1
|
Aguirre-Franco C, Torres-Duque CA, Salazar G, Casas A, Jaramillo C, Gonzalez-Garcia M. Prevalence of pulmonary hypertension in COPD patients living at high altitude. Pulmonology 2024; 30:247-253. [PMID: 35151623 DOI: 10.1016/j.pulmoe.2021.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is associated with poor prognosis for patients with chronic obstructive pulmonary disease (COPD). Most of the knowledge about PH in COPD has been generated at sea level, with limited information associated with high altitude (HA). OBJECTIVES To assess the prevalence and severity of PH in COPD patients living in a HA city (2,640 m). METHODS Cross-sectional study in COPD patients with forced expiratory volume in the first second / forced vital capacity ratio (FEV1/FVC) post-bronchodilator <0,7. Transthoracic echocardiography (TTE), spirometry, carbon monoxide diffusing capacity, and arterial blood gasses tests were performed. Patients were classified according to the severity of airflow limitation. PH was defined by TTE as an estimated systolic pulmonary artery pressure (sPAP) > 36 mmHg or indirect PH signs; severe PH as sPAP > 60 mmHg; and disproportionate PH as an sPAP > 60 mmHg with non-severe airflow limitation (FEV1 > 50% predicted). RESULTS We included 176 COPD patients. The overall estimated prevalence of PH was 56.3% and the likelihood of having PH increased according to airflow-limitation severity: mild (31.6%), moderate (54.9%), severe (59.6%) and very severe (77.8%) (p = 0.038). The PH was severe in 7.3% and disproportionate in 3.4% of patients. CONCLUSIONS The estimated prevalence of PH in patients with COPD at HA is high, particularly in patients with mild to moderate airflow limitation, and greater than that described for COPD patients at low altitude. These results suggest a higher risk of developing PH for COPD patients living at HA compared to COPD patients with similar airflow limitation living at low altitude.
Collapse
Affiliation(s)
- C Aguirre-Franco
- Fundación Neumológica Colombiana. Bogotá, Colombia; Universidad de La Sabana. Chía, Colombia.
| | - C A Torres-Duque
- Fundación Neumológica Colombiana. Bogotá, Colombia; Universidad de La Sabana. Chía, Colombia
| | - G Salazar
- Fundación Cardioinfantil - Instituto de Cardiología. Bogotá, Colombia
| | - A Casas
- Fundación Neumológica Colombiana. Bogotá, Colombia; Universidad de La Sabana. Chía, Colombia
| | - C Jaramillo
- Universidad de La Sabana. Chía, Colombia; Fundación Clínica Shaio. Bogotá, Colombia
| | - M Gonzalez-Garcia
- Fundación Neumológica Colombiana. Bogotá, Colombia; Universidad de La Sabana. Chía, Colombia
| |
Collapse
|
2
|
Gayen SK, Zulty M, Criner GJ. Elevated pulmonary vascular resistance is associated with increased lung transplant waitlist mortality among patients with chronic obstructive pulmonary disease and pulmonary hypertension: a retrospective cohort analysis. Respir Res 2024; 25:79. [PMID: 38321451 PMCID: PMC10848503 DOI: 10.1186/s12931-024-02674-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND The latest European Society of Cardiology and European Respiratory Society guidelines have changed the definition of both pre-capillary pulmonary hypertension (PH) and severe PH in chronic lung disease. The clinical significance of these new criteria are unclear among patients with chronic obstructive pulmonary disease (COPD)-PH. We aim to examine the clinical significance of the new PH definitions with regards to lung transplant waitlist mortality amongst patients with COPD-PH. METHODS This was a retrospective cohort study of adult patients with COPD-PH listed for lung transplantation. Kaplan-Meier survival analyses were performed comparing patients with newly defined pre-capillary PH to those without pre-capillary PH and comparing patients with severe PH, defined as pulmonary vascular resistance (PVR) > 5 WU, to those without severe PH. Both mean pulmonary artery pressure (mPAP) and PVR were analyzed for potential cut-off points associated with increased waitlist mortality. Predictors of waitlist mortality were identified via Cox regression. RESULTS Among 6495 patients with COPD-PH listed for lung transplantation, pre-capillary PH was not associated with increased waitlist mortality (logrank p = 0.43), while severe PH was (logrank p < 0.001). Both severe PH (HR 1.79, 95% CI 1.22-2.60, p = 0.003) and PVR > 3.9 WU (HR 1.49, 95% CI 1.14-1.95, p = 0.004) were independently and significantly associated with increased waitlist mortality. CONCLUSIONS PVR may serve as a strong predictor of lung transplant waitlist mortality among patients with COPD-PH as compared to other pulmonary hemodynamic parameters when predicting transplant waitlist mortality.
Collapse
Affiliation(s)
- Shameek K Gayen
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University Hospital, 3401 N Broad Street, Philadelphia, PA, 19140, USA.
| | - Mary Zulty
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University Hospital, 3401 N Broad Street, Philadelphia, PA, 19140, USA
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University Hospital, 3401 N Broad Street, Philadelphia, PA, 19140, USA
| |
Collapse
|
3
|
Verleden GM, Gottlieb J. Lung transplantation for COPD/pulmonary emphysema. Eur Respir Rev 2023; 32:32/167/220116. [PMID: 36948499 PMCID: PMC10032585 DOI: 10.1183/16000617.0116-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/19/2022] [Indexed: 03/24/2023] Open
Abstract
COPD and α-1 antitrypsin deficiency emphysema remain one of the major indications for lung transplantation. If all other treatment possibilities are exhausted or not possible (including rehabilitation, oxygen therapy, noninvasive ventilation, lung volume reduction), patients may qualify for lung transplantation. Strict selection criteria are implemented with a lot of relative and absolute contraindications. Because of an ongoing donor shortage, only a minority of endstage COPD patients will finally get transplanted. The procedure may involve a single or a double lung transplantation, dependent on the experience of the centre, the waiting list, the availability of donor lungs and the patient's risk-benefit ratio. In general, the life expectancy as well as the health-related quality of life after lung transplantation for COPD are usually increased, and may be somewhat better after double compared with single lung transplantation. Several specific complications can be encountered, such as the development of solid organ cancer and chronic lung allograft dysfunction, which develops in up to 50% of patients within 5 years of their transplant and has a major impact on long-term survival, because of the current inefficient treatment modalities.
