1
|
Tayeb FJ, Felemban MF, Adnan Ashour A, Shafie A. Paraquat-Induced Toxicities: Epidemiological Insights and Advances in Colorimetric and Fluorimetric Detection Methods. Crit Rev Anal Chem 2024:1-31. [PMID: 39602183 DOI: 10.1080/10408347.2024.2433005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Paraquat (PQ) is a potent and widely utilized herbicide known for its effectiveness in controlling a broad spectrum of weeds. Its chemical properties make it an invaluable tool in agriculture, where it helps maintain crop yields and manage invasive plant species. However, despite its benefits in weed management, PQ poses significant risks due to its severe toxicity, which affects multiple organ systems in both humans and animals. The dual nature of PQ, as both a valuable agricultural chemical and a hazardous toxicant, necessitates a comprehensive understanding of its toxicological impacts and the development of effective detection and development strategies. This review aims to provide a comprehensive overview of PQ-induced toxicities, including neurotoxicity, lung toxicity, liver toxicity, kidney toxicity, and immunotoxicity. By synthesizing current knowledge on PQ health impacts, highlighting epidemiological trends, and exploring recent advancements in colorimetric and fluorimetric detection methods, this review seeks to contribute to the development of strategies for improving public health outcomes and enhancing our ability to manage the risks associated with PQ exposure. Addressing PQ toxicity through a multidisciplinary approach, incorporating toxicological, epidemiological, and technological perspectives, is essential for safeguarding health and promoting effective interventions.
Collapse
Affiliation(s)
- Faris J Tayeb
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammed Fareed Felemban
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|
2
|
Song CY, Feng MX, Li L, Wang P, Lu X, Lu YQ. Tripterygium wilfordii Hook.f. ameliorates paraquat-induced lung injury by reducing oxidative stress and ferroptosis via Nrf2/HO-1 pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114575. [PMID: 36706526 DOI: 10.1016/j.ecoenv.2023.114575] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Paraquat (PQ) poisoning can induce acute lung injury and fibrosis and has an extremely high mortality rate. However, no effective treatments for PQ poisoning have been established. In this study, the potential efficacy of Tripterygium wilfordii Hook.f. (TwHF) in alleviating PQ-induced lung injury and fibrosis was investigated in a mouse model. Mice were randomly assigned to the control, PQ, PQ + TwHF1 (pretreatment before inducing poisoning), and PQ + TwHF2 (treatment after poisoning) groups. The mice in the PQ + TwHF1 group were pretreated with TwHF for 5 days before receiving one dose of PQ (120 mg/kg) and then received a daily oral gavage of the indicated dosages of TwHF until sacrifice. The mice in the PQ + TwHF2 group were treated with TwHF 2 h after PQ exposure until sacrifice. The pathological analysis and Fapi PET/CT showed that treatment with TwHF attenuated lung injury. And TwHF reduced pulmonary oxidative stress, as indicated by the reduction in, malondialdehyde (MDA), glutathione (GSH), and reactive oxygen species (ROS) levels, as well as by the increase in superoxide dismutase (SOD) levels. Accordingly, the Perls DAB staining showed increased iron concentrations and western blotting revealed a decreased GPX4 expression after PQ exposure, as well as the mitigation of the overexpression of Nrf2 and HO-1 induced by PQ. In conclusion, our study demonstrated the potential of TwHF as a treatment for PQ-induced lung injury and fibrosis. The protective mechanism of this medicinal herb may involve the regulation of ferroptosis.
Collapse
Affiliation(s)
- Cong-Ying Song
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang, People's Republic of China; Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003 Zhejiang, People's Republic of China
| | - Meng-Xiao Feng
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang, People's Republic of China; Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003 Zhejiang, People's Republic of China
| | - Li Li
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang, People's Republic of China; Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003 Zhejiang, People's Republic of China
| | - Ping Wang
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang, People's Republic of China; Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003 Zhejiang, People's Republic of China
| | - Xuan Lu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang, People's Republic of China; Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003 Zhejiang, People's Republic of China
| | - Yuan-Qiang Lu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang, People's Republic of China; Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003 Zhejiang, People's Republic of China.
