1
|
Ramachandran A, Akakpo JY, Curry SC, Rumack BH, Jaeschke H. Clinically relevant therapeutic approaches against acetaminophen hepatotoxicity and acute liver failure. Biochem Pharmacol 2024; 228:116056. [PMID: 38346541 PMCID: PMC11315809 DOI: 10.1016/j.bcp.2024.116056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/15/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Liver injury and acute liver failure caused by an acetaminophen (APAP) overdose is a significant clinical problem in western countries. With the introduction of the mouse model of APAP hepatotoxicity in the 1970 s, fundamental mechanisms of cell death were discovered. This included the recognition that part of the APAP dose is metabolized by cytochrome P450 generating a reactive metabolite that is detoxified by glutathione. After the partial depletion of glutathione, the reactive metabolite will covalently bind to sulfhydryl groups of proteins, which is the initiating event of the toxicity. This insight led to the introduction of N-acetyl-L-cysteine, a glutathione precursor, as antidote against APAP overdose in the clinic. Despite substantial progress in our understanding of the pathomechanisms over the last decades viable new antidotes only emerged recently. This review will discuss the background, mechanisms of action, and the clinical prospects of the existing FDA-approved antidote N-acetylcysteine, of several new drug candidates under clinical development [4-methylpyrazole (fomepizole), calmangafodipir] and examples of additional therapeutic targets (Nrf2 activators) and regeneration promoting agents (thrombopoietin mimetics, adenosine A2B receptor agonists, Wharton's Jelly mesenchymal stem cells). Although there are clear limitations of certain therapeutic approaches, there is reason to be optimistic. The substantial progress in the understanding of the pathophysiology of APAP hepatotoxicity led to the consideration of several drugs for development as clinical antidotes against APAP overdose in recent years. Based on the currently available information, it is likely that this will result in additional drugs that could be used as adjunct treatment for N-acetylcysteine.
Collapse
Affiliation(s)
- Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jephte Y Akakpo
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Steven C Curry
- Department of Medical Toxicology, Banner - University Medical Center Phoenix, Phoenix, AZ, USA; Department of Medicine, and Division of Clinical Data Analytics and Decision Support, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Barry H Rumack
- Department of Emergency Medicine and Pediatrics, University of Colorado School of Medicine, Denver, CO, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
2
|
Jaeschke H, Ramachandran A. Central Mechanisms of Acetaminophen Hepatotoxicity: Mitochondrial Dysfunction by Protein Adducts and Oxidant Stress. Drug Metab Dispos 2024; 52:712-721. [PMID: 37567742 PMCID: PMC11257690 DOI: 10.1124/dmd.123.001279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Acetaminophen (APAP) is an analgesic and antipyretic drug used worldwide, which is safe at therapeutic doses. However, an overdose can induce liver injury and even liver failure. Mechanistic studies in mice beginning with the seminal papers published by B.B. Brodie's group in the 1970s have resulted in important insight into the pathophysiology. Although the metabolic activation of APAP with generation of a reactive metabolite, glutathione depletion, and protein adduct formation are critical initiating events, more recently, mitochondria have come into focus as an important target and decision point of cell death. This review provides a comprehensive overview of the induction of mitochondrial superoxide and peroxynitrite formation and its propagation through a mitogen-activated protein kinase cascade, the mitochondrial permeability transition pore opening caused by iron-catalyzed protein nitration, and the mitochondria-dependent nuclear DNA fragmentation. In addition, the role of adaptive mechanisms that can modulate the pathophysiology, including autophagy, mitophagy, nuclear erythroid 2 p45-related factor 2 activation, and mitochondrial biogenesis, are discussed. Importantly, it is outlined how the mechanisms elucidated in mice translate to human hepatocytes and APAP overdose patients, and how this mechanistic insight explains the mechanism of action of the clinically approved antidote N-acetylcysteine and led to the recent discovery of a novel compound, fomepizole, which is currently under clinical development. SIGNIFICANCE STATEMENT: Acetaminophen (APAP)-induced liver injury is the most frequent cause of acute liver failure in western countries. Extensive mechanistic research over the last several decades has revealed a central role of mitochondria in the pathophysiology of APAP hepatotoxicity. This review article provides a comprehensive discussion of a) mitochondrial protein adducts and oxidative/nitrosative stress, b) mitochondria-regulated nuclear DNA fragmentation, c) adaptive mechanisms to APAP-induced cellular stress, d) translation of cell death mechanisms to overdose patients, and e) mechanism-based antidotes against APAP-induced liver injury.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
3
|
Filip AB, Mullins ME. Fomepizole should be used more liberally in paracetamol overdose. Br J Clin Pharmacol 2023; 89:594-598. [PMID: 36471569 DOI: 10.1111/bcp.15594] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022] Open
Abstract
Growing clinical and basic science data support the use of fomepizole as an adjunct to N-acetylcysteine in paracetamol poisoning. This safe antidote may be helpful in severely poisoned patients.