Collapse
Affiliation(s)
- Geert M Verleden
- Department of Respiratory Diseases, Lung Transplantation Unit, University Hospital Gasthuisberg, Leuven, Belgium
| | - Jens Gottlieb
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover, German Center for Lung Research
| |
Collapse
|
4
|
Bunel V, Brioude G, Deslée G, Stelianides S, Mal H. [Selection of candidates for lung transplantation for chronic obstructive pulmonary disease]. Rev Mal Respir 2023; 40 Suppl 1:e22-e32. [PMID: 36641354 DOI: 10.1016/j.rmr.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- V Bunel
- Inserm U1152, service de pneumologie B et transplantation pulmonaire, université de Paris, hôpital Bichat, AP-HP, Paris, France.
| | - G Brioude
- Service de chirurgie thoracique et des maladies de l'œsophage, Aix-Marseille université, assistance publique-hôpitaux de Marseille, hôpital Nord, chemin des Bourrely, 13915 Marseille, France
| | - G Deslée
- Inserm U1250, service de pneumologie, CHU de Reims, université Reims Champagne Ardenne, Reims, France
| | - S Stelianides
- Institut de réadaptation d'Achères, 7, place Simone-Veil, 78260 Achères, France
| | - H Mal
- Inserm U1152, service de pneumologie B et transplantation pulmonaire, université de Paris, hôpital Bichat, AP-HP, Paris, France
| |
Collapse
|
5
|
Warrior K, Dilling DF. Lung transplantation for lymphangioleiomyomatosis. J Heart Lung Transplant 2023; 42:40-52. [PMID: 36334961 DOI: 10.1016/j.healun.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 12/23/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a rare cystic lung disease, associated with respiratory symptoms of dyspnea and spontaneous pneumothorax, along with various extra-thoracic manifestations. Often a progressive disease, albeit slowly, patients can develop chronic and severe respiratory failure and require supplemental oxygen. Lung transplantation (LTX) can offer improved duration and quality of life for patients with end-stage lung disease due to LAM. There are several unique considerations for LTX in LAM patients, and disease-specific complications of LAM prior to LTX can affect management decisions. Furthermore, there are several possible post-transplant issues specific to LAM. In this review, we discuss evaluation and management, disease-specific complications (both pre- and post-transplant), and outcomes for LAM patients undergoing lung transplantation.
Collapse
Affiliation(s)
- Krishnan Warrior
- Division of Pulmonary and Critical Care, Loyola University Chicago, Stritch School of Medicine, Maywood, IL
| | - Daniel F Dilling
- Division of Pulmonary and Critical Care, Loyola University Chicago, Stritch School of Medicine, Maywood, IL.
| |
Collapse
|
6
|
Jiao G, Huang J, Wu B, Hu C, Gao C, Chen W, Huang M, Chen J. Association of Pulmonary Artery Pressure Change With Post-Lung Transplantation Survival: Retrospective Analysis of China Registry. JACC. ASIA 2022; 2:819-828. [PMID: 36713754 PMCID: PMC9877213 DOI: 10.1016/j.jacasi.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 12/23/2022]
Abstract
Background Extracorporeal membrane oxygenation (ECMO) has been used as intraoperative hemodynamic support in patients with end-stage lung diseases and pulmonary hypertension undergoing lung transplantation (LT). Objectives The aim of this study was to identify the association of pulmonary artery pressure change during ECMO and post-LT survival. Methods The study investigators collected and analyzed the data from Chinese Lung Transplantation Registry. Patients who have severe pulmonary hypertension with intraoperative ECMO support were enrolled. Post-LT mortality and morbidity were further collected and compared. Results A total of 208 recipients were included in the study, during which 53 deaths occurred post-LT. All the patients had severe pulmonary hypertension and were supported by intraoperative ECMO. Using eXtreme Gradient Boosting, or XGboost, model method, 20 variables were selected and ranked. Changes of mean pulmonary artery pressure at the time of ECMO support and ECMO wean-off (ΔmPAP) were related to post-LT survival, after adjusting for potential confounders (recipient age, New York Heart Association functional class status before LT, body mass index, pre-LT hypertension, pre-LT steroids, and pre-LT ECMO bridging). A nonlinear relationship was detected between ΔmPAP and post-LT survival, which had an inflection point of 35 mm Hg. Recipients with ΔmPAP ≦35 mm Hg had higher mortality rate calculated through the Kaplan-Meier estimator (P = 0.041). Interaction analysis showed that recipients admitted in LT center with high case volume (≥50 cases/year) and ΔmPAP >35 mm Hg had better long-term survival. The trend was reversed in recipients who were admitted in LT center with low case volume (<50 cases/year). Conclusions The relationship between ΔmPAP and post-LT survival was nonlinear. Optimal perioperative ECMO management strategy with experienced team is further warranted.
Collapse
Affiliation(s)
- Guohui Jiao
- Wuxi Lung Transplant Center, Wuxi People’s Hospital affiliated to Nanjing Medical University, Wuxi, China
| | - Jian Huang
- The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Bo Wu
- Wuxi Lung Transplant Center, Wuxi People’s Hospital affiliated to Nanjing Medical University, Wuxi, China
| | - Chunxiao Hu
- Wuxi Lung Transplant Center, Wuxi People’s Hospital affiliated to Nanjing Medical University, Wuxi, China
| | - Chenyang Gao
- General Intensive Care Unit, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenhui Chen
- Center for Lung Transplantation, China-Japan Friendship Hospital, Beijing, China
| | - Man Huang
- General Intensive Care Unit, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Address for correspondence: Dr Man Huang, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China.
| | - Jingyu Chen
- Wuxi Lung Transplant Center, Wuxi People’s Hospital affiliated to Nanjing Medical University, Wuxi, China,Center for Lung Transplantation, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Dr Jingyu Chen, QingYang Road, No 299#, Wuxi Lung Transplant Center, Wuxi People’s Hospital affiliated to Nanjing Medical University, Wuxi 214023, China.
| |
Collapse
|
7
|
Ehrsam JP, Schuurmans MM, Laager M, Opitz I, Inci I. Recipient Comorbidities for Prediction of Primary Graft Dysfunction, Chronic Allograft Dysfunction and Survival After Lung Transplantation. Transpl Int 2022; 35:10451. [PMID: 35845547 PMCID: PMC9276940 DOI: 10.3389/ti.2022.10451] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022]
Abstract
Since candidates with comorbidities are increasingly referred for lung transplantation, knowledge about comorbidities and their cumulative effect on outcomes is scarce. We retrospectively collected pretransplant comorbidities of all 513 adult recipients transplanted at our center between 1992–2019. Multiple logistic- and Cox regression models, adjusted for donor-, pre- and peri-operative variables, were used to detect independent risk factors for primary graft dysfunction grade-3 at 72 h (PGD3-T72), onset of chronic allograft dysfunction grade-3 (CLAD-3) and survival. An increasing comorbidity burden measured by Charleston-Deyo-Index was a multivariable risk for survival and PGD3-T72, but not for CLAD-3. Among comorbidities, congestive right heart failure or a mean pulmonary artery pressure >25 mmHg were independent risk factors for PGD3-T72 and survival, and a borderline risk for CLAD-3. Left heart failure, chronic atrial fibrillation, arterial hypertension, moderate liver disease, peptic ulcer disease, gastroesophageal reflux, diabetes with end organ damage, moderate to severe renal disease, osteoporosis, and diverticulosis were also independent risk factors for survival. For PGD3-T72, a BMI>30 kg/m2 was an additional independent risk. Epilepsy and a smoking history of the recipient of >20packyears are additional independent risk factors for CLAD-3. The comorbidity profile should therefore be closely considered for further clinical decision making in candidate selection.
