1
|
Titon OJO, Titon JP, Silva JÍCD, Ferreira MO, Garbim MR, Rech D, Souza JRAD, Panis C. Influence of exogenous opioids on the acute inflammatory response in the perioperative period of oncological surgery: a clinical study. BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ELSEVIER) 2024; 74:744290. [PMID: 34624369 PMCID: PMC10877336 DOI: 10.1016/j.bjane.2021.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/02/2021] [Accepted: 09/05/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Recently, opioids have been related to trigger changes in cytokine release and tumor angiogenesis processes, influencing tumor growth, metastasis, and recurrence. METHODS This is a prospective randomized clinical study to test whether if exogenous opioids used in the anesthesia during cancer surgery can affect the systemic inflammatory and immunological patterns. Patients were randomly allocated to the OP (opioid...inclusive) or OF (opioid-free) anesthesia group. A total of 45 patients were selected, being carriers of prostate, stomach, pancreas, bile ducts, breast, colon, lung, uterus, kidneys, or retroperitoneum tumors. Plasma levels of IL-4, IL-12, IL-17A, and TNF-.., and their oxidative stress profile before and after surgery were evaluated in both groups. In vitro tests were performed by using healthy donor blood incubated with each isolated drug used in patients... anesthesia for 1...hour, the same cytokines were measured in plasma. RESULTS There was a significant reduction in lipid peroxidation in both groups. Patients from OF group had a significant consumption of IL-12 in the perioperative period. The other cytokines evaluated did not vary. It was also observed a significant correlation between IL-12 and TNF-.. levels in the OF-post group. Except for atracurium, all tested drugs led to a reduction in IL-12 levels. CONCLUSIONS This study demonstrated that there is a reduction of IL-12 in the OF-post patients, suggesting acute consumption and that this seems to be a general mechanism of anesthetic drugs, as demonstrated in vitro. Also, these findings bring us to reflect if IL-12 changes may influence the disease progression and recurrence.
Collapse
Affiliation(s)
- Odirlei Jo O Titon
- Universidade Estadual do Oeste do Paran.. (Unioeste), Francisco Beltr.·o, PR, Brazil
| | - Joana Perotta Titon
- Universidade Estadual do Oeste do Paran.. (Unioeste), Francisco Beltr.·o, PR, Brazil
| | | | | | | | - Daniel Rech
- Universidade Estadual do Oeste do Paran.. (Unioeste), Francisco Beltr.·o, PR, Brazil
| | | | - Carolina Panis
- Universidade Estadual do Oeste do Paran.. (Unioeste), Francisco Beltr.·o, PR, Brazil.
| |
Collapse
|
2
|
Gu L, Pan X, Wang C, Wang L. The benefits of propofol on cancer treatment: Decipher its modulation code to immunocytes. Front Pharmacol 2022; 13:919636. [PMID: 36408275 PMCID: PMC9672338 DOI: 10.3389/fphar.2022.919636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2023] Open
Abstract
Anesthetics are essential for cancer surgery, but accumulated research have proven that some anesthetics promote the occurrence of certain cancers, leading to adverse effects in the lives of patients. Although anesthetic technology is mature, there is no golden drug selection standard for surgical cancer treatment. To afford the responsibility of human health, a more specific regimen for cancer resection is indeed necessary. Immunosuppression in oncologic surgery has an adverse influence on the outcomes of patients. The choice of anesthetic strategies influences perioperative immunity. Among anesthetics, propofol has shown positive effects on immunity. Apart from that, propofol's anticancer effect has been generally reported, which makes it more significant in oncologic surgery. However, the immunoregulative function of propofol is not reorganized well. Herein, we have summarized the impact of propofol on different immunocytes, proposed its potential mechanism for the positive effect on cancer immunity, and offered a conceivable hypothesis on its regulation to postoperative inflammation. We conclude that the priority of propofol is high in oncologic surgery and propofol may be a promising immunomodulatory drug for tumor therapy.
