1
|
Ming X, Lu Y, Huang H, Zheng J, Wang T, Li Z, Yu X, Xiong L. Xuanhong Dingchuan Tang suppresses bronchial asthma inflammation via the microRNA-107-3p/PTGS2/MAPK axis. Funct Integr Genomics 2024; 25:1. [PMID: 39704779 DOI: 10.1007/s10142-024-01506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/31/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
This study aimed to investigate the mechanism of Xuanhong Dingchuan Tang (XHDCT) in delaying bronchial asthma inflammation via the microRNA (miR)-107-3p/prostaglandin endoperoxide synthase 2 (PTGS2)/mitogen-activated protein kinase (MAPK) axis. Based on the network pharmacological analysis, XHDCT chemical constituents and targets of each chemical constituent were screened through the TCMSP database, and differential-expressed genes of bronchial asthma were obtained from the GEO database, which were intersected to get XHDCT potential anti-inflammatory targets. The key anti-inflammatory targets of XHDCT were acquired by protein-protein interaction (PPI) analysis of the candidate targets. Bronchial asthma mouse models were established and the pathological changes of lung tissues were observed. Serum IgE levels were tested. Total cells and eosinophils in bronchoalveolar lavage fluid (BALF) were counted. The expression of Th2-associated cytokines (interleukin (IL)-4, IL-5, and IL-13) and chemokines (monocyte chemoattractant protein-1 (MCP-1) and eotaxin) in BALF were measured. The targeting relationship between miR-107-3p and PTGS2 was tested. XHDCT delayed bronchial asthma inflammation in in-vivo asthma mouse models. A total of 155 active ingredients and their 341 targets were intersected with bronchial asthma-relevant genes, obtaining 20 potential targets of XHDCT for bronchial asthma treatment. Based on the PPI and "drug-component-target" network diagram, PTGS2 was found to be in a central position. PTGS2 was downregulated and miR-107-3p was upregulated in bronchial asthma mice after XHDCT treatment. PTGS2 overexpression activated the MAPK signaling pathway to promote inflammation in bronchial asthma mice, whereas inflammatory symptoms were reduced and the MAPK signaling pathway was inhibited after XHDCT treatment. miR-107-3p was an upstream regulatory miRNA for PTGS2. After miR-107-3p interference, the activation of the PTGS2/MAPK axis promoted inflammation in bronchial asthma mice, whereas the inflammatory symptoms were reduced after XHDCT treatment. XHDCT promotes anti-inflammatory effects in bronchial asthma via the miR-107-3p/PTGS2/MAPK axis.
Collapse
Affiliation(s)
- Xi Ming
- Department of Pediatrics and Department of Integrative Medicine on Pediatric, The First Hospital Affiliated Yunnan University of Chinese Medicine, 120 Guanghua Road, Kunming, Yunnan, 650021, China.
- No.1 Clinical Medical College of Yunnan, University of Chinese Medicine, Kunming, Yunnan, 650051, China.
- Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China.
| | - Yingzhu Lu
- No.1 Clinical Medical College of Yunnan, University of Chinese Medicine, Kunming, Yunnan, 650051, China
- Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Huihui Huang
- No.1 Clinical Medical College of Yunnan, University of Chinese Medicine, Kunming, Yunnan, 650051, China
- Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Jialin Zheng
- Department of Pediatrics and Department of Integrative Medicine on Pediatric, The First Hospital Affiliated Yunnan University of Chinese Medicine, 120 Guanghua Road, Kunming, Yunnan, 650021, China
- No.1 Clinical Medical College of Yunnan, University of Chinese Medicine, Kunming, Yunnan, 650051, China
- Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Tianzi Wang
- No.1 Clinical Medical College of Yunnan, University of Chinese Medicine, Kunming, Yunnan, 650051, China
- Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Zhuoqun Li
- No.1 Clinical Medical College of Yunnan, University of Chinese Medicine, Kunming, Yunnan, 650051, China
- Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Xingzhu Yu
- No.1 Clinical Medical College of Yunnan, University of Chinese Medicine, Kunming, Yunnan, 650051, China
- Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Lei Xiong
- Department of Pediatrics and Department of Integrative Medicine on Pediatric, The First Hospital Affiliated Yunnan University of Chinese Medicine, 120 Guanghua Road, Kunming, Yunnan, 650021, China.
- No.1 Clinical Medical College of Yunnan, University of Chinese Medicine, Kunming, Yunnan, 650051, China.
- Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China.
| |
Collapse
|
2
|
Stefanescu K, Timlin CL, Moy AS, Zapotoczny G. Reduced Isocyanate Release Using a Waterproof, Resin-Based Cast Alternative Relative to Fiberglass Casts. TOXICS 2023; 11:1002. [PMID: 38133403 PMCID: PMC10747184 DOI: 10.3390/toxics11121002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
The effects of occupational isocyanate exposure range from asthma and contact dermatitis to neurotoxicity and cancer. Respiratory sensitization due to orthopedic cast application has been well documented. This study aims to compare the safety of standard-of-care fiberglass casts and a novel waterproof cast alternative by measuring the amount of isocyanate released during off-gassing over time. A 3D-printed arm simulator with comparable casing material amounts was placed in a sealed chamber. An isocyanate-sensing color-changing (SafeAir) tag was used to measure the levels of toxic exposure. Triplicate trials were conducted across all time periods (15 min, 1 h, and 24 h) and conditions. The bare arm simulator and freshly opened tags served as negative controls. Normalized pixel intensity indexes and isocyanate release estimates in ppb were derived from ImageJ-analyzed SafeAir tag photos. Fiberglass casts exhibited greater isocyanate release than both the waterproof alternative (p = 0.0002) and no-cast controls (p = 0.0006), particularly at 24 h. The waterproof alternative and no-cast control did not statistically differ (p = 0.1603). Therefore, the waterproof alternative released less isocyanate than the fiberglass casts. Waterproof cast alternatives may be safer than fiberglass by limiting medical professionals' exposure to toxic isocyanates and, thus, decreasing their risk of suffering occupational asthma.