Collapse
Affiliation(s)
- Jonas Peter Ehrsam
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Macé M. Schuurmans
- Division of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - Mirjam Laager
- Department of Biostatistics, University of Basel, Basel, Switzerland
| | - Isabelle Opitz
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Ilhan Inci
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
- *Correspondence: Ilhan Inci,
| |
Collapse
|
8
|
Gonzalez-Garcia M, Aguirre-Franco CE, Vargas-Ramirez L, Barrero M, Torres-Duque CA. Effect of pulmonary hypertension on exercise capacity and gas exchange in patients with chronic obstructive pulmonary disease living at high altitude. Chron Respir Dis 2022; 19:14799731221104095. [PMID: 35603864 PMCID: PMC9127868 DOI: 10.1177/14799731221104095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: Pulmonary hypertension (PH) is associated with decreased exercise tolerance in chronic obstructive pulmonary disease (COPD) patients, but in the altitude the response to exercise in those patients is unknown. Our objective was to compare exercise capacity, gas exchange and ventilatory alterations between COPD patients with PH (COPD-PH) and without PH (COPD-nonPH) residents at high altitude (2640 m). Methods: One hundred thirty-two COPD-nonPH, 82 COPD-PH, and 47 controls were included. Dyspnea by Borg scale, oxygen consumption (VO2), work rate (WR), ventilatory equivalents (VE/VCO2), dead space to tidal volume ratio (VD/VT), alveolar-arterial oxygen tension gradient (AaPO2), and arterial-end-tidal carbon dioxide pressure gradient (Pa-ETCO2) were measurement during a cardiopulmonary exercise test. For comparison of variables between groups, Kruskal-Wallis or one-way ANOVA tests were used, and stepwise regression analysis to test the association between PH and exercise capacity. Results: All COPD patients had a lower exercise capacity and higher PaCO2, A-aPO2 and VD/VT than controls. The VO2 % predicted (61.3 ± 20.6 vs 75.3 ± 17.9; p < 0.001) and WR % predicted (65.3 ± 17.9 vs 75.3 ± 17.9; p < 0.001) were lower in COPD-PH than in COPD-nonPH. At peak exercise, dyspnea was higher in COPD-PH (p = 0.011). During exercise, in COPD-PH, the PaO2 was lower (p < 0.001), and AaPO2 (p < 0.001), Pa-ETCO2 (p = 0.033), VE/VCO2 (p = 0.019), and VD/VT (p = 0.007) were higher than in COPD-nonPH. In the multivariate analysis, PH was significantly associated with lower peak VO2 and WR (p < 0.001). Conclusion: In COPD patients residing at high altitude, the presence of PH was an independent factor related to the exercise capacity. Also, in COPD-PH patients there were more dyspnea and alterations in gas exchange during the exercise than in those without PH.
Collapse
Affiliation(s)
- Mauricio Gonzalez-Garcia
- Pulmonary Function Testing Laboratory, Fundación Neumológica Colombiana, Bogotá, Colombia
- Faculty of Medicine, Universidad de la Sabana, Chía, Colombia
- Faculty of Medicine, Sports Medicine Group, Universidad El Bosque, Bogotá, Colombia
| | - Carlos Eduardo Aguirre-Franco
- Pulmonary Function Testing Laboratory, Fundación Neumológica Colombiana, Bogotá, Colombia
- Faculty of Medicine, Universidad de la Sabana, Chía, Colombia
| | - Leslie Vargas-Ramirez
- Pulmonary Function Testing Laboratory, Fundación Neumológica Colombiana, Bogotá, Colombia
- Instituto Neumológico del Oriente, Bucaramanga, Colombia
| | - Margarita Barrero
- Pulmonary Function Testing Laboratory, Fundación Neumológica Colombiana, Bogotá, Colombia
| | - Carlos A Torres-Duque
- Pulmonary Function Testing Laboratory, Fundación Neumológica Colombiana, Bogotá, Colombia
- Faculty of Medicine, Universidad de la Sabana, Chía, Colombia
| |
Collapse
|
9
|
Muralidharan P, Hayes D, Fineman JR, Black SM, Mansour HM. Advanced Microparticulate/Nanoparticulate Respirable Dry Powders of a Selective RhoA/Rho Kinase (Rock) Inhibitor for Targeted Pulmonary Inhalation Aerosol Delivery. Pharmaceutics 2021; 13:2188. [PMID: 34959469 PMCID: PMC8707591 DOI: 10.3390/pharmaceutics13122188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/26/2022] Open
Abstract
Pulmonary hypertension (PH) is a progressive disease that eventually leads to heart failure and potentially death for some patients. There are many unique advantages to treating pulmonary diseases directly and non-invasively by inhalation aerosols and dry powder inhalers (DPIs) possess additional unique advantages. There continues to be significant unmet medical needs in the effective treatment of PH that target the underlying mechanisms. To date, there is no FDA-approved DPI indicated for the treatment of PH. Fasudil is a novel RhoA/Rho kinase (ROCK) inhibitor that has shown great potential in effectively treating pulmonary hypertension. This systematic study is the first to report on the design and development of DPI formulations comprised of respirable nanoparticles/microparticles using particle engineering design by advanced spray drying. In addition, comprehensive physicochemical characterization, in vitro aerosol aerosol dispersion performance with different types of human DPI devices, in vitro cell-drug dose response cell viability of different human respiratory cells from distinct lung regions, and in vitro transepithelial electrical resistance (TEER) as air-interface culture (AIC) demonstrated that these innovative DPI fasudil formulations are safe on human lung cells and have high aerosol dispersion performance properties.
Collapse
Affiliation(s)
- Priya Muralidharan
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA;
| | - Don Hayes
- Departments of Pediatrics and Internal Medicine, Lung and Heart-Lung Transplant Programs, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH 43205, USA;
| | - Jeffrey R. Fineman
- UCSF School of Medicine & Benioff Children’s Hospital, San Francisco, CA 94158, USA;
| | - Stephen M. Black
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA;
| | - Heidi M. Mansour
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA;
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA;
- The BIO5 Research Institute, The University of Arizona, Tucson, AZ 85721, USA
- Institute of the Environment, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
10
|
Leard LE, Holm AM, Valapour M, Glanville AR, Attawar S, Aversa M, Campos SV, Christon LM, Cypel M, Dellgren G, Hartwig MG, Kapnadak SG, Kolaitis NA, Kotloff RM, Patterson CM, Shlobin OA, Smith PJ, Solé A, Solomon M, Weill D, Wijsenbeek MS, Willemse BWM, Arcasoy SM, Ramos KJ. Consensus document for the selection of lung transplant candidates: An update from the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 2021; 40:1349-1379. [PMID: 34419372 PMCID: PMC8979471 DOI: 10.1016/j.healun.2021.07.005] [Citation(s) in RCA: 344] [Impact Index Per Article: 114.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Tens of thousands of patients with advanced lung diseases may be eligible to be considered as potential candidates for lung transplant around the world each year. The timing of referral, evaluation, determination of candidacy, and listing of candidates continues to pose challenges and even ethical dilemmas. To address these challenges, the International Society for Heart and Lung Transplantation appointed an international group of members to review the literature, to consider recent advances in the management of advanced lung diseases, and to update prior consensus documents on the selection of lung transplant candidates. The purpose of this updated consensus document is to assist providers throughout the world who are caring for patients with pulmonary disease to identify potential candidates for lung transplant, to optimize the timing of the referral of these patients to lung transplant centers, and to provide transplant centers with a framework for evaluating and selecting candidates. In addition to addressing general considerations and providing disease specific recommendations for referral and listing, this updated consensus document includes an ethical framework, a recognition of the variability in acceptance of risk between transplant centers, and establishes a system to account for how a combination of risk factors may be taken into consideration in candidate selection for lung transplantation.
