi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
12
|
Liu Y, Chen H, Zhang L, Zhang T, Ren X. The Association Between Thyroid Injury and Apoptosis, and Alterations of Bax, Bcl-2, and Caspase-3 mRNA/Protein Expression Induced by Nickel Sulfate in Wistar Rats. Biol Trace Elem Res 2020; 195:159-168. [PMID: 31392545 DOI: 10.1007/s12011-019-01825-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/09/2019] [Indexed: 12/15/2022]
Abstract
To study the toxicity induced by Nickel sulfate (NiSO4) on thyroid tissue, and investigate the role of apoptosis as the possible mechanism, thirty-two male Wistar rats were randomly divided into control group (normal saline, ip), low dose group (2.5 mg/kg day NiSO4, ip), middle dose group (5 mg/kg day NiSO4, ip), high dose group (10 mg/kg day NiSO4, ip). After 40 consecutive days of treatment, there were obvious pathological changes in the thyroids of high dose group. Free T4 (FT4) and thyroid-stimulating hormone (TSH) were significantly lower in the NiSO4-treated groups than those in the control group (F = 4.992, p = 0.016; F = 4.524, p = 0.012). The mRNA expression of Caspase-3 was significantly higher (F = 10.259, p = 0.014) in all NiSO4-treated groups, and the mRNA expression of Bcl-2 was significantly lower (F = 9.225, p = 0.018) only in the high dose group. Both control group and the NiSO4-treated groups showed no changes in the mRNA expression of Bax gene. The ratio of Bcl-2/Bax decreased with the increase in exposure dose of NiSO4 (F = 13.382, p = 0.015). The mRNA expression of Fas went up in high dose group (F = 66.632, p < 0.001). The Caspase-3, Fas, and the Bax protein expressions measured by immunohistochemistry were consistent with the mRNA expression. The expression of Bcl-2 protein was significantly lower in the test groups than in the control group (F = 3.873, p = 0.025). NiSO4 as an Endocrine Disrupting Chemical may induce the thyroid injury through apoptosis and lead to hypothyroidism. Also, apoptosis in thyroid tissues was closely related to the alternations of Caspase-3, Bcl-2, and Fas mRNA and protein expression.
Collapse
Affiliation(s)
- Yahong Liu
- Department of Endocrine, The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, People's Republic of China
- Department of Pediatrics, The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, People's Republic of China
| | - Hui Chen
- Department of Endocrine, The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, People's Republic of China.
| | - Li Zhang
- Department of Endocrine, The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, People's Republic of China
| | - Tao Zhang
- Department of Endocrine, The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, People's Republic of China
| | - Xuan Ren
- Department of Endocrine, The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, People's Republic of China
| |
Collapse
|
13
|
Guvvala PR, Ravindra JP, Selvaraju S. Impact of environmental contaminants on reproductive health of male domestic ruminants: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3819-3836. [PMID: 31845245 DOI: 10.1007/s11356-019-06980-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Environmental contaminants are gaining more attention in the livestock sector lately due to their harmful effects on productivity and fertility of livestock. Recent research indicates that many domestic ruminants are becoming subfertile/infertile due to confounding reasons associated with management. Contaminants like metals, metalloids, herbicides, pesticides, insecticides, chemicals, or natural contaminants are present everywhere in day to day life and are becoming a threat to the livestock. Studies on a broad-spectrum of animals suggest that high doses of acute or low doses of chronic exposure to the contaminants lead to disruption of multi-organs/systems including reproductive function. The lowered reproductive efficiency in animals is attributed to the endocrine disruptor activities of the environmental contaminants on the gonads, affecting gametogenesis and steroidogenesis. In vitro studies on testicular cells and the semen suggest that spermatozoa are more susceptible to damage by environmental contaminants. The quality of the semen happens to be a critical factor in the livestock industry. Contaminants affecting gametogenesis and steroidogenesis may lead to devastating consequences to the livestock reproduction, and thus the production. However, there is a lack of collective data on the effect of such environmental contaminants on the fertility of male domestic ruminants. This review discusses the studies related to the impact of environmental contaminants on male fertility in large (bull and buffalo) and small (sheep and goat) ruminants by focusing on the underlying molecular interactions between the contaminants and gonads.
Collapse
Affiliation(s)
- Pushpa Rani Guvvala
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India.
| | - Janivara Parameswaraiah Ravindra
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| | - Sellappan Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
- ICAR-National Fellow, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| |
Collapse
|
14
|
Genchi G, Carocci A, Lauria G, Sinicropi MS, Catalano A. Nickel: Human Health and Environmental Toxicology. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E679. [PMID: 31973020 PMCID: PMC7037090 DOI: 10.3390/ijerph17030679] [Citation(s) in RCA: 481] [Impact Index Per Article: 120.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 12/20/2022]
Abstract
Nickel is a transition element extensively distributed in the environment, air, water, and soil. It may derive from natural sources and anthropogenic activity. Although nickel is ubiquitous in the environment, its functional role as a trace element for animals and human beings has not been yet recognized. Environmental pollution from nickel may be due to industry, the use of liquid and solid fuels, as well as municipal and industrial waste. Nickel contact can cause a variety of side effects on human health, such as allergy, cardiovascular and kidney diseases, lung fibrosis, lung and nasal cancer. Although the molecular mechanisms of nickel-induced toxicity are not yet clear, mitochondrial dysfunctions and oxidative stress are thought to have a primary and crucial role in the toxicity of this metal. Recently, researchers, trying to characterize the capability of nickel to induce cancer, have found out that epigenetic alterations induced by nickel exposure can perturb the genome. The purpose of this review is to describe the chemical features of nickel in human beings and the mechanisms of its toxicity. Furthermore, the attention is focused on strategies to remove nickel from the environment, such as phytoremediation and phytomining.