Collapse
Affiliation(s)
- Kristen Stefanescu
- Keck School of Medicine of the University of Southern California, 1975 Zonal Ave., Los Angeles, CA 90033, USA;
| | | | | | - Grzegorz Zapotoczny
- Consortium for Technology & Innovation in Pediatrics, Lurie Children’s Hospital, 225 E Chicago Ave., Chicago, IL 60611, USA;
| |
Collapse
|
3
|
Ganekal P, Vastrad B, Kavatagimath S, Vastrad C, Kotrashetti S. Bioinformatics and Next-Generation Data Analysis for Identification of Genes and Molecular Pathways Involved in Subjects with Diabetes and Obesity. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020309. [PMID: 36837510 PMCID: PMC9967176 DOI: 10.3390/medicina59020309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023]
Abstract
Background and Objectives: A subject with diabetes and obesity is a class of the metabolic disorder. The current investigation aimed to elucidate the potential biomarker and prognostic targets in subjects with diabetes and obesity. Materials and Methods: The next-generation sequencing (NGS) data of GSE132831 was downloaded from Gene Expression Omnibus (GEO) database. Functional enrichment analysis of DEGs was conducted with ToppGene. The protein-protein interactions network, module analysis, target gene-miRNA regulatory network and target gene-TF regulatory network were constructed and analyzed. Furthermore, hub genes were validated by receiver operating characteristic (ROC) analysis. A total of 872 DEGs, including 439 up-regulated genes and 433 down-regulated genes were observed. Results: Second, functional enrichment analysis showed that these DEGs are mainly involved in the axon guidance, neutrophil degranulation, plasma membrane bounded cell projection organization and cell activation. The top ten hub genes (MYH9, FLNA, DCTN1, CLTC, ERBB2, TCF4, VIM, LRRK2, IFI16 and CAV1) could be utilized as potential diagnostic indicators for subjects with diabetes and obesity. The hub genes were validated in subjects with diabetes and obesity. Conclusion: This investigation found effective and reliable molecular biomarkers for diagnosis and prognosis by integrated bioinformatics analysis, suggesting new and key therapeutic targets for subjects with diabetes and obesity.
Collapse
Affiliation(s)
- Prashanth Ganekal
- Department of General Medicine, Basaveshwara Medical College, Chitradurga 577501, Karnataka, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. College of Pharmacy, Gadag 582101, Karnataka, India
| | - Satish Kavatagimath
- Department of Pharmacognosy, K.L.E. College of Pharmacy, Belagavi 590010, Karnataka, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
- Correspondence: ; Tel.: +91-9480073398
| | - Shivakumar Kotrashetti
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
| |
Collapse
|
4
|
Sabbioni G, Pugh SA. New Method to Biomonitor Workers Exposed to 1,6-Hexamethylene Diisocyanate. Chem Res Toxicol 2022; 35:2285-2295. [PMID: 36413493 DOI: 10.1021/acs.chemrestox.2c00266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Isocyanates such as 1,6-hexamethylene diisocyanate (HDI), 4,4'-methylenediphenyl diisocyanate, and toluene diisocyanate are highly reactive compounds that have a variety of commercial applications, including manufacturing polyurethane foam, elastomers, paints, adhesives, coatings, insecticides, and many other products. Their primary route of occupational exposure is through inhalation. Due to their high chemical reactivity, they are toxic and have adverse effects at the cellular and subcellular levels, leading to irritative and immunological reactions associated with lung disease. High concentrations of isocyanates are strong respiratory irritants. Bronchial sensitization and asthma are among the major adverse clinical reactions associated with low-level chronic exposure to isocyanates. Albumin adducts have been linked to the mechanism of occupational asthma caused by isocyanates. Isocyanates react in vivo with albumin, which is recognized by the immune system. Albumin adducts of isocyanates trigger immune responses and are probably the antigenic basis for isocyanate asthma. Sensitization to isocyanates is the main pathway for adverse health effects. Therefore, markers for the biologically effective dose such as albumin adducts of HDI are needed. A new isocyanate adduct of HDI with lysine─Nε-[(6-amino-hexyl-amino)carbonyl]-lysine (HDI-Lys)─was synthesized and characterized by 1H-NMR, 13C-NMR, and mass spectrometry (MS). Appropriate internal standards─HDI-Lys-4,4'-5,5'-d4 (HDI-d4-Lys) and Nε-[(7-amino-heptyl-amino)carbonyl]-lysine (Hep-Lys)─were synthesized to establish a LC-MS/MS method for the analysis of HDI adducts in in vitro modified albumin and in workers. The presence of HDI-Lys was found after pronase digestion of albumin and confirmed by two independent chromatographic approaches: with a C8 reversed-phase column and with a hydrophilic interaction liquid chromatography column. Quantification was performed with positive electrospray ionization (ESI)-MS. The adduct peak found in vivo was confirmed with the less sensitive negative ESI-MS. In summary, these are new compounds and methods to determine isocyanate-specific adducts with albumin in workers exposed to HDI.