| |
Collapse
|
3
|
Molaei E, Molaei A, Hayes AW, Karimi G. Resolvin D1, therapeutic target in acute respiratory distress syndrome. Eur J Pharmacol 2021; 911:174527. [PMID: 34582846 PMCID: PMC8464084 DOI: 10.1016/j.ejphar.2021.174527] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 12/25/2022]
Abstract
Acute lung injury (ALI), or its more severe form, acute respiratory distress syndrome (ARDS), is a disease with high mortality and is a serious challenge facing the World Health Organization because there is no specific treatment. The excessive and prolonged immune response is the hallmark of this disorder, so modulating and regulating inflammation plays an important role in its prevention and treatment. Resolvin D1 (RvD1) as a specialized pro-resolving mediator has the potential to suppress the expression of inflammatory cytokines and to facilitate the production of antioxidant proteins by stimulating lipoxin A4 receptor/formyl peptide receptor 2 (ALX/FPR2). These changes limit the invasion of immune cells into the lung tissue, inhibit coagulation, and enhance cell protection against oxidative stress (OS). In particular, this biomolecule reduces the generation of reactive oxygen species (ROS) by blocking the activation of inflammatory transcription factors, especially nuclear factor-κB (NF-κB), and accelerating the synthesis of antioxidant compounds such as heme oxygenase 1 (HO-1) and superoxide dismutase (SOD). Therefore, the destruction and dysfunction of important cell components such as cytoplasmic membrane, mitochondria, Na+/k + adenosine triphosphatase (ATPase) and proteins involved in the phagocytic activity of scavenger macrophages are attenuated. Numerous studies on the effect of RvD1 over inflammation using animal models revealed that Rvs have both anti-inflammatory and pro-resolving capabilities and therefore, might have potential therapeutic value in treating ALI. Here, we review the current knowledge on the classification, biosynthesis, receptors, mechanisms of action, and role of Rvs in ALI/ARDS.
Collapse
Affiliation(s)
- Emad Molaei
- Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Molaei
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Chen J, Su Y, Lin F, Iqbal M, Mehmood K, Zhang H, Shi D. Effect of paraquat on cytotoxicity involved in oxidative stress and inflammatory reaction: A review of mechanisms and ecological implications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112711. [PMID: 34455184 DOI: 10.1016/j.ecoenv.2021.112711] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/07/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Paraquat (PQ) is a cheap and an effective herbicide, which is widely being used worldwide to remove weeds in cultivated crop fields. However, it can cause soil and water pollution, and pose serious harm to the environment and organisms. Several countries have started to limit or prohibit the use of PQ because of the increasing number of human deaths. Its toxicity can damage the organisms with a multi-target mechanism, which has not been fully understood yet. That is why it is hard to treat as well. The current research on PQ focuses on its targeted organ, the lungs, in which PQ mostly trigger pulmonary fibrosis. While there is a lack of systematic research, there are few studies published discussing its toxic effects at systematic level. This review summarizes the major damages caused by PQ in different organisms and partial mechanisms by which it causes these damages. For this purpose, we consulted several research articles that studied the toxicity of PQ in various tissues. We also listed some drugs that can be used to alleviate the toxicity of PQ. However, at present, the effectiveness of these drugs is still being explored in animal experiments and the study of their mechanism will also help in understanding the poisoning mechanism of PQ, which will ultimately lead to effective treatment in future.
Collapse
Affiliation(s)
- Jiaxin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yalin Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Fei Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Mujahid Iqbal
- Department of Pathology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Khalid Mehmood
- Department of Clinical Medicine and Surgery, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Dayou Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Ahmadian E, Eftekhari A, Kavetskyy T, Khosroushahi AY, Turksoy VA, Khalilov R. Effects of quercetin loaded nanostructured lipid carriers on the paraquat-induced toxicity in human lymphocytes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 167:104586. [PMID: 32527420 DOI: 10.1016/j.pestbp.2020.104586] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/28/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Paraquat (PQ) as a herbicide and an environmental pollutant with increasing importance due to its toxicity to humans and animals. This study aimed to evaluate the protective and antioxidant activity of quercetin loaded Nanostructured Lipid Carriers (QNLC) against toxicity induced by PQ. Blood lymphocytes were prepared using Ficoll polysaccharide and subsequently by gradient centrifugation. The QNLC was prepared using an ultra-sonication method, which was characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The viability, reactive oxygen species (ROS), lipid peroxidation (LPO), mitochondrial membrane potential (MMP), lysosome membrane integrity, Bax and Bcl2 gene expression were evaluated in human isolated lymphocytes. The results showed spherical QNLCs with nano-size range (52.7 nm) and high drug encapsulation efficiency (98.5% -96%). The results also indicated that PQ induced cell death, as well as ROS production, decreased by QNLC in human lymphocytes. Also, QNLC meaningfully restored MMP reduction, lysosomal membrane destabilization, and lipid peroxidation and were capable of preventing PQ-treated change in Bax and Bcl2 gene expression. We report that QNLC, have a significantly higher capacity to prevent PQ-induced toxicity than Q itself. It is suggested that the QNLC is a promising antioxidant for drug delivery to be used as a therapeutic and prophylactic agent for PQ poisoning.