Collapse
Affiliation(s)
- Long Gu
- First Operating Room, First Hospital of Jilin University, Changchun, China
| | - Xueqi Pan
- Intensive Care Unit, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Chongcheng Wang
- Trauma Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lei Wang
- Department of Pediatric Neurology, First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
3
|
Effects of Propofol versus Sevoflurane on Postoperative Pain and Neuroendocrine Stress Response in Oocyte Pickup Patients. Pain Res Manag 2021; 2021:5517150. [PMID: 33936350 PMCID: PMC8055426 DOI: 10.1155/2021/5517150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 02/02/2023]
Abstract
Background Pain aggravates the autonomic response to stress and raises neuroendocrine stress hormone levels. We compared the effects of propofol and sevoflurane on postoperative pain and neuroendocrine stress hormones. A prospective, randomized, and controlled trial was conducted with 60 patients. Methods We randomly allocated patients to groups P (remifentanil/propofol, n = 30) and S (remifentanil/sevoflurane, n = 30). Preoperative blood samples were taken to measure serum adrenocorticotropic hormone (ACTH), corticotropin-releasing hormone (CRH), glucagon, cortisol, aldosterone, and prostaglandin E2 (PGE2) levels. Intraoperatively and postoperatively, clinical parameters were monitored at different time points. The hormone levels were again measured in the follicular fluid and blood postoperatively. Result Demographic data were similar. The preoperative serum aldosterone levels were significantly higher in group P (p=0.001). Preoperative and postoperative serum ACTH, glucagon, cortisol, and PGE2 levels were significantly different in group P (p=0.009, p=0.004, p=0.029, and p=0.002); serum ACTH, glucagon, and PGE2 levels increased while serum cortisol levels decreased postoperatively. In group S, serum CRH and aldosterone levels, both increased in the postoperative period compared to the preoperative (p=0.001, p=0.006). Postoperatively, glucagon and PGE2 levels were both higher in group P than group S (p=0.019, p=0.015). In postoperative follicular fluid, glucagon and PGE2 levels were higher in group P, while cortisol levels were higher in group S (p=0.001, p=0.007, and p=0.001). Conclusion The effects of anesthetic agents were different. In group P, in the preoperative and postoperative evaluation, ACTH, glucagon, and PGE2 increased postoperatively, while cortisol decreased. In group S, aldosterone and CRH increased postoperatively. Glucagon and PG E2 were higher in group P than S, postoperatively.
Collapse
|
4
|
Antiviral Efficacy of the Anesthetic Propofol against Dengue Virus Infection and Cellular Inflammation. J Immunol Res 2021; 2021:6680913. [PMID: 33869639 PMCID: PMC8032536 DOI: 10.1155/2021/6680913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/28/2021] [Accepted: 03/21/2021] [Indexed: 02/06/2023] Open
Abstract
Propofol, 2,6-diisopropylphenol, is a short-acting intravenous sedative agent used in adults and children. Current studies show its various antimicrobial as well as anti-inflammatory effects. Dengue virus (DENV) is an emerging infectious pathogen transmitted by mosquitoes that causes mild dengue fever and progressive severe dengue diseases. In the absence of safe vaccines and antiviral agents, adjuvant treatments and supportive care are generally administered. This study investigated the antiviral effects of propofol against DENV infection and cellular inflammation by using an in vitro cell model. Treatment with propofol significantly inhibited DENV release 24 h postinfection in BHK-21 cells. Furthermore, it also blocked viral protein expression independent of the translational blockade. Propofol neither caused inhibitory effects on endosomal acidification nor prevented dsRNA replication. Either the proinflammatory TNF-α or the antiviral STAT1 signaling was reduced by propofol treatment. These results provide evidence to show the potential antiviral effects of the sedative propofol against DENV infection and cellular inflammation.