Collapse
Affiliation(s)
- Gabriele Sabbioni
- Institute of Environmental and Occupational Toxicology, CH-6780 Airolo, Switzerland.,Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Nussbaumstrasse 26, D-80336 München, Germany
| | - Shirley A Pugh
- Institute of Environmental and Occupational Toxicology, CH-6780 Airolo, Switzerland
| |
Collapse
|
5
|
Word LJ, McAden EP, Poole C, Nylander-French LA. The genetics of occupational asthma development among workers exposed to diisocyanates: A systematic literature review with meta-analysis. Front Genet 2022; 13:944197. [PMID: 36276967 PMCID: PMC9582143 DOI: 10.3389/fgene.2022.944197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Diisocyanates are widely used compounds that pose a safety concern for workers in occupations within the spray-paint, spray-foam insulation, and furniture varnish industries. Epidemiological studies show that only a subset of workers exposed to diisocyanates develop diisocyanate-induced occupational asthma (diisocyanate asthma, DA), indicating that genetic susceptibility may play a role. The purpose of this systematic literature review was to compile and meta-analyze the reported data on genetic susceptibility markers for DA. Three databases (Embase, Pubmed, and Scopus) were searched and 169 non-duplicate publications were identified, of which 22 relevant occupational studies were included in this review. Researchers reported prevalence odds ratios (PORs) for 943 comparisons in 82 different genes/serotypes. Protein network functions for the DA-associated genes from this review include: antigen processing, lymphocyte activation, cytokine production regulation, and response to oxidative stress. Meta-analysis of comparisons between workers with DA and controls was conducted for 23 genetic markers within: CTNNA3, GSTM1, GSTP1, GSTT1, HLA-C, HLA-DQB1, HLA-DR1, HLA-DR3, HLA-DR4, HLA-DR7, and HLA-DR8. These genes code for proteins that are involved in cell-cell adhesions (CTNNA3), glutathione conjugation for xenobiotic metabolism (GST gene family), and immune system response (HLA gene family). The most compelling pooled PORs were for two studies on CTNNA3 (increased DA risk: rs10762058 GG, rs7088181 GG, rs4378283 TT; PORs 4.38–4.97) and three studies on HLA-DR1 (decreased DA risk, POR 0.24). Bioinformatics of the predicted protein pathways for DA shows overlap with biomarker-associated pathways in workers before development of asthma, suggesting overlap in toxicokinetic and toxicodynamic pathways of diisocyanates. The control groups were also compared against each other and differences were negligible. Suggestions for improving future research are also presented. Of the highest importance, the literature was found to be profoundly publication-biased, in which researchers need to report the data for all studied markers regardless of the statistical significance level. We demonstrate the utility of evaluating the overlap in predicted protein pathway functions for identifying more consistency across the reported literature including for asthma research, biomarker research, and in vitro studies. This will serve as an important resource for researchers to use when generating new hypothesis-driven research about diisocyanate toxicology.
Collapse
Affiliation(s)
- Laura J. Word
- Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Emily P. McAden
- Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Charles Poole
- Epidemiology, University of North Carolina at Chapel Hilll, Chapel Hill, NC, United States
| | - Leena A. Nylander-French
- Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Leena A. Nylander-French,
| |
Collapse
|
6
|
Wang M, Yu B, Wang J, Wang Y, Liang L. Exploring the role of Xingren on
COVID
‐19 based on network pharmacology and molecular docking. J Food Biochem 2022; 46:e14363. [PMID: 35933696 PMCID: PMC9539046 DOI: 10.1111/jfbc.14363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Abstract
Since the outbreak of novel Coronavirus Pneumonia 2019 (COVID‐19), the role of Almonds (Xingren) in the protection and treatment of COVID‐19 is not clear. Network pharmacology and molecular docking were used to explore the potential mechanism and potential key targets of Xingren on COVID‐19. A total of nine common targets between them were obtained, and these targets were involved in multiple related processes of GO and KEGG pathway enrichment analysis. Molecular docking showed that licochalcone B has the best binding energy (−9.33 kJ·mol−1) to PTGS2. They are maybe the important ingredient and key potential target. Its possible mechanism is to intervene anxiety disorder in the process of disease development, such as regulation of blood pressure, reactive oxygen species metabolic process, leishmaniasis peroxisome, and IL‐17 signaling pathway.