Collapse
Affiliation(s)
- Elham Ahmadian
- Kidney Research Center & Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Taras Kavetskyy
- Drohobych Ivan Franko State Pedagogical University, Drohobych, Ukraine; The John Paul II Catholic University of Lublin, Lublin, Poland; Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine, Baku, Azerbaijan
| | - Ahmad Yari Khosroushahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vugar Ali Turksoy
- Department of Public Health, Faculty of Medicine, Bozok University, Yozgat, Turkey
| | - Rovshan Khalilov
- Department of Biophysics and Molecular Biology, Baku State University, Baku, Azerbaijan; Russian Institute for Advanced Study, Moscow State Pedagogical University, 1/1, Malaya Pirogovskaya St, Moscow 119991, Russian Federation; Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine, Baku, Azerbaijan
| |
Collapse
|
6
|
Abedi F, Hayes AW, Reiter R, Karimi G. Acute lung injury: The therapeutic role of Rho kinase inhibitors. Pharmacol Res 2020; 155:104736. [PMID: 32135249 DOI: 10.1016/j.phrs.2020.104736] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/18/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
Acute lung injury (ALI) is a pulmonary illness with high rates of mortality and morbidity. Rho GTPase and its downstream effector, Rho kinase (ROCK), have been demonstrated to be involved in cell adhesion, motility, and contraction which can play a role in ALI. The electronic databases of Google Scholar, Scopus, PubMed, and Web of Science were searched to obtain relevant studies regarding the role of the Rho/ROCK signaling pathway in the pathophysiology of ALI and the effects of specific Rho kinase inhibitors in prevention and treatment of ALI. Upregulation of the RhoA/ROCK signaling pathway causes an increase of inflammation, immune cell migration, apoptosis, coagulation, contraction, and cell adhesion in pulmonary endothelial cells. These effects are involved in endothelium barrier dysfunction and edema, hallmarks of ALI. These effects were significantly reversed by Rho kinase inhibitors. Rho kinase inhibition offers a promising approach in ALI [ARDS] treatment.
Collapse
Affiliation(s)
- Farshad Abedi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida, Tampa, FL, USA; Michigan State University, East Lansing, MI, USA
| | - Russel Reiter
- University of Texas, Health Science Center at San Antonio, Department of Cellular and Structural Biology, USA
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Heydari M, Mokhtari-Zaer A, Amin F, Memarzia A, Saadat S, Hosseini M, Boskabady MH. The effect of Zataria multiflora hydroalcoholic extract on memory and lung changes induced by rats that inhaled paraquat. Nutr Neurosci 2019; 24:674-687. [PMID: 31583983 DOI: 10.1080/1028415x.2019.1668173] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mahrokh Heydari
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Mokhtari-Zaer
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Amin
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Physiology–Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Arghavan Memarzia
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeideh Saadat
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Paraquat Preferentially Induces Apoptosis of Late Stage Effector Lymphocyte and Impairs Memory Immune Response in Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16112060. [PMID: 31212664 PMCID: PMC6603875 DOI: 10.3390/ijerph16112060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023]
Abstract
Paraquat (PQ) is a toxic non-selective herbicide. To date, the effect of PQ on memory immune response is still unknown. We investigated the impact of PQ on memory immune response. Adult C57BL/6 mice were subcutaneously injected with 2 mg/kg PQ, 20 mg/kg PQ or vehicle control every three days for two weeks. A single injection of keyhole limpet hemocyanin (KLH) at day four after the initial PQ treatment was used to induce a primary immune response; a second KLH challenge was performed at three months post the first KLH immunization to induce a secondary immune response. In steady state, treatment with 20 mg/kg PQ reduced the level of serum total IgG, but not that of IgM; treatment with 20 mg/kg PQ decreased the number of effector and memory lymphocytes, but not naïve or inactivated lymphocytes. During the primary immune response to KLH, treatment with 20 mg/kg PQ did not influence the proliferation of lymphocytes or expression of co-stimulatory molecules. Instead, treatment with 20 mg/kg PQ increased the apoptosis of lymphocytes at late stage, but not early stage of the primary immune response. During the secondary immune response to KLH, treatment with 20 mg/kg PQ reduced the serum anti-KLH IgG and KLH-responsive CD4 T cells and B cells. Moreover, effector or activated lymphocytes were more sensitive to PQ-induced apoptosis in vitro. Treatment with 2 mg/kg PQ did not impact memory immune response to KLH. Thus, treatment with 20 mg/kg PQ increased apoptosis of late stage effector cells to yield less memory cells and thereafter impair memory immune response, providing a novel understanding of the immunotoxicity of PQ.
Collapse
|
9
|
Khorrami MB, Sadeghnia HR, Pasdar A, Ghayour-Mobarhan M, Riahi-Zanjani B, Hashemzadeh A, Zare M, Darroudi M. Antioxidant and toxicity studies of biosynthesized cerium oxide nanoparticles in rats. Int J Nanomedicine 2019; 14:2915-2926. [PMID: 31114200 PMCID: PMC6487897 DOI: 10.2147/ijn.s194192] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The purpose of this study was to investigate the acute toxic potential of cerium oxide nanoparticles (CNPs) synthesized by pullulan in adult male Wistar rats. PATIENTS AND METHODS Thirty male Wistar rats randomly were divided into five experimental groups of six animals each. The animals were received 50, 100, 200, and 400 mg/kg CNPs for 14 consecutive days. At the end of the experiment, the rats were euthanized and histopathological evaluation of the liver and renal tissues, as well ass, the markers of serum oxidative stress including thiobarbituric acid reactive substances, total sulfhydryl content, and antioxidant capacity (using ferric reducing/antioxidant power assay) were assessed. Hematological parameters and the activity of liver function enzymes were also measured. RESULTS The results of this study showed that CNPs caused no significant changes in the activity of liver enzymes, hepatic and renal histopathology and hematological parameters, while significantly improved serum redox status. CONCLUSION Acute administration of pullulan-mediated CNPs is safe and possess antioxidant activity.