Collapse
Affiliation(s)
| | | | | | | | - Sandeep Attawar
- Krishna Institute of Medical Sciences Institute for Heart and Lung Transplantation, Hyderabad, India
| | | | - Silvia V Campos
- Heart Institute (InCor) University of Sao Paulo Medical School, Sao Paulo, Brazil
| | | | | | - Göran Dellgren
- Sahlgrenska University Hospital and University of Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | - Melinda Solomon
- Hospital for Sick Children, University of Toronto, Ontario, Canada
| | - David Weill
- Weill Consulting Group, New Orleans, Louisiana
| | | | - Brigitte W M Willemse
- Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
11
|
Leuchte HH, Halank M, Held M, Borst M, Ewert R, Klose H, Lange TJ, Meyer FJ, Skowasch D, Wilkens H, Seyfarth HJ. [Differential Diagnosis of Pulmonary Hypertension Using the Example of Collagenosis-associated PAH in the Context of Chronic Lung and Left Heart Disease]. Pneumologie 2021; 75:122-137. [PMID: 33578434 DOI: 10.1055/a-1204-3248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Pulmonary hypertension (PH) can be diagnosed in the context of connective tissue diseases (CTD) as well as in elderly patients with multiple comorbidities. A correct clinical differential diagnosis and classification is essential before adequate therapeutic decisions can be made. Differential diagnosis of PH in CTD comprises associated pulmonary arterial hypertension (APAH), group 2 or 3 PH (PH arising from left heart or chronic lung disease), chronic thromboembolic PH (PH) and group 5 (e. g. in the context of terminal renal insufficiency). This is also true of elderly patients in whom the decision has to be made if the increasing number of coincident diseases lead to PH or have to be interpreted as comorbidities. In this manuscript, the differential diagnosis of PH is elucidated, focusing on CTD, in the context of left heart disease and chronic lung disease. Furthermore, criteria are presented facilitating an objective approach in this context.
Collapse
Affiliation(s)
- H H Leuchte
- Klinik der Barmherzigen Schwestern, Krankenhaus Neuwittelsbach, Lehrkrankenhaus der LMU München, Mitglied des DZL
| | - M Halank
- Universitätsklinikum Carl Gustav Carus, Medizinische Klinik 1, Bereich Pneumologie, Dresden
| | - M Held
- Klinikum Würzburg Mitte, Standort Missioklinik, Medizinische Klinik mit Schwerpunkt Pneumologie und Beatmungsmedizin, Würzburg
| | - M Borst
- Medizinische Klinik 1 Caritas-Krankenhaus Bad Mergentheim gemeinnützige GmbH, Bad Mergentheim
| | - R Ewert
- Universitätsmedizin Greifswald. Klinik für Innere Medizin B, Bereich Pneumologie, Greifswald
| | - H Klose
- Universitätsklinikum Hamburg-Eppendorf, Abteilung für Pneumologie, Hamburg
| | - T J Lange
- Uniklinik Regensburg, Klinik für Innere Medizin II, Bereich Pneumologie, Regensburg
| | - F J Meyer
- Lungenzentrum München (Bogenhausen-Harlaching), München Klinik gGmbH, München
| | - D Skowasch
- Universitätsklinikum Bonn, Medizinische Klinik II, Sektion Pneumologie, Bonn
| | - H Wilkens
- Pneumologie, Uniklinik Homburg, Homburg
| | - H-J Seyfarth
- Bereich Pneumologie, Universitätsklinikum Leipzig, Leipzig
| |
Collapse
|
12
|
Acosta MF, Muralidharan P, Grijalva CL, Abrahamson MD, Hayes D, Fineman JR, Black SM, Mansour HM. Advanced therapeutic inhalation aerosols of a Nrf2 activator and RhoA/Rho kinase (ROCK) inhibitor for targeted pulmonary drug delivery in pulmonary hypertension: design, characterization, aerosolization, in vitro 2D/3D human lung cell cultures, and in vivo efficacy. Ther Adv Respir Dis 2021; 15:1753466621998245. [PMID: 33719747 PMCID: PMC7968029 DOI: 10.1177/1753466621998245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 12/16/2022] Open
Abstract
Inhalable nanostructured microparticles of simvastatin, a Nrf2 activator and RhoA/Rho kinase (ROCK) inhibitor, were rationally designed for targeted pulmonary delivery as dry powder inhalers (DPIs) for the treatment of pulmonary hypertension (PH). Advanced particle engineering design technology was employed to develop inhalable dry powders using different dilute feed concentrations and spray drying pump rates. Several analytical techniques were used comprehensively to characterize the physicochemical properties of the resulting powders. Scanning electron microscopy (SEM) was used to visualize particle morphology (shape), surface structure, size, and size distribution. Karl Fischer titration (KFT) was employed to quantify the residual water content in the powders. X-ray powder diffraction (XRPD) was used to determine crystallinity. Hot-stage microscopy (HSM) under cross-polarizing lens was used to observe the presence or absence of birefringence characteristic of crystallinity. Differential scanning calorimetry (DSC) was employed to quantify thermotropic phase behavior. Attenuated total reflectance (ATR)-Fourier-transform infrared (FTIR) spectroscopy and Raman spectroscopy were used to determine the molecular fingerprint of simvastatin powders before and after particle engineering design. In vitro aerosol dispersion performance was performed with three different Food and Drug Administration (FDA)-approved human DPI devices. Cell viability and transepithelial electrical resistance (TEER) were demonstrated using different in vitro human pulmonary cell two and three-dimensional models at the air-liquid interface, and in vivo safety in healthy rats by inhalation. Efficacy was demonstrated in the in vivo lamb model of PH. Four different inhalable powders of simvastatin were successfully produced. They possessed nanostructured surfaces and were in the inhalable size range. Simvastatin retained its crystallinity following particle engineering design. The more dilute feed concentration spray dried at the lower pump rate produced the smallest particles. All powders successfully aerosolized with all three DPI human devices. Inhaled simvastatin as an aerosol restored the endothelial function in the shunt lamb model of PH, as demonstrated by the reduction of pulmonary vascular resistance (PVR) in response to the endothelium-dependent vasodilator acetylcholine.The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Maria F. Acosta
- Skaggs Pharmaceutical Sciences Center, The University of Arizona College of Pharmacy, Tucson, AZ, USA
| | - Priya Muralidharan
- Skaggs Pharmaceutical Sciences Center, The University of Arizona College of Pharmacy, Tucson, AZ, USA
| | - Carissa L. Grijalva
- Skaggs Pharmaceutical Sciences Center, The University of Arizona College of Pharmacy, Tucson, AZ, USA
- Department of Biomedical Engineering, The University of Arizona College of Engineering, Tucson, AZ, USA
| | - Michael D. Abrahamson
- Skaggs Pharmaceutical Sciences Center, The University of Arizona College of Pharmacy, Tucson, AZ, USA
| | - Don Hayes
- Departments of Pediatrics and Internal Medicine, Lung and Heart-Lung Transplant Programs, The Ohio State University College of Medicine, Columbus, OH, USA
- The Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jeffrey R. Fineman
- Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Stephen M. Black
- Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
- Department of Medicine, Center for Lung Vascular Pathobiology, The University of Arizona College of Medicine, Tucson, AZ, USA
- Department of Physiology, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Heidi M. Mansour
- Skaggs Pharmaceutical Sciences Center, The University of Arizona College of Pharmacy, Tucson, AZ, USA
- Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
- The University of Arizona, BIO5 Institute, Tucson, AZ, USA
| |
Collapse
|
13
|
Acosta MF, Abrahamson MD, Encinas-Basurto D, Fineman JR, Black SM, Mansour HM. Inhalable Nanoparticles/Microparticles of an AMPK and Nrf2 Activator for Targeted Pulmonary Drug Delivery as Dry Powder Inhalers. AAPS J 2020; 23:2. [PMID: 33200330 PMCID: PMC7669792 DOI: 10.1208/s12248-020-00531-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/31/2020] [Indexed: 12/19/2022] Open
Abstract
Metformin is an activator of the AMPK and Nrf2 pathways which are important in the pathology of several complex pulmonary diseases with unmet medical needs. Organic solution advanced spray drying in the absence of water in closed-mode was used to design and develop respirable dry powders. Following comprehensive characterization, the influence of physicochemical properties was correlated with performance as aerosols using inertial impaction and three different human dry powder inhaler (DPI) devices varying in device properties. In vitro cell assays were conducted to test safety in 2D human pulmonary cell lines and in 3D small airway epithelia comprising primary cells at the air-liquid interface (ALI). In addition, in vitro transepithelial electrical resistance (TEER) was carried out. Metformin remained crystalline following advanced spray drying under these conditions. All SD powders consisted of nanoparticles/microparticles in the solid state. In vitro aerosol dispersion performance showed high aerosolization for all SD metformin powders with all DPI devices tested. High emitted dose for all powders with all three DPI devices was measured. Differences in other aerosol performance parameters and the interplay between the properties of different formulations produced at specific pump rates and the three different DPI devices were correlated with spray drying pump rate and device properties. Safety over a wide metformin dose range was also demonstrated in vitro. Aerosol delivery of metformin nanoparticles/microparticles has the potential to be a new "first-in-class" therapeutic for the treatment of a number of pulmonary diseases including pulmonary vascular diseases such as pulmonary hypertension.
Collapse
Affiliation(s)
- Maria F Acosta
- Skaggs Pharmaceutical Sciences Center, The University of Arizona College of Pharmacy, 1703 E. Mabel St, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona, 85721-0207, USA
| | - Michael D Abrahamson
- Skaggs Pharmaceutical Sciences Center, The University of Arizona College of Pharmacy, 1703 E. Mabel St, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona, 85721-0207, USA
| | - David Encinas-Basurto
- Skaggs Pharmaceutical Sciences Center, The University of Arizona College of Pharmacy, 1703 E. Mabel St, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona, 85721-0207, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, California, USA
- University of California San Francisco Benioff Children's Hospital, San Francisco, California, USA
- University of California San Francisco Cardiovascular Research Institute, San Francisco, California, USA
| | - Stephen M Black
- Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona, USA
- Department of Medicine, Center for Lung Vascular Pathobiology, The University of Arizona College of Medicine, Tucson, Arizona, USA
- Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Heidi M Mansour
- Skaggs Pharmaceutical Sciences Center, The University of Arizona College of Pharmacy, 1703 E. Mabel St, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona, 85721-0207, USA.
- Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona, USA.
- BIO5 Institute, The University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
14
|
Muralidharan P, Jones B, Allaway G, Biswal SS, Mansour HM. Design and development of innovative microparticulate/nanoparticulate inhalable dry powders of a novel synthetic trifluorinated chalcone derivative and Nrf2 agonist. Sci Rep 2020; 10:19771. [PMID: 33188247 PMCID: PMC7666129 DOI: 10.1038/s41598-020-76585-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/30/2020] [Indexed: 01/21/2023] Open
Abstract
Chalcone derivatives are shown to possess excellent anti-inflammatory and anti-oxidant properties which are of great interest in treating respiratory diseases such as acute lung injury (ALI), acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis (PF). This study successfully designed and developed dry powder inhaler (DPI) formulations of TMC (2-trifluoromethyl-2'-methoxychalone), a new synthetic trifluorinated chalcone and Nrf2 agonist, for targeted pulmonary inhalation aerosol drug delivery. An advanced co-spray drying particle engineering technique was used to design and produce microparticulate/nanoparticulate formulations of TMC with a suitable excipient (mannitol) as inhalable particles with tailored particle properties for inhalation. Raw TMC and co-spray dried TMC formulations were comprehensively characterized for the first time using scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) spectroscopy, thermal analysis, X-ray powder diffraction (XRPD), and molecular fingerprinting as dry powders by ATR-FTIR spectroscopy and Raman spectroscopy. Further, biocompatibility and suitability of formulations were tested with in vitro cellular transepithelial electrical resistance (TEER) in air-interface culture (AIC) using a human pulmonary airway cell line. The ability of these TMC formulations to perform as aerosolized dry powders was systematically evaluated by design of experiments (DOEs) using three different FDA-approved human inhaler devices followed by interaction parameter analyses. Multiple spray drying pump rates (25%, 75%, and 100%) successfully produced co-spray dried TMC:mannitol powders. Raw TMC exhibited a first-order phase transition temperature at 58.15 ± 0.38 °C. Furthermore, the results demonstrate that these innovative TMC dry powder particles are suitable for targeted delivery to the airways by inhalation.
Collapse
Affiliation(s)
- Priya Muralidharan
- Colleges of Pharmacy and Medicine, University of Arizona, 1703 E. Mabel St, Tucson, AZ, 85721, USA
| | | | | | - Shyam S Biswal
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Heidi M Mansour
- Colleges of Pharmacy and Medicine, University of Arizona, 1703 E. Mabel St, Tucson, AZ, 85721, USA.
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.
- The BIO5 Research Institute, The University of Arizona, Tucson, AZ, USA.