Collapse
Affiliation(s)
- Ari B Filip
- Arkansas Poison and Drug Information Center, University of Arkansas for Medical Sciences College of Pharmacy, Little Rock, Arkansas, USA
| | - Michael E Mullins
- Department of Emergency Medicine, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
4
|
Stanton MT. Part
II
: Interactive case: Toxicology and poison control. JOURNAL OF THE AMERICAN COLLEGE OF CLINICAL PHARMACY 2022. [DOI: 10.1002/jac5.1725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Filip AB, Berg SE, Mullins ME, Schwarz ES. Fomepizole as an adjunctive therapy for acetaminophen poisoning: cases reported to the toxicology investigators consortium (ToxIC) database 2015-2020. Clin Toxicol (Phila) 2022; 60:1006-1011. [PMID: 35510880 DOI: 10.1080/15563650.2022.2070071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Fomepizole inhibits formation of toxic acetaminophen (APAP) metabolites and may prevent or reverse mitochondrial toxicity. Given these mechanisms, it may be beneficial in patients with severe APAP toxicity. Current patterns of use for this indication are not well-studied. METHODS This is a secondary analysis of patients enrolled in the Toxicology Investigators Consortium (ToxIC) database from January 2015 to July 2020. We queried cases in which APAP was listed as an ingested agent and fomepizole was also administered. We excluded cases in which APAP was not the primary agent, N-acetylcysteine (NAC) was not administered, or fomepizole was explicitly administered for another indication. Additionally, we sent a survey to each ToxIC site that administered fomepizole for APAP toxicity to better understand when, why, and how they were using it for this indication. RESULTS Twenty-five cases of fomepizole administration following an APAP ingestion met our inclusion criteria. There were one to four cases per year between 2015 and 2019 and eight cases in 2020. Seventeen of 25 (68%) cases were for a known acute ingestion. Eighteen of 25 (72%) patients developed hepatotoxicity (AST or ALT > 1000 IU/L) and 10 of 25 (40%) developed coagulopathy (PT > 15s). This was an ill patient population, with 18 of 25 (72%) developing metabolic acidosis (pH <7.20), 12 of 25 (48%) were intubated, 9 of 25 (36%) receiving vasopressors, and 6 of 25 (24%) receiving continuous renal replacement therapy. Overall, mortality was 24%. CONCLUSION The use of fomepizole is increasing in frequency in a small subset of critically ill and acutely APAP-poisoned patients.
Collapse
Affiliation(s)
- Ari B Filip
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sarah E Berg
- The Toxikon Consortium, Department of Emergency Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Michael E Mullins
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Evan S Schwarz
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | -
- American College of Medical Toxicology, Phoenix, AZ, USA
| |
Collapse
|
6
|
Akakpo JY, Ramachandran A, Curry SC, Rumack BH, Jaeschke H. Comparing N-acetylcysteine and 4-methylpyrazole as antidotes for acetaminophen overdose. Arch Toxicol 2022; 96:453-465. [PMID: 34978586 PMCID: PMC8837711 DOI: 10.1007/s00204-021-03211-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023]
Abstract
Acetaminophen (APAP) overdose can cause hepatotoxicity and even liver failure. N-acetylcysteine (NAC) is still the only FDA-approved antidote against APAP overdose 40 years after its introduction. The standard oral or intravenous dosing regimen of NAC is highly effective for patients with moderate overdoses who present within 8 h of APAP ingestion. However, for late-presenting patients or after ingestion of very large overdoses, the efficacy of NAC is diminished. Thus, additional antidotes with an extended therapeutic window may be needed for these patients. Fomepizole (4-methylpyrazole), a clinically approved antidote against methanol and ethylene glycol poisoning, recently emerged as a promising candidate. In animal studies, fomepizole effectively prevented APAP-induced liver injury by inhibiting Cyp2E1 when treated early, and by inhibiting c-jun N-terminal kinase (JNK) and oxidant stress when treated after the metabolism phase. In addition, fomepizole treatment, unlike NAC, prevented APAP-induced kidney damage and promoted hepatic regeneration in mice. These mechanisms of protection (inhibition of Cyp2E1 and JNK) and an extended efficacy compared to NAC could be verified in primary human hepatocytes. Furthermore, the formation of oxidative metabolites was eliminated in healthy volunteers using the established treatment protocol for fomepizole in toxic alcohol and ethylene glycol poisoning. These mechanistic findings, together with the excellent safety profile after methanol and ethylene glycol poisoning and after an APAP overdose, suggest that fomepizole may be a promising antidote against APAP overdose that could be useful as adjunct treatment to NAC. Clinical trials to support this hypothesis are warranted.