Collapse
Affiliation(s)
- Maoru Wang
- Drug Dispensing Department The Third Hospital of Mianyang, Sichuan Mental Health Center Mianyang China
| | - Bin Yu
- Department of Pharmacy, Mianyang Central Hospital School of Medicine, University of Electronic Science and Technology of China Mianyang China
| | - Jisheng Wang
- Drug Dispensing Department The Third Hospital of Mianyang, Sichuan Mental Health Center Mianyang China
| | - Yu Wang
- Department of Pharmacy, Mianyang Central Hospital School of Medicine, University of Electronic Science and Technology of China Mianyang China
| | - Libo Liang
- Drug Dispensing Department The Third Hospital of Mianyang, Sichuan Mental Health Center Mianyang China
| |
Collapse
|
7
|
Taylor LW, French JE, Robbins ZG, Nylander-French LA. Epigenetic Markers Are Associated With Differences in Isocyanate Biomarker Levels in Exposed Spray-Painters. Front Genet 2021; 12:700636. [PMID: 34335698 PMCID: PMC8318037 DOI: 10.3389/fgene.2021.700636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Isocyanates are respiratory and skin sensitizers that are one of the main causes of occupational asthma globally. Genetic and epigenetic markers are associated with isocyanate-induced asthma and, before asthma develops, we have shown that genetic polymorphisms are associated with variation in plasma and urine biomarker levels in exposed workers. Inter-individual epigenetic variance may also have a significant role in the observed biomarker variability following isocyanate exposure. Therefore, we determined the percent methylation for CpG islands from DNA extracted from mononuclear blood cells of 24 male spray-painters exposed to 1,6-hexamethylene diisocyanate (HDI) monomer and HDI isocyanurate. Spray-painters’ personal inhalation and skin exposure to these compounds and the respective biomarker levels of 1,6-diaminohexane (HDA) and trisaminohexyl isocyanurate (TAHI) in their plasma and urine were measured during three repeated industrial hygiene monitoring visits. We controlled for inhalation exposure, skin exposure, age, smoking status, and ethnicity as covariates and performed an epigenome-wide association study (EWAS) using likelihood-ratio statistical modeling. We identified 38 CpG markers associated with differences in isocyanate biomarker levels (Bonferroni < 0.05). Annotations for these markers included 18 genes: ALG1, ANKRD11, C16orf89, CHD7, COL27A, FUZ, FZD9, HMGN1, KRT6A, LEPR, MAPK10, MED25, NOSIP, PKD1, SNX19, UNC13A, UROS, and ZFHX3. We explored the functions of the genes that have been published in the literature and used GeneMANIA to investigate gene ontologies and predicted protein-interaction networks. The protein functions of the predicted networks include keratinocyte migration, cell–cell adhesions, calcium transport, neurotransmitter release, nitric oxide production, and apoptosis regulation. Many of the protein pathway functions overlap with previous findings on genetic markers associated with variability both in isocyanate biomarker levels and asthma susceptibility, which suggests there are overlapping protein pathways that contribute to both isocyanate toxicokinetics and toxicodynamics. These predicted protein networks can inform future research on the mechanism of allergic airway sensitization by isocyanates and aid in the development of mitigation strategies to better protect worker health.
Collapse
Affiliation(s)
- Laura W Taylor
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - John E French
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Zachary G Robbins
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Leena A Nylander-French
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
8
|
Interleukin-10 Gene Promoter Polymorphisms and Susceptibility to Asthma: Systematic Review and Meta-analysis. Biochem Genet 2021; 59:1089-1115. [PMID: 33755871 DOI: 10.1007/s10528-021-10056-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/01/2021] [Indexed: 12/20/2022]
Abstract
Several studies have previously assessed the association between interleukin (IL)-10 gene polymorphisms and the risk of asthma, leading to conflicting results. To resolve the incongruent outcomes yielded from different single studies, we conducted the most up-to-date meta-analysis of the IL-10 gene rs1800896, rs1800871, and rs1800872 single-nucleotide polymorphisms (SNPs) and susceptibility to asthma. A systematic literature search performed until April 2020, and the pooled odds ratio (OR) and their corresponding 95% confidence interval (CI) were calculated to determine the association strength. Thirty articles comprising 5678 asthmatic patients and 6079 controls met the inclusion criteria. No significant association was found between rs1800872 SNP and susceptibility to asthma across all genetic models in the overall and subgroup analyses. The rs1800871 SNP had only significant association with a decreased risk of asthma in Europeans (OR 0.66, CI 0.53-0.82, P < 0.001). However, rs1800896 SNP was significantly associated with a decreased risk of asthma by dominant (OR 0.67, CI 0.50-0.90, P < 0.001) and heterozygote (OR 0.66, CI 0.49-0.88, P < 0.001) models in the overall analysis. Subgroup analyses indicated significant association of rs1800896 SNP by dominant (OR 0.45, CI 0.28-0.72, P < 0.001) and heterozygote (OR 0.43, CI 0.26-0.70, P < 0.001) models in the African population. The IL-10 rs1800896 SNP confers protection against the risk of asthma, especially in Africans. Additionally, rs1800871 SNP has a protective role against asthma in Europeans.