Collapse
Affiliation(s)
- Mohammad Bagher Khorrami
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Social Security Organization, 17th Shahrivar Hospital, Mashhad, Iran
| | - Hamid Reza Sadeghnia
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,
| | - Alireza Pasdar
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Applied Medicine, Medical School, University of Aberdeen, Aberdeen, UK
| | - Majid Ghayour-Mobarhan
- Biochemistry of Nutrition Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bamdad Riahi-Zanjani
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Hashemzadeh
- NanoBioEletrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Mohammad Zare
- Social Security Organization, 17th Shahrivar Hospital, Mashhad, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,
| |
Collapse
|
10
|
Shirani K, Zanjani BR, Mahmoudi M, Jafarian AH, Hassani FV, Giesy JP, Karimi G. Immunotoxicity of aflatoxin M 1 : as a potent suppressor of innate and acquired immune systems in a subacute study. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:5884-5892. [PMID: 30014474 DOI: 10.1002/jsfa.9240] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 05/29/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Although, to date, there have been several in vitro and in vivo studies of immunomodulatory effects of aflatoxin M1 (AFB1 ), little is known about the effect of AFM1 on various aspects of innate and acquired immunity. In the present study, AFM1 was administered intraperitoneally, at doses of 25 and 50 μg kg-1 , body mass for 28 days and various immunological parameters were measured. RESULTS Several parameters related to immune function were suppressed: organ mass, cellularity of spleen, proliferation response to lipopolysaccaride and phytohemagglutinin-A, hemagglutination titer, delayed type of hypersensitivity response, spleen cell subtypes, serum hemolytic activity, serum immunoglobulin G level and cytokine production. AFM1 did not cause changes in body mass, hematological parameters or the concentration of immunoglobulin M in blood serum. CONCLUSIONS Overall, the data suggested that AFM1 suppressed innate and acquired immunity. Therefore, with respect to consumer safety, it is extremely important to further control the level of AFM1 in milk, and this should be considered as a precedence for risk management actions. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kobra Shirani
- Department of Pharmacodynamics and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bamdad R Zanjani
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, School of Medicine, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir H Jafarian
- Cancer Molecular Pathology Research Center, Faculty of Medicine, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh V Hassani
- Department of Pharmacodynamics and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
- Department of Zoology, Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Liu Y, Li Z, Xue X, Wang Y, Zhang Y, Wang J. Apigenin reverses lung injury and immunotoxicity in paraquat-treated mice. Int Immunopharmacol 2018; 65:531-538. [PMID: 30408630 DOI: 10.1016/j.intimp.2018.10.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/01/2018] [Accepted: 10/31/2018] [Indexed: 11/17/2022]
Abstract
Paraquat (PQ) induces acute lung injury (ALI) and immunotoxicity. Apigenin exerts anti-oxidant and anti-inflammatory properties. The purpose of this study was to investigate the possible protective effects of apigenin on PQ-induced ALI and immunotoxicity in mice. Female C57BL/6 mice received a single injection of PQ (50 mg/kg). Apigenin was given for 7 consecutive days starting 5 days before PQ exposure. The toxicity markers were evaluated in terms of weight loss, lung histopathology, oxidative stress, inflammation, and T cell functions after PQ exposure. Poisoned mice exhibited severe lung tissue lesions, inflammatory cell infiltration and the release of pro-inflammatory cytokines IL-6 and TNF-α. PQ administration increased the lung wet/dry ratios and lipid peroxidation by the increase of MDA levels and decreased anti-oxidase activity including SOD, GSH-PX, and CAT. While such effect on lung was reversed by apigenin. Importantly, PQ-induced immunotoxicity was also observed in a decrease of spleen weight, inhibition of T cell proliferation and T-cell secreting IL-2 from splenocytes. Further mechanism analysis found that PQ administration could decrease total splenocytes, CD4+ and CD8+ T cells, SOD, GSH-PX, and CAT activity, and increased the levels of MDA and the concentrations of pro-inflammatory cytokines IL-6 and TNF-α compared to control mice. However, apigenin treatment reversed PQ-induced immunotoxicity. In summary, all results suggest that apigenin has beneficial effects on PQ-induced ALI and immunotoxicity possibly, and it could be related, at least in part, to its ability in modulating inflammation and oxidative stress, although in-depth studies might be needed to fully understand the mechanism of action.