Collapse
Affiliation(s)
- Giuseppe Genchi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, 87036 Arcavacata di Rende (Cosenza), Italy; (G.G.); (G.L.)
| | - Alessia Carocci
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “A. Moro”, 70125 Bari, Italy;
| | - Graziantonio Lauria
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, 87036 Arcavacata di Rende (Cosenza), Italy; (G.G.); (G.L.)
| | - Maria Stefania Sinicropi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, 87036 Arcavacata di Rende (Cosenza), Italy; (G.G.); (G.L.)
| | - Alessia Catalano
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “A. Moro”, 70125 Bari, Italy;
| |
Collapse
|
15
|
Grape Seed Procyanidin Extract (GSPE) Improves Goat Sperm Quality When Preserved at 4 °C. Animals (Basel) 2019; 9:ani9100810. [PMID: 31618989 PMCID: PMC6827076 DOI: 10.3390/ani9100810] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Artificial insemination (AI) is widely used in goats, stimulating the development of semen preservation techniques. Oxidative stress is considered to be the main cause of sperm quality decline over time. In this study, we explored the effect of grape seed procyanidin extract (GSPE) during the liquid preservation of goat semen. The results showed that adding GSPE into the basic diluent enhanced sperm quality by eliminating oxidative stress. The most suitable concentration for the preservation of goat semen at 4 °C was 30 mg/L. This work suggests that promotes the viability of goat semen stored at low temperatures and provides a theoretical foundation for the development of more efficient diluents. Abstract Grape seed procyanidin extract (GSPE) has been shown to possess antioxidative effects. This experiment was designed to study the effect of GSPE during the liquid storage of goat semen. Semen samples were collected from six sexually mature goats. The samples were treated with different concentrations of GSPE (10, 30, 50, and 70 mg/L) in basic diluent and stored at 4 °C for 120 h; samples without GSPE were used as the control group. The results showed that sperm motility, acrosome membrane integrity, mitochondrial activity, plasma membrane integrity, total antioxidative capacity (T-AOC), catalase (CAT) activity, and superoxide dismutase (SOD) activity in the treatment groups were significantly higher than in the control group, whereas malondialdehyde (MDA) content was lower than in the control group (p < 0.05). In the treatment group, sperm quality in the 30 mg/L GSPE group was significantly higher than the other groups (p < 0.05). Furthermore, artificial insemination (AI) results showed that litter sizes were higher in the 30 mg/L GSPE group than in the control group (p < 0.05). In summary, this experiment showed that adding GSPE to the basic diluent improved sperm quality and that 30 mg/L of GSPE was the most suitable concentration for the liquid preservation of goat semen at 4 °C.
Collapse
|
16
|
Gan X, Zhang X, E Q, Zhang Q, Ye Y, Cai Y, Han A, Tian M, Wang C, Su Z, Su L, Liang C. Nano-selenium attenuates nickel-induced testosterone synthesis disturbance through inhibition of MAPK pathways in Sprague-Dawley rats. ENVIRONMENTAL TOXICOLOGY 2019; 34:968-978. [PMID: 31077554 DOI: 10.1002/tox.22768] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to investigate the protective effects of Nano-Se against Ni-induced testosterone synthesis disorder in rats and determine the underlying protective mechanism. Sprague-Dawley rats were co-treated with Ni (5.0 mg/kg, i.p.) and Nano-Se (0.5, 1.0, and 2.0 mg/kg, oral gavage) for 14 days after which various endpoints were evaluated. The Ni-induced abnormal pathological changes and elevated 8-OHdG levels in the testes were attenuated by Nano-Se administration. Importantly, decreased serum testosterone levels in the Ni-treated rats were significantly restored by Nano-Se treatment, particularly at 1.0 and 2.0 mg/kg. Furthermore, the mRNA and protein levels of testosterone synthetase were increased by Nano-Se compared to the Ni group, whereas phosphorylated protein expression levels of mitogen-activated protein kinase (MAPK) pathways were suppressed by Nano-Se administration in the Ni-treated rats. Overall, the results suggest that Nano-Se may ameliorate the Ni-induced testosterone synthesis disturbance via the inhibition of ERK1/2, p38, and JNK MAPK pathways.
Collapse
Affiliation(s)
- Xiaoqin Gan
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaotian Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Qiannan E
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Qiong Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yixing Ye
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Yunyu Cai
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Aijie Han
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Minmin Tian
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Caixia Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Zheng Su
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Li Su
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Changhao Liang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
17
|
Zhang X, Gan X, E Q, Zhang Q, Ye Y, Cai Y, Han A, Tian M, Wang Y, Wang C, Su L, Liang C. Ameliorative effects of nano-selenium against NiSO 4-induced apoptosis in rat testes. Toxicol Mech Methods 2019; 29:467-477. [PMID: 31050317 DOI: 10.1080/15376516.2019.1611979] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nickel (Ni) is a common environmental pollutant, which has toxic effects on reproductive system. Nowadays, nano-selenium (Nano-Se) has aroused great attention due to its unique antioxidant effect, excellent biological activities and low toxicity. The aim of this study was to explore the protective effects of Nano-Se on NiSO4-induced testicular injury and apoptosis in rat testes. Nickel sulfate (NiSO4) (5 mg/kg b.w.) was administered intraperitoneally and Nano-Se (0.5, 1, and 2 mg Se/kg b.w., respectively) was given by oral gavage in male Sprague-Dawley rats. Histological changes in the testes were determined by H&E staining. The terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and immunohistochemistry were performed to evaluate the apoptosis in testes. Expression levels of mitochondrial apoptosis-related genes and proteins were analyzed by RT-qPCR and Western blot. The results showed that Nano-Se improved lesions of testicular tissue induced by NiSO4. Nano-Se significantly alleviated NiSO4-induced apoptosis in rat testes, as well as significantly downregulated the Bak, cytochrome c, caspase-9 and caspase-3 and upregulated Bcl-2 expression levels, all of which were involved in mitochondria-mediated apoptosis. Altogether, we concluded that Nano-Se may potentially exert protective effects on NiSO4-induced testicular injury and attenuate apoptosis, at least partly, via regulating mitochondrial apoptosis pathways in rat testes.
