1
|
Aleksic M, Rajagopal R, de-Ávila R, Spriggs S, Gilmour N. The skin sensitization adverse outcome pathway: exploring the role of mechanistic understanding for higher tier risk assessment. Crit Rev Toxicol 2024; 54:69-91. [PMID: 38385441 DOI: 10.1080/10408444.2024.2308816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/19/2023] [Indexed: 02/23/2024]
Abstract
For over a decade, the skin sensitization Adverse Outcome Pathway (AOP) has served as a useful framework for development of novel in chemico and in vitro assays for use in skin sensitization hazard and risk assessment. Since its establishment, the AOP framework further fueled the existing efforts in new assay development and stimulated a plethora of activities with particular focus on validation, reproducibility and interpretation of individual assays and combination of assay outputs for use in hazard/risk assessment. In parallel, research efforts have also accelerated in pace, providing new molecular and dynamic insight into key events leading to sensitization. In light of novel hypotheses emerging from over a decade of focused research effort, mechanistic evidence relating to the key events in the skin sensitization AOP may complement the tools currently used in risk assessment. We reviewed the recent advances unraveling the complexity of molecular events in sensitization and signpost the most promising avenues for further exploration and development of useful assays.
Collapse
Affiliation(s)
- Maja Aleksic
- Safety and Environmental Assurance Centre, Unilever, Sharnbrook, UK
| | - Ramya Rajagopal
- Safety and Environmental Assurance Centre, Unilever, Sharnbrook, UK
| | - Renato de-Ávila
- Safety and Environmental Assurance Centre, Unilever, Sharnbrook, UK
| | - Sandrine Spriggs
- Safety and Environmental Assurance Centre, Unilever, Sharnbrook, UK
| | - Nicola Gilmour
- Safety and Environmental Assurance Centre, Unilever, Sharnbrook, UK
| |
Collapse
|
2
|
Mousavi T, Hadizadeh N, Nikfar S, Abdollahi M. Drug discovery strategies for modulating oxidative stress in gastrointestinal disorders. Expert Opin Drug Discov 2020; 15:1309-1341. [PMID: 32749894 DOI: 10.1080/17460441.2020.1791077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Taraneh Mousavi
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Hadizadeh
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shekoufeh Nikfar
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Procházka E, Melvin SD, Escher BI, Plewa MJ, Leusch FD. Global Transcriptional Analysis of Nontransformed Human Intestinal Epithelial Cells (FHs 74 Int) after Exposure to Selected Drinking Water Disinfection By-Products. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:117006. [PMID: 31755747 PMCID: PMC6927499 DOI: 10.1289/ehp4945] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND Drinking water disinfection inadvertently leads to the formation of numerous disinfection by-products (DBPs), some of which are cytotoxic, mutagenic, genotoxic, teratogenic, and potential carcinogens both in vitro and in vivo. OBJECTIVES We investigated alterations to global gene expression (GE) in nontransformed human small intestine epithelial cells (FHs 74 Int) after exposure to six brominated and two chlorinated DBPs: bromoacetic acid (BAA), bromoacetonitrile (BAN), 2,6-dibromo-p-benzoquinone (DBBQ), bromoacetamide (BAM), tribromoacetaldehyde (TBAL), bromate (BrO3-), trichloroacetic acid (TCAA), and trichloroacetaldehyde (TCAL). METHODS Using whole-genome cDNA microarray technology (Illumina), we examined GE in nontransformed human cells after 4h exposure to DBPs at predetermined equipotent concentrations, identified significant changes in gene expression (p≤0.01), and investigated the relevance of these genes to specific toxicity pathways via gene and pathway enrichment analysis. RESULTS Genes related to activation of oxidative stress-responsive pathways exhibited fewer alterations than expected based on prior work, whereas all DBPs induced notable effects on transcription of genes related to immunity and inflammation. DISCUSSION Our results suggest that alterations to genes associated with immune and inflammatory pathways play an important role in the potential adverse health effects of exposure to DBPs. The interrelationship between these pathways and the production of reactive oxygen species (ROS) may explain the common occurrence of oxidative stress in other studies exploring DBP toxicity. Finally, transcriptional changes and shared induction of toxicity pathways observed for all DBPs caution of additive effects of mixtures and suggest further assessment of adverse health effects of mixtures is warranted. https://doi.org/10.1289/EHP4945.