Collapse
|
9
|
Chen RX, Lu WM, Lu MP, Wang ML, Zhu XJ, Wu ZF, Tian HQ, Zhu LP, Zhang ZD, Cheng L. Polymorphisms in MicroRNA Target Sites of TGF-β Signaling Pathway Genes and Susceptibility to Allergic Rhinitis. Int Arch Allergy Immunol 2021; 182:399-407. [PMID: 33596578 PMCID: PMC8117390 DOI: 10.1159/000511975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 09/29/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The polymorphisms inside microRNA target sites locating in the 3'-UTR region may introduce the micro-RNA-binding changes, which may regulate the gene expression and correlate with the potential diseases. OBJECTIVES We aimed to investigate whether the polymorphisms in microRNA target sites of transforming growth factor beta (TGF-β) signaling pathway genes are associated with the susceptibility of mite-sensitized allergic rhinitis (AR) in a Han Chinese population. METHODS In this case-control study, 454 AR patients and 448 healthy controls were recruited. Three HapMap single-nucleotide polymorphisms (SNPs) were mapped to putative microRNA recognition sites and genotyped by TaqMan allelic discrimination assay. RESULTS The genotype and allele frequencies of 3 SNPs (rs1590 in TGFBR1; rs1434536 and rs17023107 in BMPR1B) showed lack of significant association with AR. However, in the subgroup analysis, the TG, GG, and TG/GG genotypes of rs1590 exhibited significantly increased risk of AR in the male subgroup (TG: adjusted OR = 1.57, 95% CI = 1.08-2.31; GG: adjusted OR = 1.76, 95% CI = 1.09-2.86; TG/GG: adjusted OR = 1.62, 95% CI = 1.13-2.33). The CT genotypes of rs17023107 might have potential to protect against AR in the patients age of <15 years (adjusted OR = 0.37, 95% CI = 0.14-0.95) and the males (adjusted OR = 0.48, 95% CI = 0.25-0.95). No significant association was found between SNPs and the total serum IgE level. CONCLUSIONS In a Han Chinese population, stratified by age and gender, susceptibility to mite-sensitized AR may be associated with 2 SNPs (rs1590 and rs17023107) in microRNA target sites of TGF-β signaling pathway genes.
Collapse
Affiliation(s)
- Ruo-Xi Chen
- Department of Otorhinolaryngology and Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Wen-Min Lu
- Department of Otorhinolaryngology, The Affiliated Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, China
| | - Mei-Ping Lu
- Department of Otorhinolaryngology and Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Mei-Lin Wang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xin-Jie Zhu
- Department of Otorhinolaryngology and Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zhong-Fei Wu
- Department of Otorhinolaryngology and Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Hui-Qin Tian
- Department of Otorhinolaryngology and Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Lu-Ping Zhu
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zheng-Dong Zhang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lei Cheng
- Department of Otorhinolaryngology and Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China,
- International Centre for Allergy Research, Nanjing Medical University, Nanjing, China,
| |
Collapse
|
10
|
Network Pharmacology Strategy to Investigate the Pharmacological Mechanism of HuangQiXiXin Decoction on Cough Variant Asthma and Evidence-Based Medicine Approach Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3829092. [PMID: 33178315 PMCID: PMC7647767 DOI: 10.1155/2020/3829092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/11/2020] [Accepted: 09/24/2020] [Indexed: 12/04/2022]
Abstract
Objective To investigate the pharmacological mechanism of HuangQiXiXin decoction (HQXXD) on cough variant asthma (CVA) and validate the clinical curative effect. Methods The active compounds and target genes of HQXXD were searched using TCMSP. CVA-related target genes were obtained using the GeneCards database. The active target genes of HQXXD were compared with the CVA-related target genes to identify candidate target genes of HQXXD acting on CVA. A medicine-compound-target network was constructed using Cytoscape 3.6.0 software, and a protein-protein interaction (PPI) network was constructed using the STRING database. Gene ontology (GO) function enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using RGUI3.6.1 and Cytoscape 3.6.0. We searched the main database for randomized controlled trials of HQXXD for CVA. We assessed the quality of the included studies using the Cochrane Reviewers' Handbook. A meta-analysis of the clinical curative effect of HQXXD for CVA was conducted using the Cochrane Collaboration's RevMan 5.3 software. Results We screened out 48 active compounds and 217 active target genes of HQXXD from TCMSP. The 217 active target genes of HQXXD were compared with the 1481 CVA-related target genes, and 132 candidate target genes for HQXXD acting on CVA were identified. The medicine-compound-target network and PPI network were constructed, and the key compounds and key targets were selected. GO function enrichment and KEGG pathway enrichment analysis were performed. Meta-analysis showed that the total effective rate of the clinical curative effect was significantly higher in the experimental group than the control group. Conclusion The pharmacological mechanism of HQXXD acting on CVA has been further determined, and the clinical curative effect of HQXXD on CVA is remarkable.
Collapse
|
11
|
Taylor LW, French JE, Robbins ZG, Boyer JC, Nylander-French LA. Influence of Genetic Variance on Biomarker Levels After Occupational Exposure to 1,6-Hexamethylene Diisocyanate Monomer and 1,6-Hexamethylene Diisocyanate Isocyanurate. Front Genet 2020; 11:836. [PMID: 32973864 PMCID: PMC7466756 DOI: 10.3389/fgene.2020.00836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
We evaluated the impact of genetic variance on biomarker levels in a population of workers in the automotive repair and refinishing industry who were exposed to respiratory sensitizers 1,6-hexamethylene diisocyanate (HDI) monomer and one of its trimers, HDI isocyanurate. The exposures and respective urine and plasma biomarkers 1,6-diaminohexane (HDA) and trisaminohexyl isocyanurate (TAHI) were measured in 33 workers; and genome-wide microarrays (Affymetrix 6.0) were used to genotype the workers' single-nucleotide polymorphisms (SNPs). Linear mixed model analyses have indicated that interindividual variations in both inhalation and skin exposures influenced these biomarker levels. Using exposure values as covariates and a false discovery rate < 0.10 to assess statistical significance, we observed that seven SNPs were associated with HDA in plasma, five were associated with HDA in urine, none reached significance for TAHI in plasma, and eight were associated with TAHI levels in urine. The different genotypes for the 20 significant SNPs accounted for 4- to 16-fold changes observed in biomarker levels. Associated gene functions include transcription regulation, calcium ion transport, vascular morphogenesis, and transforming growth factor beta signaling pathway, which may impact toxicokinetics indirectly by altering inflammation levels. Additionally, in an expanded analysis using a minor allele cutoff of 0.05 instead of 0.10, there were biomarker-associated SNPs within three genes that have been associated with isocyanate-induced asthma: ALK, DOCK2, and LHPP. We demonstrate that genetic variance impacts the biomarker levels in workers exposed to HDI monomer and HDI isocyanurate and that genetics can be used to refine exposure predictions in small cohorts when quantitative personal exposure and biomarker measurements are included in the models.