Collapse
Affiliation(s)
- Xiaotian Zhang
- a Department of Toxicology, School of Public Health , Lanzhou University , Lanzhou , China
| | - Xiaoqin Gan
- a Department of Toxicology, School of Public Health , Lanzhou University , Lanzhou , China
| | - Qiannan E
- a Department of Toxicology, School of Public Health , Lanzhou University , Lanzhou , China
| | - Qiong Zhang
- a Department of Toxicology, School of Public Health , Lanzhou University , Lanzhou , China
| | - Yixing Ye
- b Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , China
| | - Yunyu Cai
- b Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , China
| | - Aijie Han
- a Department of Toxicology, School of Public Health , Lanzhou University , Lanzhou , China
| | - Minmin Tian
- a Department of Toxicology, School of Public Health , Lanzhou University , Lanzhou , China
| | - Yixuan Wang
- a Department of Toxicology, School of Public Health , Lanzhou University , Lanzhou , China
| | - Caixia Wang
- a Department of Toxicology, School of Public Health , Lanzhou University , Lanzhou , China
| | - Li Su
- a Department of Toxicology, School of Public Health , Lanzhou University , Lanzhou , China
| | - Changhao Liang
- b Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , China
| |
Collapse
|
18
|
Wang EH, Yu ZL, Bu YJ, Xu PW, Xi JY, Liang HY. Grape seed proanthocyanidin extract alleviates high-fat diet induced testicular toxicity in rats. RSC Adv 2019; 9:11842-11850. [PMID: 35517006 PMCID: PMC9063472 DOI: 10.1039/c9ra01017c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/09/2019] [Indexed: 11/25/2022] Open
Abstract
The present study aimed to investigate the protective effects of grape seed proanthocyanidin extract (GSPE) on high-fat diet (HFD) induced testicular damage, oxidative stress, and apoptotic germ cell death. Male rats (n = 40) were randomly divided into four groups: the control group (treated with physiological saline), HFD group, HFD + GSPE (100 mg kg−1) group and HFD + GSPE (300 mg kg−1) group. Compared with the HFD group the rats of the GSPE-treated group showed improved serum testosterone levels, sperm quality and histological appearance of the testis tissue. Significant elevation of antioxidant enzyme (SOD, GSH, and GSH-Px) activities and remarkable reduction in MDA were also observed by GSPE administration, indicating that GSPE can decrease testicular oxidative stress. Finally, a significant reduction in spermatogenic cell apoptosis was detected by TUNEL assay. In summary, these results indicated that GSPE can suppress testicular dysfunction and this effect may be attributed to its antioxidant and anti-apoptotic properties. The current study indicates that GSPE can be considered a promising candidate for use as a drug or a food supplement to alleviate HFD-induced testicular dysfunction. GSPE alleviates high-fat diet induced testicular toxicity in rats by promoting anti-apoptotic activity.![]()
Collapse
Affiliation(s)
- Er Hui Wang
- Department of Nutrition and Food Hygiene
- College of Public Health
- Xinxiang Medical University
- Xinxiang 453003
- China
| | - Zeng Li Yu
- Department of Nutrition and Food Hygiene
- College of Public Health
- Xinxiang Medical University
- Xinxiang 453003
- China
| | - Yong Jun Bu
- Department of Nutrition and Food Hygiene
- College of Public Health
- Xinxiang Medical University
- Xinxiang 453003
- China
| | - Peng Wei Xu
- Department of Nutrition and Food Hygiene
- College of Public Health
- Xinxiang Medical University
- Xinxiang 453003
- China
| | - Jin Yan Xi
- Department of Nutrition and Food Hygiene
- College of Public Health
- Xinxiang Medical University
- Xinxiang 453003
- China
| | - Hai Yan Liang
- Department of Nutrition and Food Hygiene
- College of Public Health
- Xinxiang Medical University
- Xinxiang 453003
- China
| |
Collapse
|
19
|
Wang J, Dai H, Nie Y, Wang M, Yang Z, Cheng L, Liu Y, Chen S, Zhao G, Wu L, Guang S, Xu A. TiO 2 nanoparticles enhance bioaccumulation and toxicity of heavy metals in Caenorhabditis elegans via modification of local concentrations during the sedimentation process. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:160-169. [PMID: 29990727 DOI: 10.1016/j.ecoenv.2018.06.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
Unintentionally released titanium dioxide nanoparticles (TiO2 NPs) may co-occur with pre-existing heavy metal pollutants in aquatic environments. However, the interactions between NPs and heavy metals (HMs) and their co-effects in living organisms are largely unknown. The aim of this investigation was to illustrate the influence of TiO2 NPs (5 and 15 nm) on the bioaccumulation and toxicity of cadmium (Cd), arsenate (As(III)), and nickel (Ni) in Caenorhabditis elegans (C. elegans) during the process of sedimentation in aquatic environment. Our data showed that HMs accelerated the aggregation of TiO2 NPs. The rapid aggregation and sedimentation of TiO2 NPs changed the vertical distribution of HMs through adsorption and induced increased and prolonged exposure of benthic species. Aggregate particle size along with ionic strength were the major factors affecting the rate of sedimentation. TiO2 NPs at non-toxic concentrations efficiently enhanced the bioaccumulation and reproductive toxicity of HMs to C. elegans in a dose- and size-dependent manner; however, the effect of TiO2 NPs on As(III) was obviously lower than that on two valence metals. These data provided clear evidence that TiO2 NPs could serve as environmental regulators to significantly facilitate the toxicity and the accumulation of HMs in C. elegans, indicating that the interaction and fate of TiO2 NPs and HMs on their co-toxic responses during the sedimentation should be considered as a necessary and integral part of risk assessment in the ecological system.
Collapse
Affiliation(s)
- Jingjing Wang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Hui Dai
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Yaguang Nie
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Mudi Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Zhen Yang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Lei Cheng
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Yun Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Shaopeng Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Guoping Zhao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Lijun Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
| | - Shouhong Guang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - An Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China.