Collapse
|
5
|
Ishikawa M, Iwasaki M, Sakamoto A, Ma D. Anesthetics may modulate cancer surgical outcome: a possible role of miRNAs regulation. BMC Anesthesiol 2021; 21:71. [PMID: 33750303 PMCID: PMC7941705 DOI: 10.1186/s12871-021-01294-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Background microRNAs (miRNAs) are single-stranded and noncoding RNA molecules that control post-transcriptional gene regulation. miRNAs can be tumor suppressors or oncogenes through various mechanism including cancer cell biology, cell-to-cell communication, and anti-cancer immunity. Main Body Anesthetics can affect cell biology through miRNA-mediated regulation of messenger RNA (mRNA). Indeed, sevoflurane was reported to upregulate miR-203 and suppresses breast cancer cell proliferation. Propofol reduces matrix metalloproteinase expression through its impact on miRNAs, leading to anti-cancer microenvironmental changes. Propofol also modifies miRNA expression profile in circulating extracellular vesicles with their subsequent anti-cancer effects via modulating cell-to-cell communication. Conclusion Inhalational and intravenous anesthetics can alter cancer cell biology through various cellular signaling pathways induced by miRNAs’ modification. However, this area of research is insufficient and further study is needed to figure out optimal anesthesia regimens for cancer patients.
Collapse
Affiliation(s)
- Masashi Ishikawa
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo, Tokyo, 113-8603, Japan. .,Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, 369 Fulham Rd, London, SW10 9NH, UK.
| | - Masae Iwasaki
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo, Tokyo, 113-8603, Japan.,Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, 369 Fulham Rd, London, SW10 9NH, UK
| | - Atsuhiro Sakamoto
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo, Tokyo, 113-8603, Japan
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, 369 Fulham Rd, London, SW10 9NH, UK
| |
Collapse
|
6
|
Hernández-Avalos I, Flores-Gasca E, Mota-Rojas D, Casas-Alvarado A, Miranda-Cortés AE, Domínguez-Oliva A. Neurobiology of anesthetic-surgical stress and induced behavioral changes in dogs and cats: A review. Vet World 2021; 14:393-404. [PMID: 33776304 PMCID: PMC7994130 DOI: 10.14202/vetworld.2021.393-404] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
The anesthetic-surgical stress response consists of metabolic, neuroendocrine, hemodynamic, immunological, and behavioral adaptations through chemical mediators such as the adrenocorticotropic hormone, growth hormone, antidiuretic hormone, cortisol, aldosterone, angiotensin II, thyroid-stimulating hormone, thyroxine, triiodothyronine, follicle-stimulating hormone, luteinizing hormone, catecholamines, insulin, interleukin (IL)-1, IL-6, tumor necrosis factor-alpha, and prostaglandin E-2. Behavioral changes include adopting the so-called prayer posture, altered facial expressions, hyporexia or anorexia, drowsiness, sleep disorders, restriction of movement, licking or biting the injured area, and vocalizations. Overall, these changes are essential mechanisms to counteract harmful stimuli. However, if uncontrolled surgical stress persists, recovery time may be prolonged, along with increased susceptibility to infections in the post-operative period. This review discusses the neurobiology and most relevant organic responses to pain and anesthetic-surgical stress in dogs and cats. It highlights the role of stress biomarkers and their influence on autonomous and demeanor aspects and emphasizes the importance of understanding and correlating all factors to provide a more accurate assessment of pain and animal welfare in dogs and cats throughout the surgical process.