Collapse
Affiliation(s)
- Yifei Liu
- Institute of Infection and Immunity of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Zhengyi Li
- School of Physical Education, Henan University, Kaifeng 475000, China
| | - Xiaoxu Xue
- School of Physical Education, Henan University, Kaifeng 475000, China
| | - Yong Wang
- Department of Pathology of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Yijie Zhang
- Institute of Infection and Immunity of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Junpeng Wang
- Institute of Infection and Immunity of Huaihe Hospital, Henan University, Kaifeng 475000, China.
| |
Collapse
|
12
|
Wu Q, Xu Q, Jian X, Wang H, He X, Gao B, Wang K, Kan B. A new sight for paraquat poisoning from immunology. Immunopharmacol Immunotoxicol 2018; 40:269-272. [PMID: 30040510 DOI: 10.1080/08923973.2018.1490319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Paraquat (methyl viologen, PQ) is highly toxic to humans. Pulmonary fibrosis is the most common cause of death after PQ poisoning. However, no effective therapy is available. The current treatment dilemma and pathology suggest that we should reconsider how to treat the poisoning using other methods, such as immunization. Some clues indicate that immune mechanisms may play important roles in the pathology of PQ poisoning. We implemented a simple experiment to test the hypothesis that activated innate immunity was involved in acute lung injury induced by PQ. Six rats were randomly distributed to two groups: PQ poisoning group and Immunosuppression group (cyclophosphamide pretreatment). Forty-eight hours after PQ administration, rats were anesthetized. The right lungs were excised for histopathology. The experimental results confirmed that in the set of immune deficiency, the inflammatory response in Immunosuppression group could not be effectively triggered so the lung pathology was much better than PQ poisoning group. The immunopathogenic mechanism of PQ poisoning may be essentially a sterile inflammation triggered and amplified by damage-associated molecular patterns (DAMPs). If the hypothesis is established, it may change the therapeutic regimen of PQ poisoning and the prognosis of patients.
Collapse
Affiliation(s)
- Qiang Wu
- a Departments of Poisoning and Occupational Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , P.R. China.,b Department of Intensive Care Medicine , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui , P.R. China
| | - Qinliang Xu
- a Departments of Poisoning and Occupational Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , P.R. China
| | - Xiangdong Jian
- a Departments of Poisoning and Occupational Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , P.R. China
| | - Huaxue Wang
- b Department of Intensive Care Medicine , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui , P.R. China
| | - Xiandi He
- b Department of Intensive Care Medicine , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui , P.R. China
| | - Beijun Gao
- a Departments of Poisoning and Occupational Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , P.R. China
| | - Ke Wang
- c Public Health School of Shandong University , Jinan , Shandong , P.R. China
| | - Baotian Kan
- a Departments of Poisoning and Occupational Diseases , Qilu Hospital, Shandong University , Jinan , Shandong , P.R. China
| |
Collapse
|
13
|
Karimi G, Balali-Mood M, Alamdaran SA, Badie-Bostan H, Mohammadi E, Ghorani-Azam A, Sadeghi M, Riahi-Zanjani B. Increase in the Th1-Cell-Based Immune Response in Healthy Workers Exposed to Low-Dose Radiation - Immune System Status of Radiology Staff. J Pharmacopuncture 2017; 20:107-111. [PMID: 30087787 PMCID: PMC5532469 DOI: 10.3831/kpi.2017.20.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/29/2017] [Accepted: 06/13/2017] [Indexed: 11/30/2022] Open
Abstract
Objectives Radiation is one of the most important sources of free radical (such as reactive oxygen species) production, which plays an essential role in the etiology of over hundred diseases. The aim of the study was to investigate some immune parameters and hematological indices in healthy workers of the Radiology Department, University Hospital of Mashhad, Iran. Methods The study was performed on 50 healthy workers: 30 radiology staff as the case group and 20 laboratory workers as the control group. The radiation dose received by the radiology staff participating in the study was less than the annual maximum permissible level, 50 millisievert. Hematological parameters, lymphocyte proliferation and cytokine production were studied in both groups. Results Among healthy radiology workers, the hematological indices did not differ statistically; however, their proliferation indices and IFN-γ levels showed significant increases in parallel with decreases in the IL-4 levels as compared to controls. The immune system of workers exposed to low-dose ionizing radiation was found to be shifted from a Type 2 to a Type 1 response to promote cellular immunity. Conclusion Based on our data, exposure to low-dose ionizing radiation may decrease the prevalence, frequency, and recurrence of various cancers and infectious diseases because of an increase in Th1-cell-based response, thus leading to more protection of the human body against tumor cells and foreign agents and possibly increased longevity. However, due to high rate of fluoroscopy use for interventional radiology, we suggest continuing research projects on radiation protection and hazards to prevent irreversible damage. As a recommendation, in future studies, radiology staff with a weakened immunity due to high radiation exposure should be considered as good choices to be treated using acupuncture techniques because acupuncture has been demonstrated to enhance the function and the number of immune cells.