| |
Collapse
|
20
|
Tabeshpour J, Mehri S, Shaebani Behbahani F, Hosseinzadeh H. Protective effects of Vitis vinifera
(grapes) and one of its biologically active constituents, resveratrol, against natural and chemical toxicities: A comprehensive review. Phytother Res 2018; 32:2164-2190. [DOI: 10.1002/ptr.6168] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/12/2018] [Accepted: 07/03/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Jamshid Tabeshpour
- Department of Pharmacodynamics and Toxicology, School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
- Student Research Committee; Mashhad University of Medical Sciences; Mashhad Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute; Mashhad University of Medical Sciences; Mashhad Iran
- Neurocognitive Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| | - Fatemeh Shaebani Behbahani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
21
|
Makary S, Abdo M, Fekry E. Oxidative stress burden inhibits spermatogenesis in adult male rats: testosterone protective effect. Can J Physiol Pharmacol 2018; 96:372-381. [DOI: 10.1139/cjpp-2017-0459] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this study, we aimed to investigate the protective effects of androgens, using letrozole (LET; an aromatase inhibitor), grape seed extract (GSE; a naturally occurring aromatase inhibitor and antioxidant), and testosterone propionate (Tp), against methotrexate (MTX)-induced testicular toxicity in adult male rats. MTX has been shown to induce oxidative stress and exhibit antiproliferative effects in the testes. Adult male rats received oral saline gavage (control group with no treatment), the potential protective agents (LET, GSE, or Tp) alone, MTX alone, or a combination of one of the potential protective agents and MTX. The testicular levels of oxidative stress markers and cytokines (tumor necrosis factor-α and interleukin-1β) were measured. Spermatogenesis and sperm viability were microscopically evaluated. Administration of LET and GSE 7 days before MTX improved spermatogenesis and sperm viability, as well as reduced the levels of oxidative stress markers and cellular cytokines. Exogenous testosterone exhibited anti-inflammatory and antioxidant activities, similar to GSE and LET. We also showed that enhancing the endogenous androgenic activity by LET and GSE protected spermatogenesis against MTX-induced testicular toxicity via reduction of inflammation and oxidative stress in the testes. Our data suggest that testosterone protected spermatogenesis owing to its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Samy Makary
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed Abdo
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ereny Fekry
- Department of Histology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
22
|
Han A, Zou L, Gan X, Li Y, Liu F, Chang X, Zhang X, Tian M, Li S, Su L, Sun Y. ROS generation and MAPKs activation contribute to the Ni-induced testosterone synthesis disturbance in rat Leydig cells. Toxicol Lett 2018; 290:36-45. [PMID: 29567110 DOI: 10.1016/j.toxlet.2018.03.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 01/23/2023]
Abstract
Nickel (Ni) can disorder testosterone synthesis in rat Leydig cells, whereas the mechanisms remain unclear. The aim of this study was to investigate the role of reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPKs) in Ni-induced disturbance of testosterone synthesis in rat Leydig cells. The testosterone production and ROS levels were detected in Leydig cells. The mRNA and protein levels of testosterone synthetase, including StAR, CYP11A1, 3β-HSD, CYP17A1 and 17β-HSD, were determined. Effects of Ni on the ERK1/2, p38 and JNK MAPKs were also investigated. The results showed that Ni triggered ROS generation, consequently resulted in the decrease of testosterone synthetase expression and testosterone production in Leydig cells, which were then attenuated by ROS scavengers of N-acetylcysteine (NAC) and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), indicating that ROS are involved in the Ni-induced testosterone biosynthesis disturbance. Meanwhile Ni activated the ERK1/2, p38 and JNK MAPKs. Furthermore, Ni-inhibited testosterone synthetase expression levels and testosterone secretion were all alleviated by co-treatment with MAPK specific inhibitors (U0126 and SB203580, respectively), implying that Ni inhibited testosterone synthesis through activating ERK1/2 and p38 MAPK signal pathways in Leydig cells. In conclusion, these findings suggest that Ni causes testosterone synthesis disorder, partly, via ROS and MAPK signal pathways.
Collapse
Affiliation(s)
- Aijie Han
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Lingyue Zou
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaoqin Gan
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Yu Li
- Department of Infectious Diseases, Shaanxi Provincial People's hospital, Xi'an 710068, China
| | - Fangfang Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaotian Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Minmin Tian
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Sheng Li
- Lanzhou Municipal Center for Disease Control, Lanzhou, China
| | - Li Su
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
23
|
Nickel chloride-induced apoptosis via mitochondria- and Fas-mediated caspase-dependent pathways in broiler chickens. Oncotarget 2018; 7:79747-79760. [PMID: 27806327 PMCID: PMC5346748 DOI: 10.18632/oncotarget.12946] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 10/13/2016] [Indexed: 11/28/2022] Open
Abstract
Ni, a metal with industrial and commercial uses, poses a serious hazard to human and animal health. In the present study, we used flow cytometry, immunohistochemistry and qRT-PCR to investigate the mechanisms of NiCl2-induced apoptosis in kidney cells. After treating 280 broiler chickens with 0, 300, 600 or 900 mg/kg NiCl2 for 42 days, we found that two caspase-dependent pathways were involved in the induced renal tubular cell apoptosis. In the mitochondria-mediated caspase-dependent apoptotic pathway, cyt-c, HtrA2/Omi, Smac/Diablo, apaf-1, PARP, and caspase-9, 3, 6 and 7 were all increased, while. XIAP transcription was decreased. Concurrently, in the Fas-mediated caspase-dependent apoptotic pathway, Fas, FasL, caspase-8, caspase-10 and Bid levels were all increased. These results indicate that dietary NiCl2 at 300+ mg/kg induces renal tubular cell apoptosis in broiler chickens, involving both mitochondrial and Fas-mediated caspase-dependent apoptotic pathways. Our results provide novel insight into Ni and Ni-compound toxicology evaluated in vitro and in vivo.
Collapse
|
24
|
Guo H, Cui H, Fang J, Zuo Z, Deng J, Wang X, Zhao L, Chen K, Deng J. Nickel chloride (NiCl2) in hepatic toxicity: apoptosis, G2/M cell cycle arrest and inflammatory response. Aging (Albany NY) 2017; 8:3009-3027. [PMID: 27824316 PMCID: PMC5191883 DOI: 10.18632/aging.101108] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/18/2016] [Indexed: 01/05/2023]
Abstract
Up to now, the precise mechanism of Ni toxicology is still indistinct. Our aim was to test the apoptosis, cell cycle arrest and inflammatory response mechanism induced by NiCl2 in the liver of broiler chickens. NiCl2 significantly increased hepatic apoptosis. NiCl2 activated mitochondria-mediated apoptotic pathway by decreasing Bcl-2, Bcl-xL, Mcl-1, and increasing Bax, Bak, caspase-3, caspase-9 and PARP mRNA expression. In the Fas-mediated apoptotic pathway, mRNA expression levels of Fas, FasL, caspase-8 were increased. Also, NiCl2 induced ER stress apoptotic pathway by increasing GRP78 and GRP94 mRNA expressions. The ER stress was activated through PERK, IRE1 and ATF6 pathways, which were characterized by increasing eIF2α, ATF4, IRE1, XBP1 and ATF6 mRNA expressions. And, NiCl2 arrested G2/M phase cell cycle by increasing p53, p21 and decreasing cdc2, cyclin B mRNA expressions. Simultaneously, NiCl2 increased TNF-α, IL-1β, IL-6, IL-8 mRNA expressions through NF-κB activation. In conclusion, NiCl2 induces apoptosis through mitochondria, Fas and ER stress-mediated apoptotic pathways and causes cell cycle G2/M phase arrest via p53-dependent pathway and generates inflammatory response by activating NF-κB pathway.