Collapse
Affiliation(s)
- Erik Procházka
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| | - Steven D. Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| | - Beate I. Escher
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
- Environmental Toxicology, Centre for Applied Geoscience, Eberhard Karls University, Tübingen, Germany
| | - Michael J. Plewa
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Frederic D.L. Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
4
|
Comparison of crevicular fluid cytokine levels after the application of surface sealants. J Orofac Orthop 2019; 80:242-253. [DOI: 10.1007/s00056-019-00184-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/05/2019] [Indexed: 10/26/2022]
|
5
|
Kavasi RM, Berdiaki A, Spyridaki I, Papoutsidakis A, Corsini E, Tsatsakis A, Tzanakakis GN, Nikitovic D. Contact allergen (PPD and DNCB)-induced keratinocyte sensitization is partly mediated through a low molecular weight hyaluronan (LMWHA)/TLR4/NF-κB signaling axis. Toxicol Appl Pharmacol 2019; 377:114632. [PMID: 31226360 DOI: 10.1016/j.taap.2019.114632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/06/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
Allergic contact dermatitis (ACD) is caused by topical exposure to chemical allergens. Keratinocytes play a key role in innate immunity, as well as in ACD progression. The transmembrane Toll-like receptor 4 (TLR4), strongly implicated in skin inflammation, has the ability to bind Damage Associated Molecular Patterns (DAMPs), like Low Molecular Weight Hyaluronan (LMWHA). Previously, we had determined that p-phenylenediamine (PPD) and 2,4-dinitrochlorobenzene (DNCB) modulate keratinocyte HA deposition in a manner correlated to their sensitization. In the present study, we aimed to investigate putative co-operation of HA and TLR4 in the process of PPD and DNCB-induced keratinocyte activation. Contact sensitizers were shown to significantly increase the expression of Hyaluronan Synthases (HAS) and TLR4 in NCTC2544 human keratinocytes, as demonstrated by western blot and Real-Time PCR. These data, in correlation to earlier shown enhanced HA degradation suggest that the contact sensitizers facilitate HA turnover of keratinocytes and increase the release of pro-inflammatory, LMWHA fragments. Treatment with exogenous LMWHA enhanced TLR4, HAS levels and Nuclear factor-kappa beta (NF-κΒ) activation. PPD, DNCB and LMWHA-effects were shown to be partly executed through TLR4 downstream signaling as shown by Real-Time, western blot, siRNA and confocal microscopy approaches. Specifically, PPD and DNCB stimulated the activation of the TLR4 downstream mediator NF-κB. Therefore, the shown upregulation of TLR4 expression is suggested to further facilitate the release of endogenous, bioactive HA fragments and sustain keratinocyte activation. In conclusion, keratinocyte contact allergen-dependent sensitization is partly mediated through a LMWHA/TLR4/ NF-κB signaling axis.
Collapse
Affiliation(s)
- Rafaela-Maria Kavasi
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Aikaterini Berdiaki
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Ioanna Spyridaki
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Antonis Papoutsidakis
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Emanuela Corsini
- Laboratory of Toxicology, ESP, Università degli Studi di Milano, Italy
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, University of Crete, Heraklion, Greece
| | - George N Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece.
| |
Collapse
|
6
|
Zhong G, Li H, Bai J, Pang S, He C, Du X, Wang H, Zhang Q, Xie S, Du H, Dai R, Huang L. Advancing the predictivity of skin sensitization by applying a novel HMOX1 reporter system. Arch Toxicol 2018; 92:3103-3115. [DOI: 10.1007/s00204-018-2287-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/13/2018] [Indexed: 10/28/2022]
|
7
|
Ritter D, Bitsch A, Elend M, Schuchardt S, Hansen T, Brodbeck C, Knebel J, Fuchs A, Gronewold C, Fautz R. Development and Evaluation of an In Vitro Test System for Toxicity Screening of Aerosols Released from Consumer Products and First Application to Aerosols from a Hair Straightening Process. ACTA ACUST UNITED AC 2018. [DOI: 10.1089/aivt.2017.0036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Detlef Ritter
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Annette Bitsch
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Manfred Elend
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Sven Schuchardt
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Tanja Hansen
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Carsten Brodbeck
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Sankt Augustin, Germany
| | - Jan Knebel
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Anne Fuchs
- Safety and Toxicology, KAO Germany GmbH, Darmstadt, Germany
| | | | - Rolf Fautz
- Safety and Toxicology, KAO Germany GmbH, Darmstadt, Germany
| |
Collapse
|
8
|
Abstract
For toxicologists who are in any way associated with skin sensitisation, the last two decades have seen a series of fundamental changes. We have migrated from old-style guinea-pig assays, via the refined and reduced Local Lymph Node Assay (LLNA), to witness the imminent dominance of in vitro and in silico methods. Yet, over the same period, the use of the output data for human safety assurance has evolved from ‘black box’ risk assessment, via the quantitative risk assessment enabled by the LLNA measurement of potency, to a new period of relative uncertainty. This short review will endeavour to address these topics, all the while keeping a focus on three essential principles: a) that skin sensitisation potential is intrinsic in the molecular structure of the chemical; b) that test methods should have a mechanistic foundation; and finally c) that the only reason for undertaking any skin sensitisation work has to be the protection of human health.
Collapse
|