Collapse
Affiliation(s)
- I Hernández-Avalos
- Department of Biological Sciences, Clinical Pharmacology and Veterinary Anesthesia, Faculty of Higher Studies Cuautitlán, Universidad Nacional Autónoma de México, State of Mexico 54714, Mexico
| | - E Flores-Gasca
- Department of Veterinary Surgery, Faculty of Higher Studies Cuautitlán, Universidad Nacional Autónoma de México, State of Mexico 54714, Mexico
| | - D Mota-Rojas
- Neurophysiology of Pain, Behavior and Assessment of Welfare in Domestic Animals, DPAA, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - A Casas-Alvarado
- Master in Agricultural Sciences. Animal Welfare, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - A E Miranda-Cortés
- Department of Biological Sciences, Clinical Pharmacology and Veterinary Anesthesia, Faculty of Higher Studies Cuautitlán, Universidad Nacional Autónoma de México, State of Mexico 54714, Mexico
| | - A Domínguez-Oliva
- Department of Biological Sciences, Clinical Pharmacology and Veterinary Anesthesia, Faculty of Higher Studies Cuautitlán, Universidad Nacional Autónoma de México, State of Mexico 54714, Mexico
| |
Collapse
|
7
|
Guo F, Ding Y, Yu X, Cai X. Effect of dexmedetomidine, midazolam, and propofol on lipopolysaccharide-stimulated dendritic cells. Exp Ther Med 2018; 15:5487-5494. [PMID: 29904429 DOI: 10.3892/etm.2018.6094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 03/09/2018] [Indexed: 12/17/2022] Open
Abstract
Dexmedetomidine, midazolam and propofol are common sedative drugs used in the intensive care unit. Lipopolysaccharides (LPS) are a potent inducer of human dendritic cells (DCs) maturation and survival, which induces cytokine production. The present study aimed to investigate the effect and mechanisms of sedative drugs on LPS-induced cytokine production in DCs. The mouse bone marrow-derived dendritic DC2.4 cell line was used in the present study. The Cell Counting Kit-8 assay was used to measure the viability of cells. Tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-10 mRNA expression levels and contents were measured using reverse transcription-quantitative polymerase chain reaction and ELISA, respectively. The expression levels of proteins associated with nuclear factor-κB (NF-κB) and mitogen activated protein kinase signaling pathways were assessed by western blotting. The three sedatives had different roles on TNF-α, IL-1β, IL-6, and IL-10 mRNA expression levels and content in DCs. Dexmedetomidine promoted inflammatory cytokine production at high clinical concentrations (10, 1 and 0.1 µM), however suppressed them at the lowest clinical concentration (0.001 µM), which was associated with NF-κB and c-Jun N-terminal kinase (JNK)-mitogen-activated protein kinase (MAPK) signaling. Midazolam inhibited inflammatory cytokine production via suppression of the NF-κB and JNK signaling pathways. Propofol partly inhibited inflammatory cytokine production, including IL-1β and IL-6, and the anti-inflammatory effect may result from inhibition of JNK-MAPK, and enhanced NF-κB and extracellular signal-regulated kinase-MAPK signaling at clinical concentrations. The present study helped to elucidate the function of sedatives in LPS-induced cytokine production in DCs, which will facilitate rational implementation of these sedatives in patients undergoing tracheal intubation with sepsis or multiple organ dysfunction syndrome.
Collapse
Affiliation(s)
- Feng Guo
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Ying Ding
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital Xiasha Campus, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Xue Yu
- Department of Medicine, Tengzhou Central People's Hospital, Zaozhuang, Shandong 277500, P.R. China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
8
|
Implicating anaesthesia and the perioperative period in cancer recurrence and metastasis. Clin Exp Metastasis 2017; 35:347-358. [DOI: 10.1007/s10585-017-9862-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/08/2017] [Indexed: 12/25/2022]
|
9
|
Propofol Sedation Exacerbates Kidney Pathology and Dissemination of Bacteria during Staphylococcus aureus Bloodstream Infections. Infect Immun 2017; 85:IAI.00097-17. [PMID: 28461390 DOI: 10.1128/iai.00097-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/13/2017] [Indexed: 02/06/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is responsible for large numbers of postsurgical nosocomial infections across the United States and worldwide. Propofol anesthesia is widely used in surgery and in intensive care units, and recent evidence indicates that even brief exposure to propofol can substantially increase host susceptibility to microbial infection. Here, we delineate the impact of propofol sedation on MRSA bloodstream infections in mice in the presence and absence of prophylactic antibiotic treatment. Consistent with previous reports, brief periods of anesthesia with propofol were sufficient to significantly increase bacterial burdens and kidney pathology in mice infected with MRSA. Propofol exposure increased neutrophilic infiltrates into the kidney and enhanced bacterial dissemination throughout kidney tissue. Propofol sedation reduced populations of effector phagocytes and mature dendritic cells within the kidney and led to the apparent expansion of myeloid-derived suppressor cell-like populations. When propofol was coadministered with vancomycin prophylaxis, it dramatically increased kidney abscess formation and bacterial dissemination throughout kidney tissue at early times post-S. aureus infection compared to antibiotic-treated but nonsedated animals. Taken together, our data indicate that short-term sedation with propofol significantly increases the severity of bloodstream MRSA infection, even when administered in conjunction with vancomycin prophylaxis.