Collapse
Affiliation(s)
- Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an 625014, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an 625014, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University Ya'an 625014, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an 625014, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University Ya'an 625014, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an 625014, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University Ya'an 625014, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an 625014, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University Ya'an 625014, China
| | - Xun Wang
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an 625014, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University Ya'an 625014, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an 625014, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University Ya'an 625014, China
| | - Kejie Chen
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an 625014, China
| | - Jie Deng
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an 625014, China
| |
Collapse
|
25
|
Wang Y, Chen F, Liang M, Chen S, Zhu Y, Zou Z, Shi B. Grape seed proanthocyanidin extract attenuates varicocele‑induced testicular oxidative injury in rats by activating the Nrf2‑antioxidant system. Mol Med Rep 2017; 17:1799-1806. [PMID: 29138814 DOI: 10.3892/mmr.2017.8020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 02/01/2017] [Indexed: 11/06/2022] Open
Abstract
The present study investigated whether grape seed proanthocyanidin extract (GSPE) can attenuate varicocele‑induced testicular oxidative injury through the nuclear factor (erythroid‑derived 2)‑like 2 (Nrf2) antioxidant pathway. A varicocele model in rats was established by partial ligation of the left renal vein. Following 4 weeks of GSPE administration, the decreased sperm count and motility and other pathological changes caused by varicocele were significantly alleviated, as indicated by the results of computer‑assisted sperm analysis and hematoxylin and eosin staining. In addition, the decreased antioxidant enzyme (superoxide dismutase and glutathione peroxidase) activity and elevated oxidative stress level were partially reversed by administration of GSPE. Furthermore, the apoptotic level of the testis induced by varicocele was decreased by the GSPE treatment, according to terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Additionally, the expression of apoptosis‑related proteins, including B‑cell lymphoma 2 (Bcl‑2), Bcl‑2‑like protein 4 and cleaved caspase‑3, were also affected by GSPE. GSPE activated Nrf2, which is a key antioxidative transcription factor, with elevation of the downstream factor hemeoxygenase‑1. These findings suggest that GSPE can ameliorate abnormal spermatogenesis and testicular injury in varicocele rats, potentially due to its antioxidative activity and ability to activate the Nrf2 pathway.
Collapse
Affiliation(s)
- Yong Wang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong 250000, P.R. China
| | - Fan Chen
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong 250000, P.R. China
| | - Ming Liang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong 250000, P.R. China
| | - Shouzhen Chen
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong 250000, P.R. China
| | - Yaofeng Zhu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong 250000, P.R. China
| | - Zhichuan Zou
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong 250000, P.R. China
| | - Benkang Shi
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
26
|
Mohammadi S, Gholamin M, Mansouri A, Mahmoodian RS, Babazadeh B, Kebriaei SM, Zibaei B, Roshanaei M, Daneshvar F, Khandehro M, Khodadadegan MA, Delshad A, Mohammadzadeh F, Mohammadi M, Sadeghi S, Shoeibi S, Boroumand-Noughabi S, Ghayour-Mobarhan M, Tavallaie S, Vafaei A, Ferns GAA. Effect of cadmium and nickel on expression of CatSper 1 and 2 genes in mice. TOXIN REV 2017. [DOI: 10.1080/15569543.2017.1350192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Shabnam Mohammadi
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Gholamin
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atena Mansouri
- Student Research Commiitte, Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Sadat Mahmoodian
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Beheshte Babazadeh
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mehdi Kebriaei
- Student Research Committee, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Behdad Zibaei
- Student Research Committee, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mohammad Roshanaei
- Student Research Committee, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Farzaneh Daneshvar
- Student Research Committee, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mozhgan Khandehro
- Student Research Committee, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | | | - Ali Delshad
- Student Research Committee, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Fatemeh Mohammadzadeh
- Student Research Committee, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Maryam Mohammadi
- Department of Public Health, School of Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Sadeghi
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Shoeibi
- Department of Medical Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Majid Ghayour-Mobarhan
- Biochemistry of Nutritional Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Tavallaie
- Biochemistry of Nutritional Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azadeh Vafaei
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
27
|
Zhao J, Jin Y, Du M, Liu W, Ren Y, Zhang C, Zhang J. The effect of dietary grape pomace supplementation on epididymal sperm quality and testicular antioxidant ability in ram lambs. Theriogenology 2017; 97:50-56. [DOI: 10.1016/j.theriogenology.2017.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 03/20/2017] [Accepted: 04/04/2017] [Indexed: 12/19/2022]
|
28
|
Zou L, Su L, Sun Y, Han A, Chang X, Zhu A, Liu F, Li J, Sun Y. Nickel sulfate induced apoptosis via activating ROS-dependent mitochondria and endoplasmic reticulum stress pathways in rat Leydig cells. ENVIRONMENTAL TOXICOLOGY 2017; 32:1918-1926. [PMID: 28296042 DOI: 10.1002/tox.22414] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
Nickel can induce apoptosis of testicular Leydig cells in mice, whereas the mechanisms remain unclear. In this study, we investigated the role of nickel-induced reactive oxygen species (ROS) generation in mitochondria and endoplasmic reticulum stress (ERS) mediated apoptosis pathways in rat Leydig cells. Fluorescent DCF and Annexin-V FITC/PI staining were performed to measure the production of ROS and apoptosis in Leydig cells. RT-qPCR and Western blot were conducted to analyze the key genes and proteins involved in mitochondria and ERS apoptotic pathways. The results showed that nickel sulfate induced ROS generation, consequently resulted in nucleolus deformation and apoptosis in testicular Leydig cells, which were then attenuated by ROS inhibitors of N-acetylcysteine (NAC) and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO). Nickel sulfate-triggered Leydig cells apoptosis via mitochondria and ERS pathways was characterized by the upregulated mRNA and proteins expression of Bak, cytochrome c, caspase 9, caspase 3, GRP78, GADD153, and caspase 12, which were inhibited by NAC and TEMPO respectively. The findings indicated that nickel-induced ROS generation was involved in apoptosis via mitochondria and ERS pathways in rat Leydig cells.