- Institute of the Environment, The University of Arizona, Tucson, AZ, USA.
- National Cancer Institute Comprehensive Cancer Center, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
15
|
Stącel T, Urlik M, Nęcki M, Antończyk R, Latos M, Wajda-Pokrontka M, Tatoj Z, Zawadzki F, Przybyłowski P, Zembala M, Ochman M. Secondary Pulmonary Hypertension Among Patients Qualified for Lung Transplantation: Single-Center Study. Transplant Proc 2020; 52:2101-2109. [DOI: 10.1016/j.transproceed.2020.02.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/13/2020] [Indexed: 11/17/2022]
|
16
|
Balasubramanian A, Kolb TM, Damico RL, Hassoun PM, McCormack MC, Mathai SC. Diffusing Capacity Is an Independent Predictor of Outcomes in Pulmonary Hypertension Associated With COPD. Chest 2020; 158:722-734. [PMID: 32184109 PMCID: PMC8173778 DOI: 10.1016/j.chest.2020.02.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/02/2020] [Accepted: 02/09/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Patients with COPD who experience pulmonary hypertension (PH) have worse mortality than those with COPD alone. Predictors of poor outcomes in COPD-PH are not well-described. Diffusing capacity of the lung (Dlco) assesses the integrity of the alveolar-capillary interface and thus may be a useful prognostic tool among those with COPD-PH. RESEARCH QUESTION Using a single center registry, we sought to evaluate Dlco as a predictor of mortality in a cohort of patients with COPD-PH. STUDY DESIGN AND METHODS This retrospective cohort study analyzed 71 COPD-PH patients from the Johns Hopkins Pulmonary Hypertension Registry with right-sided heart catheterization (RHC)-proven PH and pulmonary function testing data within one year of diagnostic RHC. Transplant-free survival was calculated from index RHC. Adjusted transplant-free survival was modelled using Cox proportional hazard methods; age, pulmonary vascular resistance, FEV1, oxygen use, and N-terminal pro-brain natriuretic peptide were included as covariates. RESULTS Overall unadjusted transplant-free 1-, 3-, and 5-year survivals were 87%, 60%, and 51%, respectively. Survival was associated with reduced Dlco across the observed range of pulmonary artery pressures and pulmonary vascular resistance. Severe Dlco impairment was associated with poorer survival (log-rank χ2 13.07) (P < .001); adjusting for covariates, for every percent predicted decrease in Dlco, mortality rates increased by 4% (hazard ratio, 1.04; 95% CI, 1.01-1.07). INTERPRETATION Among patients with COPD-PH, severe gas transfer impairment is associated with higher mortality, even with adjustment for airflow obstruction and hemodynamics, which suggests that Dlco may be a useful prognostic marker in this population. Future studies are needed to further investigate the association between Dlco and morbidity and to determine the utility of Dlco as a biomarker for disease risk and severity in COPD-PH.
Collapse
Affiliation(s)
| | - Todd M Kolb
- Johns Hopkins University Division of Pulmonary and Critical Care, Baltimore, MD
| | - Rachel L Damico
- Johns Hopkins University Division of Pulmonary and Critical Care, Baltimore, MD
| | - Paul M Hassoun
- Johns Hopkins University Division of Pulmonary and Critical Care, Baltimore, MD
| | | | - Stephen C Mathai
- Johns Hopkins University Division of Pulmonary and Critical Care, Baltimore, MD.
| |
Collapse
|
17
|
Greer M, Welte T. Chronic Obstructive Pulmonary Disease and Lung Transplantation. Semin Respir Crit Care Med 2020; 41:862-873. [PMID: 32726838 DOI: 10.1055/s-0040-1714250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Lung transplantation (LTx) has been a viable option for patients with end-stage chronic obstructive pulmonary disease (COPD), with more than 20,000 procedures performed worldwide. Survival after LTx lags behind most other forms of solid-organ transplantation, with median survival for COPD recipients being a sobering 6.0 years. Given the limited supply of suitable donor organs, not all patients with end-stage COPD are candidates for LTx. We discuss appropriate criteria for accepting patients for LTx, as well as contraindications and exclusionary criteria. In the first year post-LTx, infection and graft failure are the leading causes of death. Beyond this chronic graft rejection-currently referred to as chronic lung allograft dysfunction-represents the leading cause of death at all time points, with infection and over time malignancy also limiting survival. Referral of COPD patients to a lung transplant center should be considered in the presence of progressing disease despite maximal medical therapy. As a rule of thumb, a forced expiratory volume in 1 second < 25% predicted in the absence of exacerbation, hypoxia (PaO2 < 60 mm Hg/8 kPa), and/or hypercapnia (PaCO2 > 50 mm Hg/6.6 kPa) and satisfactory general clinical condition should be considered the basic prerequisites for timely referral. We also discuss salient issues post-LTx and factors that impact posttransplant survival and morbidity such as infections, malignancy, renal insufficiency, and complications associated with long-term immunosuppression.
Collapse
Affiliation(s)
- Mark Greer
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Centre for Lung Research (DZL), Hannover, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Centre for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
18
|
Wilcox SR, Faridi MK, Camargo CA. Demographics and Outcomes of Pulmonary Hypertension Patients in United States Emergency Departments. West J Emerg Med 2020; 21:714-721. [PMID: 32421524 PMCID: PMC7234722 DOI: 10.5811/westjem.2020.2.45187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/27/2020] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Pulmonary hypertension (PH) is a common, yet under-diagnosed, contributor to morbidity and mortality. Our objective was to characterize the prevalence of PH among adult patients presenting to United States (US) emergency departments (ED) and to identify demographic patterns and outcomes of PH patients in the ED. METHODS We analyzed the Nationwide Emergency Department Sample (NEDS) database, with a focus on ED patients aged 18 years and older, with any International Classification of Diseases, Clinical Modification (ICD)-9-CM or ICD-10-CM diagnosis code for PH from 2011 to 2015. The primary outcome was inpatient, all-cause mortality. The secondary outcomes were hospital admission rates and hospital length of stay (LOS). RESULTS From 2011 to 2015, in a sample of 121,503,743 ED visits, representing a weighted estimate of 545,500,486 US ED visits, patients with a diagnosis of PH accounted for 0.78% (95% confidence interval [CI], 0.75-0.80%) of all US ED visits. Of the PH visits, 86.9% were admitted to the hospital, compared to 16.3% for all other ED visits (P <0.001). Likewise, hospital LOS and hospital-based mortality were higher in the PH group than for other ED patients (e.g., inpatient mortality 4.5% vs 2.6%, P < 0.001) with an adjusted odds ratio (aOR) of 1.34 (95% CI, 1.31-1.37). Age had the strongest association with mortality, with an aOR of 10.6 for PH patients over 80 years (95% CI, 10.06-11.22), compared to a reference of ages 18 to 30 years. CONCLUSION In this nationally representative sample, presentations by patients with PH were relatively common, accounting for nearly 0.8% of US ED visits. Patients with PH were significantly more likely to be admitted to the hospital than all other patients, had longer hospital LOS, and increased risk of inpatient mortality.