Collapse
|
10
|
Okuno T, Koutsogiannaki S, Ohba M, Chamberlain M, Bu W, Lin FY, Eckenhoff RG, Yokomizo T, Yuki K. Intravenous anesthetic propofol binds to 5-lipoxygenase and attenuates leukotriene B 4 production. FASEB J 2017; 31:1584-1594. [PMID: 28069825 DOI: 10.1096/fj.201601095r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/19/2016] [Indexed: 11/11/2022]
Abstract
Propofol is an intravenous anesthetic that produces its anesthetic effect, largely via the GABAA receptor in the CNS, and also reduces the N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced neutrophil respiratory burst. Because fMLP-stimulated neutrophils produce leukotriene (LT)B4, we examined the effect of propofol on LTB4 production in vivo and in vitro Cecal ligation and puncture surgery was performed in mice, with or without exposure to propofol. Propofol attenuated the production of 5-lipoxygenase (5-LOX)-related arachidonic acid (AA) derivatives in the peritoneal fluid. Also, in the in vitro experiments on fMLP-stimulated neutrophils and 5-LOX-transfected human embryonic kidney cells, propofol attenuated the production of 5-LOX-related AA derivatives. Based on these results, we hypothesized that propofol would directly affect 5-LOX function. Using meta-azi-propofol (AziPm), we photolabeled stable 5-LOX protein, which had been used to solve the X-ray crystallographic structure of 5-LOX, and examined the binding site(s) of propofol on 5-LOX. Two propofol binding pockets were identified near the active site of 5-LOX. Alanine scanning mutagenesis was performed for the residues of 5-LOX in the vicinity of propofol, and we evaluated the functional role of these pockets in LTB4 production. We demonstrated that these pockets were functionally important for 5-LOX activity. These two pockets can be used to explore a novel 5-LOX inhibitor in the future.-Okuno, T., Koutsogiannaki, S., Ohba, M., Chamberlain, M., Bu, W., Lin, F.-Y., Eckenhoff, R. G., Yokomizo T., Yuki, K. Intravenous anesthetic propofol binds to 5-lipoxygenase and attenuates leukotriene B4 production.
Collapse
Affiliation(s)
- Toshiaki Okuno
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo Japan
| | - Sophia Koutsogiannaki
- Division of Cardiac Anesthesia, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston Massachusetts, USA.,Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, USA
| | - Mai Ohba
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo Japan
| | - Matthew Chamberlain
- Division of Cardiac Anesthesia, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston Massachusetts, USA
| | - Weiming Bu
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; and
| | - Fu-Yan Lin
- Immune Disease Institute, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; and
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo Japan
| | - Koichi Yuki
- Division of Cardiac Anesthesia, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston Massachusetts, USA; .,Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Inada T, Hirota K, Shingu K. Intravenous anesthetic propofol suppresses prostaglandin E2 and cysteinyl leukotriene production and reduces edema formation in arachidonic acid-induced ear inflammation. J Immunotoxicol 2014; 12:261-5. [PMID: 25046027 DOI: 10.3109/1547691x.2014.938874] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Propofol is an intravenous drug widely used for anesthesia and sedation. Previously, propofol was shown to inhibit cyclo-oxygenase (COX) and 5-lipoxygenase (5-LOX) activities. Because these enzyme-inhibiting effects have only been demonstrated in vitro, this study sought to ascertain whether similar effects might also be observed in vivo. In the current studies, effects of propofol were tested in a murine model of arachidonic acid-induced ear inflammation. Specifically, propofol - as a pre-treatment -- was intraperitoneally and then topical application of arachidonic acid was performed. After 1 h, tissue biopsies were collected and tested for the presence of edema and for levels of inflammatory mediators. The results indicated that the administration of propofol significantly suppressed ear edema formation, tissue myeloperoxidase activity, and tissue production of both prostaglandin E2 and cysteinyl leukotrienes. From the data, it can be concluded that propofol could exert anti-COX and anti-5-LOX activities in an in vivo model and that these activities in turn could have, at least in part, suppressed arachidonic acid-induced edema formation in the ear.