Collapse
Affiliation(s)
- Laura W. Taylor
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - John E. French
- Nutrition Research Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Zachary G. Robbins
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jayne C. Boyer
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Leena A. Nylander-French
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
12
|
Precision medicine in the area of work-related asthma. Curr Opin Allergy Clin Immunol 2019; 18:277-279. [PMID: 29561358 DOI: 10.1097/aci.0000000000000436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Lau A, Tarlo SM. Update on the Management of Occupational Asthma and Work-Exacerbated Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2019; 11:188-200. [PMID: 30661311 PMCID: PMC6340795 DOI: 10.4168/aair.2019.11.2.188] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/25/2018] [Accepted: 10/28/2018] [Indexed: 12/16/2022]
Abstract
Work-related asthma is the most common occupational lung disease encountered in clinical practice. In adult asthmatics, work-relatedness can account for 15%-33% of cases, but delays in diagnosis remain common and lead to worse outcomes. Accurate diagnosis of asthma is the first step to managing occupational asthma, which can be sensitizer-induced or irritant-induced asthma. While latency has traditionally been recognized as a hallmark of sensitizer-induced asthma and rapid-onset a defining feature of irritant-induced asthma (as in Reactive Airway Dysfunction Syndrome), there is epidemiological evidence for irritant-induced asthma with latency from chronic moderate exposure. Diagnostic testing while the patient is still in the workplace significantly improves sensitivity. While specific inhalational challenges remain the gold-standard for the diagnosis of occupational asthma, they are not available outside of specialized centers. Commonly available tests including bronchoprovocation challenges and peak flow monitoring are important tools for practicing clinicians. Management of sensitizer-induced occupational asthma is notable for the central importance of removal from the causative agent: ideally, removal of the culprit agent; but if not feasible, this may require changes in the work process or ultimately, removal of the worker from the workplace. While workers' compensation programs may reduce income loss, these are not universal and there can be significant socio-economic impact from work-related asthma. Primary prevention remains the preferred method of reducing the burden of occupational asthma, which may include modification to work processes, better worker education and substitution of sensitizing agents from the workplace with safer compounds.
Collapse
Affiliation(s)
- Ambrose Lau
- Respiratory Division, Department of Medicine, Toronto Western Hospital and St. Michael's Hospital, Toronto, Ontario, Canada
| | - Susan M Tarlo
- Respiratory Division, Department of Medicine, Toronto Western Hospital and St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
14
|
Derakhshan A, Tavakkol Afshari J, Sadeghi Allah Abadi J, Nikpoor AR, Daneshvar R, Shokoohi Rad S, Ansari-Astaneh MR. The Association Between the Transforming Growth Factor Beta-1 -509C>T Gene Polymorphism and Primary Open Angle Glaucoma in North Eastern Iran. Rep Biochem Mol Biol 2019; 7:167-173. [PMID: 30805396 PMCID: PMC6374057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Glaucoma is a common cause of irreversible blindness. Transforming growth factor beta-1(TGF-β1) is the main isoform of TGF-β superfamily in the eye. Overexpression of TGF-β1 is shown to be related with the glaucoma. Studies have shown that the presence of mutant T allele of TGF-β1 -509C>T polymorphism (rs1800469) is associated with increased gene expression. So, in present study, association of the TGF-β1-509C>T gene polymorphism and primary open angle glaucoma (POAG) in patients from north east of Iran was investigated. METHODS A case-control study was conducted on 112 POAG patients and 112 control participants. TGF-β1- 509C>T genotyping was done by PCR-restriction fragment length polymorphism (PCR-RFLP) method using Bsu36I restriction enzyme. Moreover, cup to disk ratio(CDR), intraocular pressure (IOP) and visual acuity (VA) were measured. The obtained results were statistically analyzed. RESULTS The highest frequency of genotype in the control group was related to CC genotype (44.6%), but the heterozygous CT genotype (45.6%) was observed as the highest frequency of genotypes in patient group (P value: 0.022, OR for TT genotype: 2.54 CI95% for OR: 1.22, 5.27). Also, the frequency of the T mutant allele showed a significant difference between case and control groups (P value: 0.005, OR: 1.73 CI95% for OR: 1.18, 2.53). CONCLUSION In conclusion, a significant association was seen between TGF-β1 -509C>T gene polymorphism and POAG disease and inheritance of mutant T allele is considered to be a risk factor for glaucoma in patients living in North Eastern part of Iran.