Collapse
Affiliation(s)
- Lingyue Zou
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Li Su
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Yifan Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Aijie Han
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - An Zhu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Fangfang Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jin Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
29
|
Jiao J, Wei Y, Chen J, Chen X, Zhang Y. Anti-aging and redox state regulation effects of A-type proanthocyanidins-rich cranberry concentrate and its comparison with grape seed extract in mice. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.12.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
30
|
Long M, Yang S, Zhang Y, Li P, Han J, Dong S, Chen X, He J. Proanthocyanidin protects against acute zearalenone-induced testicular oxidative damage in male mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:938-946. [PMID: 27761864 DOI: 10.1007/s11356-016-7886-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
Zearalenone (ZEN) exerts a major effect on human and animal health and has led to serious worldwide economic problems. In this study, we investigated whether proanthocyanidin (PC) can prevent ZEN-induced testicular oxidative damage in male mice and explored the underlying mechanism. Kunming mice were injected with ZEN (40 mg kg-1) on the 11th day after intragastric administration of PC (75 or 150 mg/kg) for 10 days; the sperm quality of mice was then analysed statistically. Additionally, testicular morphology parameters related to oxidative damage, apoptosis and the expression of endoplasmic reticulum (ER) stress-related genes (GRP78, CHOP and XBP-1) were all measured. Results showed that ZEN exposure significantly reduced the sperm density, improved the sperm aberration rate, increased the MDA level and reduced SOD and GSH-Px activities. Meanwhile, ZEN was attributed to the downregulation of the expressions of the gene and protein of Bcl-2 and upregulation of the expressions of the gene and protein of Bax and caspase-3. ZEN exposure also upregulated the mRNA expression of GRP78, CHOP and XBP-1; however, PC pre-treatment reduced ZEN-induced oxidative damage and tended to maintain normal testicular morphology. Furthermore, PC pre-treatment substantially downregulated the expressions of the GRP78, CHOP and XBP-1 and upregulated the expression of the Bcl-2 gene. In conclusion, PC, due to its anti-oxidative ability, could ameliorate ZEN-induced testicular reproductive toxicity in male mice by decreasing ER stress and testicular cell apoptosis.
Collapse
Affiliation(s)
- Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Shuhua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Yi Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Jianxin Han
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Shuang Dong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Xinliang Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Jianbin He
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China.
| |
Collapse
|
31
|
Sun H, Wu W, Guo J, Xiao R, Jiang F, Zheng L, Zhang G. Effects of nickel exposure on testicular function, oxidative stress, and male reproductive dysfunction in Spodoptera litura Fabricius. CHEMOSPHERE 2016; 148:178-187. [PMID: 26807937 DOI: 10.1016/j.chemosphere.2015.10.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/15/2015] [Accepted: 10/15/2015] [Indexed: 06/05/2023]
Abstract
Nickel is an environmental pollutant that adversely affects the male reproductive system. In the present study, the effects of nickel exposure on Spodoptera litura Fabricius were investigated by feeding larvae artificial diets containing different doses of nickel for three generations. Damage to testes and effects on male reproduction were examined. The amount of nickel that accumulated in the testes of newly emerged males increased as the nickel dose in the diet increased during a single generation. Nickel exposure increased the amount of thiobarbituric acid reactive substances and decreased the amount of glutathione in treatment groups compared with the control. The activity levels of the antioxidant response indices superoxide dismutases, catalase, and glutathione peroxidase in the testes showed variable dose-dependent relationships with nickel doses and duration of exposure. Nickel doses also disrupted the development of the testes by decreasing the weight and volume of testes and the number of eupyrene and apyrene sperm bundles in treatment groups compared with the control. When the nickel-treated males mated with normal females, fecundity was inhibited by the higher nickel doses in all three generations, but fecundity significantly increased during the second generation, which received 5 mg kg(-1) nickel. Hatching rates in all treatments significantly decreased in a dose-dependent manner in the three successive generations. The effects of nickel on these parameters correlated with the duration of nickel exposure. Results indicate assays of testes may be a novel and efficient means of evaluating the effects of heavy metals on phytophagous insects in an agricultural environment.
Collapse
Affiliation(s)
- Hongxia Sun
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, China; Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40504, USA
| | - Wenjing Wu
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Entomological Institute, Guangzhou 510260, China
| | - Jixing Guo
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, China
| | - Rong Xiao
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, China
| | - Fengze Jiang
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, China
| | - Lingyan Zheng
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, China
| | - Guren Zhang
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
32
|
Guo H, Chen L, Cui H, Peng X, Fang J, Zuo Z, Deng J, Wang X, Wu B. Research Advances on Pathways of Nickel-Induced Apoptosis. Int J Mol Sci 2015; 17:E10. [PMID: 26703593 PMCID: PMC4730257 DOI: 10.3390/ijms17010010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/12/2022] Open
Abstract
High concentrations of nickel (Ni) are harmful to humans and animals. Ni targets a number of organs and produces multiple toxic effects. Apoptosis is important in Ni-induced toxicity of the kidneys, liver, nerves, and immune system. Apoptotic pathways mediated by reactive oxygen species (ROS), mitochondria, endoplasmic reticulum (ER), Fas, and c-Myc participate in Ni-induced cell apoptosis. However, the exact mechanism of apoptosis caused by Ni is still unclear. Understanding the mechanism of Ni-induced apoptosis may help in designing measures to prevent Ni toxicity.