Collapse
Affiliation(s)
- Takefumi Inada
- Department of Anesthesiology, Kansai Medical University , Osaka , Japan
| | | | | |
Collapse
|
12
|
Anderson SL, Duke-Novakovski T, Singh B. The immune response to anesthesia: part 2 sedatives, opioids, and injectable anesthetic agents. Vet Anaesth Analg 2014; 41:553-66. [PMID: 24962601 DOI: 10.1111/vaa.12191] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/24/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To review the immune response to injectable anesthetics and sedatives and to compare the immunomodulatory properties between inhalation and injectable anesthetic protocols. STUDY DESIGN Review. METHODS AND DATABASES Multiple literature searches were performed using PubMed and Google Scholar from March 2012 through November 2013. Relevant anesthetic and immune terms were used to search databases without year published or species constraints. The online database for Veterinary Anaesthesia and Analgesia and the Journal of Veterinary Emergency and Critical Care were searched by issue starting in 2000 for relevant articles. CONCLUSION Sedatives, injectable anesthetics, opioids, and local anesthetics have immunomodulatory effects that may have positive or negative consequences on disease processes such as endotoxemia, generalized sepsis, tumor growth and metastasis, and ischemia-reperfusion injury. Therefore, anesthetists should consider the immunomodulatory effects of anesthetic drugs when designing anesthetic protocols for their patients.
Collapse
Affiliation(s)
- Stacy L Anderson
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | |
Collapse
|
13
|
Inada T, Ueshima H, Shingu K. Intravenous anesthetic propofol suppresses leukotriene production in murine dendritic cells. J Immunotoxicol 2012; 10:262-9. [PMID: 22953970 DOI: 10.3109/1547691x.2012.712066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Leukotrienes, divided into cysteinyl leukotrienes (CysLTs), which are important mediators of asthmatic responses, and leukotriene B4 (LTB4), a chemotactic and chemokinetic agent for leukocytes, are potent lipid mediators generated from arachidonic acid by 5-lipoxygenase (5-LO). Leukotrienes are also considered to have immunoregulatory and pro-inflammatory actions. Propofol is an intravenous anesthetic widely used for anesthesia and sedation that is alleged to possess anti-inflammatory properties. The present study examined the effect of propofol on leukotriene production by dendritic cells (DC). In murine bone marrow-derived DC, propofol significantly suppressed CysLT and LTB4 production after short-term stimulation with zymosan. The protein levels of cytosolic phospholipase A2 and 5-LO, or arachidonic acid release from plasma membranes, were not affected by the presence of propofol. Although zymosan treatment induced or enhanced the phosphorylation of ERK1/2, p-38 MAPK, and JNK, which presumably up-regulates the activity of 5-LO, the presence of propofol had no additional effect on the phosphorylation status of any of these MAPKs. Similarly, zymosan significantly increased the concentration of intracellular calcium, which is the most crucial activator of 5-LO, but no additional concentration changes were observed with the addition of propofol. Lastly, in an in-vitro cell-free ferrous oxidation-xylenol orange assay, propofol significantly inhibited the 5-LO activity of purified human recombinant 5-LO enzyme with an IC50 of ~7.5 µM. Thus, propofol's inhibition of 5-LO is not likely restricted to the circumstances surrounding the production of leukotrienes from DC, but applicable to other types of immune and non-immune cells that produce leukotrienes. The 5-LO-inhibiting activity of propofol may, at least in part, contribute to the well-known anti-inflammatory activity of propofol.
Collapse
Affiliation(s)
- Takefumi Inada
- Department of Anesthesiology, Kansai Medical University, Osaka, Japan.
| | | | | |
Collapse
|