Collapse
Affiliation(s)
- Akbar Derakhshan
- Eye research center, Khatam-Al-Anbia eye hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Jalil Tavakkol Afshari
- Immunogenetic and cell culture department, immunology research center, school of medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of allergy and immunology, school of medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Javad Sadeghi Allah Abadi
- Eye research center, Khatam-Al-Anbia eye hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amin Reza Nikpoor
- Immunogenetic and cell culture department, immunology research center, school of medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Immunology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Ramin Daneshvar
- Eye research center, Khatam-Al-Anbia eye hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Saeed Shokoohi Rad
- Eye research center, Khatam-Al-Anbia eye hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | |
Collapse
|
15
|
Genetic variants with gene regulatory effects are associated with diisocyanate-induced asthma. J Allergy Clin Immunol 2018; 142:959-969. [PMID: 29969634 DOI: 10.1016/j.jaci.2018.06.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/01/2018] [Accepted: 06/08/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND Isocyanates are major causes of occupational asthma, but susceptibility and mechanisms of diisocyanate-induced asthma (DA) remain uncertain. OBJECTIVE The aim of this study was to identify DA-associated functional genetic variants through next-generation sequencing (NGS), bioinformatics, and functional assays. METHODS NGS was performed in 91 workers with DA. Fourteen loci with known DA-associated single nucleotide polymorphisms (SNPs) were sequenced and compared with data from 238 unexposed subjects. Ranking of DA-associated SNPs based on their likelihood to affect gene regulatory mechanisms in the lung yielded 21 prioritized SNPs. Risk and nonrisk oligonucleotides were tested for binding of nuclear extracts from A549, BEAS-2B, and IMR-90 lung cell lines by using electrophoretic mobility shift assays. DNA constructs were cloned into a pGL3 promoter vector for luciferase gene reporter assays. RESULTS NGS detected 130 risk variants associated with DA (3.1 × 10-6 to 6.21 × 10-4), 129 of which were located in noncoding regions. The 21 SNPs prioritized by using functional genomic data sets were in or proximal to 5 genes: cadherin 17 (CDH17; n = 10), activating transcription factor 3 (ATF3; n = 7), family with sequence similarity, member A (FAM71A; n = 2), tachykinin receptor 1 (TACR1; n = 1), and zinc finger and BTB domain-containing protein 16 (ZBTB16; n = 1). Electrophoretic mobility shift assays detected allele-dependent nuclear protein binding in A549 cells for 8 of 21 variants. In the luciferase assay 4 of the 21 SNPs exhibited allele-dependent changes in gene expression. DNA affinity precipitation and mass spectroscopy of rs147978008 revealed allele-dependent binding of H1 histones, which was confirmed by using Western blotting. CONCLUSIONS We identified 5 DA-associated potential regulatory SNPs. Four variants exhibited effects on gene regulation (ATF rs11571537, CDH17 rs2446824 and rs2513789, and TACR1 rs2287231). A fifth variant (FAM71A rs147978008) showed nonrisk allele preferential binding to H1 histones. These results demonstrate that many DA-associated genetic variants likely act by modulating gene regulation.
Collapse
|
16
|
Broström JM, Ghalali A, Zheng H, Högberg J, Stenius U, Littorin M, Tinnerberg H, Broberg K. Toluene diisocyanate exposure and autotaxin-lysophosphatidic acid signalling. Toxicol Appl Pharmacol 2018; 355:43-51. [PMID: 29940203 DOI: 10.1016/j.taap.2018.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/11/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
Toluene diisocyanate (TDI) is a reactive chemical used in manufacturing plastics. TDI exposure adversely affects workers' health, causing occupational asthma, but individuals differ in susceptibility. We recently suggested a role for signalling mediated by the enzyme autotaxin (ATX) and its product, lysophosphatidic acid (LPA), in TDI toxicity. Here we genotyped 118 TDI-exposed workers for six single-nucleotide polymorphisms (SNPs) in genes encoding proteins implicated in ATX-LPA signalling: purinergic receptor P2X7 (P2RX7), CC motif chemokine ligand 2 (CCL2), interleukin 1β (IL1B), and caveolin 1 (CAV1). Two P2RX7 SNPs (rs208294 and rs2230911) significantly modified the associations between a biomarker of TDI exposure (urinary 2,4-toluene diamine) and plasma LPA; two IL1B SNPs (rs16944 and rs1143634) did not. CAV1 rs3807989 modified the associations, but the effect was not statistically significant (p = 0.05-0.09). In vitro, TDI-exposed bronchial epithelial cells (16HBE14o-) rapidly released ATX and IL-1β. P2X7 inhibitors attenuated both responses, but confocal microscopy showed non-overlapping localizations of ATX and IL-1β, and down-regulation of CAV1 inhibited the ATX response but not the IL-1β response. This study indicates that P2X7 is pivotal for TDI-induced ATX-LPA signalling, which was modified by genetic variation in P2RX7. Furthermore, our data suggest that the TDI-induced ATX and IL-1β responses occur independently.
Collapse
Affiliation(s)
- Julia M Broström
- Division of Occupational and Environmental Medicine, Lund University, SE 221 85 Lund, Sweden
| | - Aram Ghalali
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE171 77 Stockholm, Sweden
| | - Huiyuan Zheng
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE171 77 Stockholm, Sweden
| | - Johan Högberg
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE171 77 Stockholm, Sweden
| | - Ulla Stenius
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE171 77 Stockholm, Sweden
| | - Margareta Littorin
- Division of Occupational and Environmental Medicine, Lund University, SE 221 85 Lund, Sweden
| | - Håkan Tinnerberg
- Division of Occupational and Environmental Medicine, Lund University, SE 221 85 Lund, Sweden
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Lund University, SE 221 85 Lund, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE171 77 Stockholm, Sweden.