Collapse
Affiliation(s)
- Hongrui Guo
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
| | - Lian Chen
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
| | - Hengmin Cui
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Xi Peng
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Jing Fang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Zhicai Zuo
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Junliang Deng
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Xun Wang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Bangyuan Wu
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
33
|
Chen S, Zhu Y, Liu Z, Gao Z, Li B, Zhang D, Zhang Z, Jiang X, Liu Z, Meng L, Yang Y, Shi B. Grape Seed Proanthocyanidin Extract Ameliorates Diabetic Bladder Dysfunction via the Activation of the Nrf2 Pathway. PLoS One 2015; 10:e0126457. [PMID: 25974036 PMCID: PMC4431834 DOI: 10.1371/journal.pone.0126457] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/03/2015] [Indexed: 01/11/2023] Open
Abstract
Diabetes Mellitus (DM)-induced bladder dysfunction is predominantly due to the long-term oxidative stress caused by hyperglycemia. Grape seed proanthocyanidin extract (GSPE) has been reported to possess a broad spectrum of pharmacological and therapeutic properties against oxidative stress. However, its protective effects against diabetic bladder dysfunction have not been clarified. This study focuses on the effects of GSPE on bladder dysfunction in diabetic rats induced by streptozotocin. After 8 weeks of GSPE administration, the bladder function of the diabetic rats was improved significantly, as indicated by both urodynamics analysis and histopathological manifestation. Moreover, the disordered activities of antioxidant enzymes (SOD and GSH-Px) and abnormal oxidative stress levels were partly reversed by treatment with GSPE. Furthermore, the level of apoptosis in the bladder caused by DM was decreased following the administration of GSPE according to the Terminal Deoxynucleotidyl Transferase (TdT)-mediated dUTP Nick-End Labeling (TUNEL) assay. Additionally, GSPE affected the expression of apoptosis-related proteins such as Bax, Bcl-2 and cleaved caspase-3. Furthermore, GSPE showed neuroprotective effects on the bladder of diabetic rats, as shown by the increased expression of nerve growth factor (NGF) and decreased expression of the precursor of nerve growth factor (proNGF). GSPE also activated nuclear erythroid2-related factor2 (Nrf2), which is a key antioxidative transcription factor, with the concomitant elevation of downstream hemeoxygenase-1 (HO-1). These findings suggested that GSPE could ameliorate diabetic bladder dysfunction and decrease the apoptosis of the bladder in diabetic rats, a finding that may be associated with its antioxidant activity and ability to activate the Nrf2 defense pathway.
Collapse
Affiliation(s)
- Shouzhen Chen
- Department of Urology, Qilu Hospital of Shandong University, Wenhua Xi Road, Jinan, Shandong Province, People’s Republic of China
| | - Yaofeng Zhu
- Department of Urology, Qilu Hospital of Shandong University, Wenhua Xi Road, Jinan, Shandong Province, People’s Republic of China
| | - Zhifeng Liu
- Department of Urology, Qilu Hospital of Shandong University, Wenhua Xi Road, Jinan, Shandong Province, People’s Republic of China
- Department of Urology, The Central Hospital of Tai’ an, Longtan Road, Tai’ an, Shandong Province, People’s Republic of China
| | - Zhaoyun Gao
- Department of Urology, People’s Hospital of Yinan County, Lishan Road, Yinan, Shandong Province, People’s Republic of China
| | - Baoying Li
- Department of Geriatrics, Qilu Hospital of Shandong University, Wenhua Xi Road, Jinan, Shandong Province, People’s Republic of China
| | - Dongqing Zhang
- Department of Urology, Qilu Hospital of Shandong University, Wenhua Xi Road, Jinan, Shandong Province, People’s Republic of China
| | - Zhaocun Zhang
- Department of Urology, Qilu Hospital of Shandong University, Wenhua Xi Road, Jinan, Shandong Province, People’s Republic of China
| | - Xuewen Jiang
- Department of Urology, Qilu Hospital of Shandong University, Wenhua Xi Road, Jinan, Shandong Province, People’s Republic of China
| | - Zhengfang Liu
- Department of Urology, Qilu Hospital of Shandong University, Wenhua Xi Road, Jinan, Shandong Province, People’s Republic of China
| | - Lingquan Meng
- Department of Urology, Qilu Hospital of Shandong University, Wenhua Xi Road, Jinan, Shandong Province, People’s Republic of China
| | - Yue Yang
- Department of Urology, Qilu Hospital of Shandong University, Wenhua Xi Road, Jinan, Shandong Province, People’s Republic of China
| | - Benkang Shi
- Department of Urology, Qilu Hospital of Shandong University, Wenhua Xi Road, Jinan, Shandong Province, People’s Republic of China
- * E-mail:
| |
Collapse
|
34
|
Sönmez MF, Tascioglu S. Protective effects of grape seed extract on cadmium-induced testicular damage, apoptosis, and endothelial nitric oxide synthases expression in rats. Toxicol Ind Health 2015; 32:1486-1494. [PMID: 25614582 DOI: 10.1177/0748233714566874] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study aims to evaluate the protective effect of grape seed proanthocyanidin extract (GSPE) on cadmium (Cd)-induced testicular apoptosis, endothelial nitric oxide synthases (eNOS) expression, and toxicity in rats. A total of 24 male Wistar rats were divided into four groups, namely, control, Cd (2.5 mg/kg), Cd + GSPE (100 mg/kg/day), and GSPE. Spermatogenesis and mean seminiferous tubule diameter were significantly decreased in the Cd groups. Furthermore, the GSPE-treated animals showed an improved histological appearance in the Cd group. The immunoreactivity of eNOS and the number of apoptotic cells were increased in Cd group. Our data indicate a significant reduction of terminal deoxynucleotide transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end-labeling staining and a decrease in the expression of eNOS in the testes tissue of the Cd group treated with GSPE therapy. Therefore, our results suggest that GSPE acts as a potent protective agent against Cd-induced testicular toxicity in rats.