Collapse
Affiliation(s)
- Gholamreza Karimi
- Pharmaceutical Research Center, Pharmacy School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Balali-Mood
- Medical Toxicology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Ali Alamdaran
- Radiology Department, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Badie-Bostan
- Pharmaceutical Research Center, Pharmacy School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elaheh Mohammadi
- Pharmaceutical Research Center, Pharmacy School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Adel Ghorani-Azam
- Medical Toxicology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmood Sadeghi
- Medical Toxicology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bamdad Riahi-Zanjani
- Medical Toxicology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Immune-Enhancing Effects of a High Molecular Weight Fraction of Cynanchum wilfordii Hemsley in Macrophages and Immunosuppressed Mice. Nutrients 2016; 8:nu8100600. [PMID: 27690089 PMCID: PMC5083988 DOI: 10.3390/nu8100600] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to investigate the immune-enhancing activity of a high molecular weight fraction (HMF) of Cynanchum wilfordii in RAW 264.7 macrophages and the cyclophosphamide (CYC)-induced mouse model of immunosuppression. To identify the bioactive substances of HMF, a crude polysaccharide (HMFO) was obtained and treated with sodium periodate (an oxidation agent) or digested with protease. In macrophages, HMF treatment enhanced the production of nitric oxide (NO) and cytokines (tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and interleukin 1β (IL-1β)), as well as phagocytic ability. In CYC-immunosuppressed mice, HMF improved relative spleen and thymus weights, natural killer (NK) cell activity, and splenic lymphocyte proliferation. These increases in NO and cytokines were mediated by up-regulation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Periodate treatment, but not protease treatment, decreased the immune-enhancing activity of HMFO, suggesting that polysaccharides are the active ingredients in C. wilfordii extract.
Collapse
|
15
|
Jang YJ, Won JH, Back MJ, Fu Z, Jang JM, Ha HC, Hong S, Chang M, Kim DK. Paraquat Induces Apoptosis through a Mitochondria-Dependent Pathway in RAW264.7 Cells. Biomol Ther (Seoul) 2015; 23:407-13. [PMID: 26336579 PMCID: PMC4556199 DOI: 10.4062/biomolther.2015.075] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 01/11/2023] Open
Abstract
Paraquat dichloride (N,N-dimethyl-4-4′-bipiridinium, PQ) is an extremely toxic chemical that is widely used in herbicides. PQ generates reactive oxygen species (ROS) and causes multiple organ failure. In particular, PQ has been reported to be an immunotoxic agrochemical compound. PQ was shown to decrease the number of macrophages in rats and suppress monocyte phagocytic activity in mice. However, the effect of PQ on macrophage cell viability remains unclear. In this study, we evaluated the cytotoxic effect of PQ on the mouse macrophage cell line, RAW264.7 and its possible mechanism of action. RAW264.7 cells were treated with PQ (0, 75, and 150 μM), and cellular apoptosis, mitochondrial membrane potential (MMP), and intracellular ROS levels were determined. Morphological changes to the cell nucleus and cellular apoptosis were also evaluated by DAPI and Annexin V staining, respectively. In this study, PQ induced apoptotic cell death by dose-dependently decreasing MMP. Additionally, PQ increased the cleaved form of caspase-3, an apoptotic marker. In conclusion, PQ induces apoptosis in RAW264.7 cells through a ROS-mediated mitochondrial pathway. Thus, our study improves our knowledge of PQ-induced toxicity, and may give us a greater understanding of how PQ affects the immune system.
Collapse
Affiliation(s)
- Yeo Jin Jang
- Department of Health, Social, and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Jong Hoon Won
- Department of Health, Social, and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Moon Jung Back
- Department of Health, Social, and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Zhicheng Fu
- Department of Health, Social, and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Ji Min Jang
- Department of Health, Social, and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Hae Chan Ha
- Department of Health, Social, and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - SeungBeom Hong
- Department of Health, Social, and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Minsun Chang
- Department of Health, Social, and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Dae Kyong Kim
- Department of Health, Social, and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| |
Collapse
|
16
|
Mahmoudi M, Zamani Taghizadeh Rabe S, Balali-Mood M, Karimi G, Memar B, Rahnama M, Tabasi N, Khazaee M, Riahi-Zanjani B. Immunotoxicity induced in mice by subacute exposure to berberine. J Immunotoxicol 2015; 13:255-62. [DOI: 10.3109/1547691x.2015.1058306] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Mahmoud Mahmoudi
- Immunology Research Center, Department of Immunology and Allergy, School of Medicine,
| | | | | | | | - Bahram Memar
- Cancer Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | | | |
Collapse
|
17
|
Shirani K, Hassani FV, Razavi-Azarkhiavi K, Heidari S, Zanjani BR, Karimi G. Phytotrapy of cyclophosphamide-induced immunosuppression. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:1262-1275. [PMID: 26026872 DOI: 10.1016/j.etap.2015.04.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 04/16/2015] [Accepted: 04/18/2015] [Indexed: 06/04/2023]
Abstract
Cyclophosphamide (CP) is a cytotoxic drug that can suppress both humoral and cellular immunity. Combining traditional medicinal herbs and chemotherapy drugs are used to improve immunity and quality of life performance status. In this paper, the effects of plant extracts, active components and their derivatives on immunosuppression of CP are discussed. Appropriate keywords were used to search through PubMed, Google Scholar, and Sciverse. All relevant results published from 1990 to date were chosen for final review. Over 50 references were found in which plant extracts, active components and their derivatives have been tested for their immune protective effects against CP-induced immune toxicity. Although there are several plants shown to be effective in animal models, no study was carried out on human subjects. According to the results; we can claim that plants and their active ingredients are good candidates for alternative adjuvant chemotherapy in reducing the immunotoxicity of CP.