Collapse
Affiliation(s)
- Susan R Wilcox
- Massachusetts General Hospital, Department of Emergency Medicine, Boston, Massachusetts
| | - M Kamal Faridi
- Massachusetts General Hospital, Department of Emergency Medicine, Boston, Massachusetts
| | - Carlos A Camargo
- Massachusetts General Hospital, Department of Emergency Medicine, Boston, Massachusetts
| |
Collapse
|
19
|
Lung transplantation for chronic obstructive pulmonary disease: past, present, and future directions. Curr Opin Pulm Med 2019; 24:199-204. [PMID: 29227305 DOI: 10.1097/mcp.0000000000000452] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Lung transplantation offers an effective treatment modality for patients with end-stage chronic obstructive pulmonary disease (COPD). The exact determination of when to refer, list, and offer transplant as well as the preferred transplant procedure type remains unclear. Additionally, there are special considerations specific to patients with COPD being considered for lung transplantation, including the implications of single lung transplantation on lung cancer risk, native lung hyperinflation, and overall survival. RECENT FINDINGS The International Society for Heart and Lung Transplantation's most recent recommendations rely on an assessment of COPD severity based on BODE index. Despite the lack of evidence supporting a mortality benefit of bilateral over single lung transplantation for COPD patients, the majority of transplants performed in this population remain bilateral. Some of the concerns specific to single lung transplantation remain the possibility of de novo native lung cancer and the hemodynamic and physiologic implications of acute native lung hyperinflation. SUMMARY COPD remains the most common worldwide indication for lung transplantation. Ongoing study is still required to assess the overall survival benefit of lung transplantation and assess the overall quality of life impact on the COPD patient population.
Collapse
|
20
|
Nowak J, Hudzik B, Przybyłowski P, Niedziela J, Walczak P, Rozentryt P, Ochman M, Żegleń S, Wojarski J, Zembala M, Gąsior M. Prognostic Value of Mean, Diastolic, and Systolic Pulmonary Artery Pressure in Patients With End-stage Lung Disease Referred for Lung Transplantation. Transplant Proc 2018; 50:2048-2052. [PMID: 30177107 DOI: 10.1016/j.transproceed.2018.02.152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 02/19/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a common complication in end-stage lung disease (esLD). The aim of this study was to establish the best threshold values for mean, systolic, and diastolic artery pressure (mPAP, dPAP, and sPAP, respectively) to identify patients with esLD referred for lung transplantation and to predict 1-year prognosis. METHODS Sixty-five patients were enrolled in the study (75% men) with a mean age of 53.3 ± 9.5 years; 31% had chronic obstructive pulmonary disease (COPD), 57% had idiopathic pulmonary fibrosis (IPF), and 12% had interstitial lung diseases (ILDs). The mean period of observation was 14.4 ± 5 months. We assessed invasively mPAP, dPAP, and sPAP, as well as pulmonary capillary wedge pressure (PCWP), using a Swan-Ganz catheter. Receiver-operating characteristic (ROC) curves were constructed to identify the best cutoff points for mPAP, dPAP, and sPAP to predict survival. The study endpoint was defined as 1-year mortality before transplantation. Survival analysis was completed according to the Kaplan-Meier method. RESULTS During follow-up, 30 (46.1%) patients died and 19 (29%) underwent lung transplantation. Based on ROC curve analysis, we estimated mPAP ≥30 mm Hg, dPAP ≥20 mm Hg, and sPAP ≥44 mm Hg as the best threshold values with the highest sensitivity (70%, 70%, and 73%, respectively) and specificity (76%, 69%, and 72%, respectively) and the acceptable area under curve (0.67, 0.68, and 0.72, respectively). The negative predictive values for mPAP, dPAP, and sPAP were higher than the positive predictive values (79%, 77%, and 81% vs 67%, 61%, and 64%, respectively). We also constructed Kaplan-Meier curves for mPAP, dPAP, and sPAP threshold values. There were significant differences in 1-year survival between patients with and without PH for mPAP, dPAP, and sPAP threshold values (P = .005, P = .035, and P < .001; respectively). CONCLUSION Elevated mPAP, dPAP, and sPAP are related to worse prognosis in patients with esLD referred for lung transplantation.
Collapse
Affiliation(s)
- J Nowak
- Third Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Silesian Centre for Heart Disease in Zabrze, Zabrze, Poland.
| | - B Hudzik
- Third Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Silesian Centre for Heart Disease in Zabrze, Zabrze, Poland; Department of Nutrition-related Disease Prevention, School of Public Health, Medical University of Silesia, Bytom, Poland
| | - P Przybyłowski
- Department of Cardiac, Vascular and Endovascular Surgery and Transplantology in Zabrze, Poland, Medical University of Silesia in Katowice, Katowice, Poland
| | - J Niedziela
- Third Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Silesian Centre for Heart Disease in Zabrze, Zabrze, Poland
| | - P Walczak
- Third Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Silesian Centre for Heart Disease in Zabrze, Zabrze, Poland
| | - P Rozentryt
- Third Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Silesian Centre for Heart Disease in Zabrze, Zabrze, Poland; Department of Social Medicine and Prevention, School of Public Health in Bytom, Medical University of Silesia in Katowice, Katowice, Poland
| | - M Ochman
- Department of Cardiac, Vascular and Endovascular Surgery and Transplantology in Zabrze, Poland, Medical University of Silesia in Katowice, Katowice, Poland
| | - S Żegleń
- Department of Cardiac, Vascular and Endovascular Surgery and Transplantology in Zabrze, Poland, Medical University of Silesia in Katowice, Katowice, Poland
| | - J Wojarski
- Department of Cardiac, Vascular and Endovascular Surgery and Transplantology in Zabrze, Poland, Medical University of Silesia in Katowice, Katowice, Poland
| | - M Zembala
- Department of Cardiac, Vascular and Endovascular Surgery and Transplantology in Zabrze, Poland, Medical University of Silesia in Katowice, Katowice, Poland
| | - M Gąsior
- Third Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Silesian Centre for Heart Disease in Zabrze, Zabrze, Poland
| |
Collapse
|
21
|
Kim CY, Park JE, Leem AY, Song JH, Kim SY, Chung KS, Kim EY, Jung JY, Kang YA, Kim YS, Chang J, Lee JG, Paik HC, Park MS. Prognostic value of pre-transplant mean pulmonary arterial pressure in lung transplant recipients: a single-institution experience. J Thorac Dis 2018; 10:1578-1587. [PMID: 29707309 DOI: 10.21037/jtd.2018.03.46] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background Currently, lung transplantation (LTX) is considered to be a curative treatment option in patients with end-stage lung disease. Although pulmonary hypertension (PH), confirmed by cardiac catheterization, is a prognostic factor in patients undergoing LTX, the prognostic value of PH in Asian lung transplant recipients remains uncertain. In this study, we aimed to determine whether PH before LTX may serve as a prognostic factor for survival in Asian patients. Methods The medical records of 50 patients [male, 27; female, 23; mean age, 51.0 (41.0-60.0) years], who received preoperative right heart catheterization (RHC) and echocardiography before single or double LTX at Severance Hospital between January 2010 and December 2014, were reviewed. The relationship between 1-year survival after LTX and PH [mean pulmonary arterial pressure (mPAP) ≥25 mmHg at rest] was evaluated. Results The mean right ventricular systolic pressure and mPAP were 48.5 (22.8) and 30.0 (24.0-40.0) mmHg. Of the 50 patients, 17 (34.0%) died within a year after LTX. The 1-year survival rate among patients with mPAP ≥25 mmHg (58.8%) was lower than the survival rate among patients with mPAP <25 mmHg (87.5%). Pre-transplantation mPAP of ≥25 mmHg was associated with post-transplantation survival [hazard ratio (HR), 4.832; 95% confidence interval (CI), 1.080-21.608, P=0.039]. The presence of preoperative PH was also associated with an increased risk of postoperative complications. Conclusions Confirmation of PH via preoperative cardiac catheterization was associated with the prognosis of the patient after LTX. Clinicians should consider the necessity for early transplantation surgery before the mPAP reaches ≥25 mmHg.