| |
Collapse
|
17
|
Attia HR, Kamel SA, Ibrahim MH, Farouk HA, Rahman AH, Sayed GH, Musa NI. Open-array analysis of genetic variants in Egyptian patients with type 2 diabetes and obesity. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2017. [DOI: 10.1016/j.ejmhg.2017.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
18
|
Abstract
PURPOSE OF REVIEW Work-related asthma is a common disorder among adult asthma patients, and in the case of occupational asthma, it is induced by workplace exposures. RECENT FINDINGS Occupational asthma provides an excellent model and benchmark for identifying and testing different allergy or inflammatory biomarkers associated with its inception or progression. Moreover, specific inhalation challenge with the incriminated agent represents an experimental setting to identify and validate potential systemic or local biomarkers. Some biomarkers are mainly blood-borne, while local airway biomarkers are derived from inflammatory or resident cells. Genetic and gene-environment interaction studies also provide an excellent framework to identify relevant profiles associated with the risk of developing these work-related conditions. Despite significant efforts to identify clinically relevant inflammatory and genomic markers for occupational asthma, apart from the documented utility of airway inflammatory biomarkers, it remains elusive to define specific markers or signatures clearly associated with different endpoints or outcomes in occupational asthma.
Collapse
|
19
|
Singh DP, Bagam P, Sahoo MK, Batra S. Immune-related gene polymorphisms in pulmonary diseases. Toxicology 2017; 383:24-39. [PMID: 28366820 PMCID: PMC5464945 DOI: 10.1016/j.tox.2017.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 03/12/2017] [Accepted: 03/28/2017] [Indexed: 01/26/2023]
Abstract
Between the DNA sequences of two randomly-selected human genomes, which consist of over 3 billion base pairs and twenty five thousand genes, there exists only 0.1% variation and 99.9% sequence identity. During the last couple of decades, extensive genome-wide studies have investigated the association between single-nucleotide polymorphisms (SNPs), the most common DNA variations, and susceptibility to various diseases. Because the immune system's primary function is to defend against myriad infectious agents and diseases, the large number of people who escape serious infectious diseases underscores the tremendous success of this system at this task. In fact, out of the third of the global human population infected with Mycobacterium tuberculosis during their lifetime, only a few people develop active disease, and a heavy chain smoker may inexplicably escape all symptoms of chronic obstructive pulmonary disease (COPD), lung cancer, and other smoke-associated lung diseases. This may be attributable to the genetic makeup of the individual(s), including their SNPs, which provide some resistance to the disease. Pattern recognition receptors (PRRs), transcription factors, cytokines and chemokines all play critical roles in orchestrating immune responses and their expression/activation is directly linked to human disease tolerance. Moreover, genetic variations present in the immune-response genes of various ethnicities may explain the huge differences in individual outcomes to various diseases and following exposure to infectious agents. The current review focuses on recent advances in our understanding of pulmonary diseases and the relationship of genetic variations in immune response genes to these conditions.
Collapse
Affiliation(s)
- Dhirendra P Singh
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, United States
| | - Prathyusha Bagam
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, United States
| | - Malaya K Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94304, United States
| | - Sanjay Batra
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, United States.
| |
Collapse
|
20
|
Wang D, Yang Y, Xu J, Zhou ZK, Yu HY. Association of CD14 -159 (-260C/T) polymorphism and asthma risk: an updated genetic meta-analysis study. Medicine (Baltimore) 2016; 95:e4959. [PMID: 27684840 PMCID: PMC5265933 DOI: 10.1097/md.0000000000004959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND It has been reported that the cluster of differentiation 14 (CD14) gene -159C/T variant may be associated with asthma risk. However, some studies yielded conflicting results. Therefore, a comprehensive meta-analysis was designed to assess the precise association. METHODS A systematic search in PubMed, Embase (Ovid), China National Knowledge Internet (CNKI), and Wan fang databases was conducted up to August 15, 2015. Odds ratio (OR) and 95% confidence interval (CI) were used to pool the effect size. We used I to assess heterogeneity, and a funnel plot and Egger test to assess publication bias. RESULTS In total, 34 studies involving 15,641 subjects were included in this meta-analysis. There was a statistically significant association between CD14 -159C/T polymorphism and asthma risk observed in dominant model (TT+TC vs CC: OR = 0.86, 95% CI = 0.77-0.97, P = 0.012) and codominant model (TC vs CC: OR = 0.88, 95% CI = 0.78-0.99, P = 0.035) in adults. However, there may be no significant association between CD14 159C/T and atopic and nonatopic asthma risk. CONCLUSION In summary, the overall results suggested that the CD14 -159C/T variant may decrease the risk of asthma susceptibility in adults. However, no significant association between CD14 159C/T and atopic and nonatopic asthma susceptibility was identified. More studies with larger sample size are needed to validate the findings from this study.
Collapse
Affiliation(s)
- Duan Wang
- West China Hospital/West China School of Medicine
| | - Yang Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu
| | - Jin Xu
- Tianjin Hospital, Tianjin
| | - Zong-Ke Zhou
- Department of Orthopedics, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
- Correspondence: Zong-Ke Zhou, Department of Orthopedics, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610041, China (e-mail: ), Hai-Yang Yu, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China (e-mail: )
| | - Hai-Yang Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu
- Correspondence: Zong-Ke Zhou, Department of Orthopedics, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610041, China (e-mail: ), Hai-Yang Yu, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China (e-mail: )
| |
Collapse
|