Collapse
Affiliation(s)
- Mehmet Fatih Sönmez
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Simge Tascioglu
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
35
|
Vijaya Bharathi B, Jaya Prakash G, Krishna KM, Ravi Krishna CH, Sivanarayana T, Madan K, Rama Raju GA, Annapurna A. Protective effect of alpha glucosyl hesperidin (G-hesperidin) on chronic vanadium induced testicular toxicity and sperm nuclear DNA damage in male Sprague Dawley rats. Andrologia 2014; 47:568-78. [DOI: 10.1111/and.12304] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2014] [Indexed: 01/30/2023] Open
Affiliation(s)
- B. Vijaya Bharathi
- Pharmacology Division; University College of Pharmaceutical Sciences; Andhra University; Visakhapatnam India
| | - G. Jaya Prakash
- Embryology Research Group; Krishna IVF Clinic; Visakhapatnam India
| | - K. M. Krishna
- Embryology Research Group; Krishna IVF Clinic; Visakhapatnam India
| | | | | | - K. Madan
- Vijaya Medical Center; Visakhapatnam India
| | - G. A. Rama Raju
- Embryology Research Group; Krishna IVF Clinic; Visakhapatnam India
| | - A. Annapurna
- Pharmacology Division; University College of Pharmaceutical Sciences; Andhra University; Visakhapatnam India
| |
Collapse
|
36
|
Kročková J, Massányi P, Sirotkin AV, Lukáč N, Kováčik A. Nickel-induced structural and functional alterations in porcine granulosa cells in vitro. Biol Trace Elem Res 2013; 154:190-5. [PMID: 23784734 DOI: 10.1007/s12011-013-9733-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 06/06/2013] [Indexed: 12/30/2022]
Abstract
The present study was aimed at investigating the effect of nickel chloride (NiCl2) on secretion of progesterone (P), ultrastructure and apoptosis in porcine granulosa cells. NiCl2 was added to the cells to achieve a Ni(2+) concentration of 62.5, 125, 250, 500 and 1,000 μmol/L. A control group contained no NiCl2 addition. Quantification of P was performed directly from aliquots of the media from control and treated porcine granulosa cells after 48 h of culture using radioimmunoassay. Quantification of apoptotic cells was performed using terminal deoxynucleotidyl transferase dUTP nick end labelling assay, and ultrastructural changes were analyzed using transmission electron microscopy. A concentration-dependent depletion of P production was observed significantly for 1,000 μmol/L NiCl2. The percentage of apoptotic cells was increased in all experimental groups significantly only after addition of 1,000 μmol/L NiCl2. After addition of ≥250 μmol/L NiCl2, a higher incidence of euchromatin was observed. Also, lipid droplets and vacuoles in the cytoplasm increased after addition of ≥250 μmol/L NiCl2. NiCl2 induced the decrease in numbers of mitochondria and smooth endoplasmic reticulum after treatment with ≥500 μmol/L NiCl2. Our findings suggest a negative effect of NiCl2 on steroidogenesis and apoptosis as well as ultrastructure of porcine granulosa cells.
Collapse
Affiliation(s)
- Jiřina Kročková
- Department of Animal Physiology, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | | | | | | | | |
Collapse
|
37
|
The protective effects of grape seed extract on MDA, AOPP, apoptosis and eNOS expression in testicular torsion: an experimental study. World J Urol 2013; 31:615-22. [PMID: 23475212 DOI: 10.1007/s00345-013-1049-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/21/2013] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Grape seed proanthocyanidin extract (GSPE) is a potent antioxidant and a free radical scavenger. This study was designed to determine whether GSPE could protect against dysfunction and oxidative stress induced by torsion-detorsion injury in rat testis. METHODS A total of 45 male Wistar albino rats were divided into five groups: control group, sham group, torsion-detorsion (T/D) group, T/D + GSPE group, GSPE group. GSPE was administrated 100 mg/kg/day with oral gavage over seven days before torsion. Testicular torsion was performed for 2 h, and afterward, detorsion was performed for 2 h. The rats were decapitated under ketamine anesthesia, and their testes tissues were removed. Tissue malondialdehyde, advanced oxidation protein products levels, eNOS expression, apoptosis and histopathological damage scores were then compared. RESULTS Testicular torsion-detorsion caused significant increases in malondialdehyde level, apoptosis and eNOS expression level and caused a significant decrease in advanced oxidation protein product levels and testicular spermatogenesis in ipsilateral testes. GSPE prevented the rise in malondialdehyde, apoptosis and eNOS expression and improved testicular morphology and Johnsen's score. CONCLUSIONS As a result, testicular torsion gives rise to serious damage in testes and GSPE is a potent antioxidant agent in preventing testicular injury.
Collapse
|
38
|
San Miguel SM, Opperman LA, Allen EP, Zielinski JE, Svoboda KK. Antioxidant combinations protect oral fibroblasts against metal-induced toxicity. Arch Oral Biol 2013; 58:299-310. [DOI: 10.1016/j.archoralbio.2012.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/18/2012] [Accepted: 05/29/2012] [Indexed: 10/28/2022]
|
39
|
Tsuruta Y, Nagao K, Kai S, Tsuge K, Yoshimura T, Koganemaru K, Yanagita T. Polyphenolic extract of lotus root (edible rhizome of Nelumbo nucifera) alleviates hepatic steatosis in obese diabetic db/db mice. Lipids Health Dis 2011; 10:202. [PMID: 22067945 PMCID: PMC3228742 DOI: 10.1186/1476-511x-10-202] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 11/09/2011] [Indexed: 12/18/2022] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is emerging as the most common liver disease of industrialized countries. Thus, discovering food components that can ameliorate NAFLD is of interest. Lotus root, the edible rhizome of Nelumbo nucifera, contains high levels of polyphenolic compounds, and several health-promoting properties of lotus root have been reported. In this study, we tested whether feeding a polyphenolic extract of lotus root to db/db mice protects them from hepatic steatosis. Results After 3 weeks of feeding, the hepatomegaly and hepatic triglyceride accumulation were markedly alleviated in the lotus polyphenol-diet-fed db/db mice relative to the control mice. Although the lipolytic enzyme activity was not changed, the activities of lipogenic enzymes, such as fatty acid synthase and malic enzyme, were significantly lower in the lotus polyphenol diet-fed db/db mice. Additionally, the ESI-IT/MS and MALDI-TOF MS spectra revealed the presence of B-type proanthocyanidin polymers with polymerization degree up to 9 in the polyphenolic lotus root extract. Conclusion We speculate that the condensed tannins contained in lotus root can alleviate hepatic steatosis by suppressing the lipogenic enzyme activity in the livers of db/db mice.
Collapse
Affiliation(s)
- Yumi Tsuruta
- Department of Applied Biochemistry and Food Science, Saga University, Saga 840-8502, Japan
| | | | | | | | | | | | | |
Collapse
|