Collapse
Affiliation(s)
- Kobra Shirani
- Department of Pharmacodynamy and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Vahdati Hassani
- Department of Pharmacodynamy and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kamal Razavi-Azarkhiavi
- Department of Pharmacodynamy and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somayeh Heidari
- Department of Pharmacodynamy and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bamdad Riahi Zanjani
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Medical Toxicology Research Center and Pharmacy School, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Lim JH, Won JH, Ahn KH, Back MJ, Fu Z, Jang JM, Ha HC, Jang YJ, Kim DK. Paraquat reduces natural killer cell activity via metallothionein induction. J Immunotoxicol 2014; 12:342-9. [PMID: 25496228 DOI: 10.3109/1547691x.2014.980924] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Paraquat (PQ), one of the most widely used herbicides, has been used for several decades in agriculture. Some studies suggest that PQ has effects on the immune system. Moreover, previous studies have shown that PQ imparted some immunosuppressive effects. In the present study, cytotoxicity assays using splenic NK cells from mice treated for 28 days with PQ (at 0.2, 1, and 5 mg/kg) were performed to determine whether PQ altered the function of NK cells. Given that PQ was expected to induce an immunosuppressive effect, it was hypothesized that a gene involved in cellular metal ion homeostasis, metallothionein-1 (MT-1), could play an important role in this outcome. This belief was based on the fact that MT1 encodes a protein responsible for zinc ion homeostasis, and that a reduction in free zinc ion levels impairs NK cell function. The results showed that PQ treatments led to increased MT expression in several organs (liver, kidneys, testes) and in splenocytes, caused a reduction of both free zinc ions in sera and in free intracellular zinc, and reduced the expression of GATA-3, a zinc-finger transcription factor important for maturation and activity of T-cells and NK cells. These results provide a basis for a new molecular mechanism to describe potential immunosuppressive effects of PQ in vivo.
Collapse
Affiliation(s)
- Joo Hyuk Lim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University , Seoul , South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Serum cytokine profiles of Khorasan veterans 23 years after sulfur mustard exposure. Cytokine 2014; 70:161-4. [PMID: 25138016 DOI: 10.1016/j.cyto.2014.07.248] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 06/07/2014] [Accepted: 07/22/2014] [Indexed: 12/11/2022]
Abstract
Sulfur mustard (SM) is an incapacitating chemical warfare agent that was used against Iranian soldiers during the period from 1983 to 1988. We have investigated serum cytokines profiles of Khorasan veterans who were exposed to SM >23 years earlier. Forty-four male Iranian veterans who had >40% disabilities due to delayed complications of SM poisoning and had disabilities were investigated. A total of 30 healthy male volunteers (relatives of the veterans) were selected as the control group. Cytokine levels were measured in the serum of case and control subjects using commercial ELISA kits. Hematologic parameters (white/red blood cell counts, hemoglobin levels, immune cell differentials) were also performed on blood samples from the study subjects. The results indicated that serum levels of ICAM-1 were significantly higher in the samples from SM-exposed veterans (772.8 [± 15.1] ng/ml [p=0.014] vs. control values of 710.2 [± 20.0] ng/ml). On the other hand, serum IL-1β, IL-8 levels and TNFα, were significantly lower for the veterans than the controls (IL-1β: 3.8 [± 0.1] vs. 4.3 [± 0.2] pg/ml, p=0.037; IL-8: 21.0 [± 6.1] vs. 84.6 [± 20.3] pg/ml, p=0.002; TNFα: 4.5 [± 0.1] vs. 5.5 [± 0.1] pg/ml, p=0.027). Levels of other assayed cytokines, e.g., IL-2, -4, -5, -6, -10, and -12, IFNγ, TNFβ, and sVCAM-1 were not significantly different between the study populations. None of the assayed hematologic parameters appeared to differ as well. It seems possible that dysfunctions could have been induced in the innate immune functions of the SM-exposed veterans as a result of these changes in cytokine expression and that these, in turn, may have contributed to the increased incidence of a myriad of diseases that have been documented in these veterans, including cancers. Future studies must focus on examining the significance of these changes in circulating cytokines and their potential contribution to the development of different diseases in veterans exposed to SM.