Collapse
Affiliation(s)
- Chi Young Kim
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Eun Park
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ah Young Leem
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joo Han Song
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Song Yee Kim
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung Soo Chung
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Young Kim
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Ye Jung
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Ae Kang
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Sam Kim
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon Chang
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Gu Lee
- Department of Thoracic & Cardiovascular Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyo Chae Paik
- Department of Thoracic & Cardiovascular Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Moo Suk Park
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
22
|
Adverse outcomes associated with pulmonary hypertension in chronic obstructive pulmonary disease after bilateral lung transplantation. Respir Med 2017; 128:102-108. [DOI: 10.1016/j.rmed.2017.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 12/28/2016] [Accepted: 04/18/2017] [Indexed: 11/24/2022]
|
23
|
Domingo E, Grignola JC, Aguilar R, Messeguer ML, Roman A. Pulmonary arterial wall disease in COPD and interstitial lung diseases candidates for lung transplantation. Respir Res 2017; 18:85. [PMID: 28477618 PMCID: PMC5420403 DOI: 10.1186/s12931-017-0568-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/27/2017] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) associated with lung disease has the worst prognosis of all types of PH. Pulmonary arterial vasculopathy is an early event in the natural history of chronic obstructive pulmonary disease (COPD) and interstitial lung disease (ILD). The present study characterized the alterations in the structure and function of the pulmonary arterial (PA) wall of COPD and ILD candidates for lung transplantation (LTx). METHODS A cohort of 73 patients, 63 pre-LTx (30 COPD, 33 ILD), and ten controls underwent simultaneous right heart catheterisation and intravascular ultrasound (IVUS). Total pulmonary resistance (TPR), capacitance (Cp), and the TPR-Cp relationship were assessed. PA stiffness and the relative area of wall thickness were estimated as pulse PA pressure/IVUS pulsatility and as [(external sectional area-intimal area)/external sectional area] × 100, respectively. RESULTS Twenty-seven percent of patients had pulmonary arterial wedge pressure > 15 mmHg and were not analyzed. PA stiffness and the area of wall thickness were increased in comparison with controls, even in patients without PH (p < 0.05). ILD patients showed a significant higher PA stiffness, and lower Cp beyond mean PA pressure (mPAP) and lower area of wall thickness than COPD patients (p < 0.05). TPR-Cp relationship was shifted downward left for ILD patients. CONCLUSIONS Significant increase of PA stiffness and area of wall thickness were present even in patients without PH and can make the diagnosis of pulmonary vasculopathy at a preclinical stage in PH-lung disease candidates for LTx. ILD patients showed the worst PA stiffness and Cp with respect to COPD.
Collapse
Affiliation(s)
- Enric Domingo
- Area del Cor, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Physiology Department, School of Medicine, Universitat Autonoma, Barcelona, Spain
| | - Juan C Grignola
- Pathophysiology Department, School of Medicine, Hospital de Clínicas, Universidad de la República, Avda Italia 2870, PC 11600, Montevideo, Uruguay.
| | - Rio Aguilar
- Cardiology Department, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Antonio Roman
- Department of Neumology, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Ciberes, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
24
|
Frost AE. The Intersection of Pulmonary Hypertension and Solid Organ Transplantation. Methodist Debakey Cardiovasc J 2017; 12:10-13. [PMID: 28298957 DOI: 10.14797/mdcj-12-4s1-10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Pulmonary hypertension (PH) is a complication and marker of disease severity in many parenchymal lung diseases. It also is a frequent complication of portal hypertension and negatively impacts survival with liver transplant. Pulmonary hypertension is frequently diagnosed in patients with end-stage renal disease who are undergoing dialysis, and it has recently been demonstrated to adversely affect posttransplant outcome in this patient population even though the mechanism of PH is substantially different from that associated with liver disease. The presence of PH in patients with heart failure is frequent, and the necessity for PH therapy prior to heart transplant has evolved in the last decade. We review the frequency of and risk factors for PH in recipients of and candidates for lung, liver, heart, and renal transplants as well as the impact of this diagnosis on posttransplant outcomes.
Collapse
Affiliation(s)
- Adaani E Frost
- Houston Methodist Hospital, Houston, Texas; Weill Cornell Medical College, New York, New York
| |
Collapse
|
25
|
Nakahara Y, Taniguchi H, Kimura T, Kondoh Y, Arizono S, Nishimura K, Sakamoto K, Ito S, Ando M, Hasegawa Y. Exercise hypoxaemia as a predictor of pulmonary hypertension in COPD patients without severe resting hypoxaemia. Respirology 2016; 22:120-125. [DOI: 10.1111/resp.12863] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/23/2016] [Accepted: 05/29/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Yoshio Nakahara
- Department of Respiratory Medicine and Allergy; Tosei General Hospital; Seto Japan
- Department of Respiratory Medicine; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Hiroyuki Taniguchi
- Department of Respiratory Medicine and Allergy; Tosei General Hospital; Seto Japan
| | - Tomoki Kimura
- Department of Respiratory Medicine and Allergy; Tosei General Hospital; Seto Japan
| | - Yasuhiro Kondoh
- Department of Respiratory Medicine and Allergy; Tosei General Hospital; Seto Japan
| | - Shinichi Arizono
- School of Rehabilitation Sciences; Seirei Christopher University; Hamamatsu Japan
| | - Koichi Nishimura
- Department of Pulmonary Medicine; National Center for Geriatrics and Gerontology; Obu Japan
| | - Koji Sakamoto
- Department of Respiratory Medicine; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Satoru Ito
- Department of Respiratory Medicine; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Masahiko Ando
- Center for Advanced Medicine and Clinical Research; Nagoya University Hospital; Nagoya Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine; Nagoya University Graduate School of Medicine; Nagoya Japan
| |
Collapse
|