Collapse
|
20
|
Lalruatfel P, Saminathan M, Ingole R, Dhama K, Joshi M. Toxicopathology of Paraquat Herbicide in Female Wistar Rats. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/ajava.2014.523.542] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Kim YS, Jung H, Gil HW, Hong SY, Song HY. Proteomic analysis of changes in protein expression in serum from animals exposed to paraquat. Int J Mol Med 2012; 30:1521-7. [PMID: 23023206 DOI: 10.3892/ijmm.2012.1143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/13/2012] [Indexed: 11/06/2022] Open
Abstract
Paraquat (PQ) poisoning remains a major public health concern in many countries. Extensive research has focused on finding early diagnostic biomarkers of acute PQ poisoning. In order to investigate the characterization of diagnostic biomarkers in PQ poisoning, we utilized proteomic analysis using serum from rats exposed to PQ, and we identified 8 differentially expressed proteins from over 500 protein spots. The expression of apolipoprotein E (ApoE), preprohaptoglobin (Pphg), a precursor of haptoglobin (Hp), and complement component 3 (C3) proteins was greatly induced by PQ exposure while the expression of fibrinogen γ-chain (FGG) and Ac-158 was dramatically reduced. To further investigate the possibility of ApoE, Pphg and FGG as useful diagnostic biomarkers of PQ poisoning, western blot and qRT-PCR analyses were conducted using cell lines as well as rat and human sera. The expression levels of ApoE, Hp and FGG were significantly altered in the presence of PQ in both rat and human serum suggesting that these proteins may be appropriate candidate molecular biomarkers for the early diagnosis of acute PQ intoxication.
Collapse
Affiliation(s)
- Yong-Sik Kim
- Department of Microbiology, College of Medicine, Soon Chun Hyang University, Cheonan, Chungnam 330-090, Republic of Korea
| | | | | | | | | |
Collapse
|
22
|
Hassuneh MR, Albini MA, Talib WH. Immunotoxicity Induced by Acute Subtoxic Doses of Paraquat Herbicide: Implication of Shifting Cytokine Gene Expression toward T-Helper (TH)-17 Phenotype. Chem Res Toxicol 2012; 25:2112-6. [DOI: 10.1021/tx300194t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mona R. Hassuneh
- Department of Biological
Sciences,
Faculty of Science, University of Jordan, Amman 11942, Jordan
| | - Maysaa' A. Albini
- Department of Biological
Sciences,
Faculty of Science, University of Jordan, Amman 11942, Jordan
| | - Wamidh H. Talib
- Department of Clinical Pharmacy
and Therapeutics, Applied Science University, Amman 11931, Jordan
| |
Collapse
|
23
|
Barua S, Larabee J, Regens JL, Ballard JD. Differential inflammatory responses triggered by toxic small molecules. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:619-627. [PMID: 21881907 DOI: 10.1007/s11356-011-0593-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 08/16/2011] [Indexed: 05/31/2023]
Abstract
PURPOSE The aim of this study is to determine whether exposure to hazardous chemicals alters chemokine or cytokine production in macrophages and link these events to changes in intracellular signaling pathways and activation of specific gene promoters. METHODS RAW 264.7 mouse macrophages were treated with selected toxic industrial chemicals (TICs) and examined for changes in immune function. Luminex multiplex technology was used to assess changes in cytokine/chemokine expression and activation of kinase signaling pathways. In addition, a panel of macrophage cell lines with promoter-specific luciferase reporter genes were generated and treated with the TICs, and transcriptional responses to these chemicals were detected by changes in luminescence. RESULTS Changes in expression of cytokines and chemokines were linked to changes in the activation state of intracellular signaling pathways. Overall, the findings reveal that sublytic levels of TICs can alter the profile of cytokines and chemokines expressed by macrophages, with a pattern that suggests immunosuppression. The data demonstrate that critical changes in immune function correlate with activation of kinase signaling pathways in macrophages. CONCLUSIONS These data provide insight into the effects of sublytic doses of selected TICs on macrophage function, with a particular emphasis on identifying changes in expression of cytokines and chemokines. These altered patterns in immune function were linked to changes in the activation state of intracellular signaling pathways. The data strongly suggest that small amounts of TICs can have subtle, yet very critical, effects on macrophages.
Collapse
Affiliation(s)
- Soumitra Barua
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | | | | | | |
Collapse
|
24
|
Rezaee J, Nejati V, Tukmechi A, Hasanzadeh S. Histopathological effects of experimental paraquat on spleen and pronephros of rainbow trout (Oncorhynchus mykiss). ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s00580-012-1437-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|