Collapse
Affiliation(s)
- Jephte Y. Akakpo
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Steven C. Curry
- Division of Clinical Data Analytics and Decision Support, and Division of Medical Toxicology and Precision Medicine, Department of Medicine, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Barry H. Rumack
- Department of Emergency Medicine and Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
7
|
Pourbagher-Shahri AM, Schimmel J, Shirazi FM, Nakhaee S, Mehrpour O. Use of fomepizole (4-methylpyrazole) for acetaminophen poisoning: A scoping review. Toxicol Lett 2021; 355:47-61. [PMID: 34785186 DOI: 10.1016/j.toxlet.2021.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/30/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Acetaminophen (paracetamol, APAP) poisoning is a prominent global cause of drug-induced liver injury. While N-acetylcysteine (NAC) is an effective antidote, it has therapeutic limitations in massive overdose or delayed presentation. The objective is to comprehensively review the literature on fomepizole as a potential adjunct antidote for acetaminophen toxicity. METHODS A scoping review was performed using standardized search terms from inception through July 2021. RESULTS Reports on fomepizole as a therapeutic adjunct for APAP toxicity span heterogeneous types of evidence. Eleven preclinical studies (in vitro and animal), fourteen case reports/series, and one human volunteer study were included. Fomepizole's action is mediated by inhibition of CYP2E1 to prevent oxidant stress generation, and inhibition of c-Jun N-terminal kinase (JNK) to decrease amplification of oxidant stress signaling to mitochondria. Studies have shown a reduction in oxidative metabolites likely by shunting metabolism away from CYP2E1 and a resultant decrease in liver injury in animals, independent of CYP2E1 interactions. Fomepizole has been linked to few adverse effects. CONCLUSION Based on in vitro and animal studies, and bolstered by case reports, fomepizole likely offers benefit as an adjunct antidote for APAP toxicity, however this remains to be shown in a human trial. NAC remains the standard of care antidote, but given that fomepizole is approved and generally safe, it may be considered for APAP toxicity as off-label use by experienced clinicians, in rare circumstances associated with increased risk of hepatotoxicity despite standard NAC dosing. The marginal clinical benefit of fomepizole adjunct therapy beyond NAC monotherapy remains to be clearly defined, and routine use for APAP overdose is premature based on current evidence.
Collapse
Affiliation(s)
| | - Jonathan Schimmel
- Dept of Emergency Medicine, Division of Medical Toxicology, Mount Sinai Hospital Icahn School of Medicine, New York, NY, USA
| | - Farshad M Shirazi
- Arizona Poison and Drug Information Center, University of Arizona, Tucson, AZ, USA
| | - Samaneh Nakhaee
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Omid Mehrpour
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran; Data Science Institute, Southern Methodist University, Dallas, Texas, USA; Scientific Unlimited Horizon, Tucson, AZ, USA.
| |
Collapse
|
8
|
Chiu MH, Jaworska N, Li NL, Yarema M. Massive Acetaminophen Overdose Treated Successfully with N-Acetylcysteine, Fomepizole, and Hemodialysis. Case Rep Crit Care 2021; 2021:6695967. [PMID: 34336301 PMCID: PMC8289598 DOI: 10.1155/2021/6695967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/28/2021] [Indexed: 01/22/2023] Open
Abstract
Acetaminophen overdose is one of the most common causes of acute hepatic failure in the developed world. There is strong evidence for N-acetylcysteine (NAC) as a safe and effective antidote for acetaminophen toxicity. However, there is less clarity in the management of massive overdoses (acute, single ingestions > 500 mg/kg with 4-hour equivalent concentrations ~6000 μmol/L) which are often associated with metabolic acidosis and multiorgan dysfunction. In such ingestions, the role of adjuvant treatments such as fomepizole and extracorporeal removal is unclear. We present a case of a 20-year-old female presenting with an acute ingestion of over 120 grams (1764.7 mg/kg) and an acetaminophen concentration of 5880 μmol/L who developed refractory shock, decreased level of consciousness, and metabolic acidosis requiring mechanical ventilation and vasopressor support. She was treated with gastric decontamination with activated charcoal, IV NAC, fomepizole, and hemodialysis. The patient had complete clearance of acetaminophen by 32 hours after presentation and normalization of her acid base and hemodynamic status without any organ failure. This case highlights the potential benefit of a triple strategy of NAC, fomepizole, and early hemodialysis in massive acetaminophen overdose, potentially sparing complications of prolonged intubation and ICU hospitalization.
Collapse
Affiliation(s)
- Michael H. Chiu
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Natalia Jaworska
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Nicholas L. Li
- Department of Medicine, Division of Nephrology, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Mark Yarema
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, AB, Canada
- Poison and Drug Information Service, Alberta Health Services, Calgary, AB, Canada
- Department of Emergency Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
9
|
Jaeschke H, Akakpo JY, Umbaugh DS, Ramachandran A. Novel Therapeutic Approaches Against Acetaminophen-induced Liver Injury and Acute Liver Failure. Toxicol Sci 2021; 174:159-167. [PMID: 31926003 DOI: 10.1093/toxsci/kfaa002] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver injury and acute liver failure caused by acetaminophen (APAP, N-acetyl-p-aminophenol, paracetamol) overdose is a significant clinical problem in most western countries. The only clinically approved antidote is N-acetylcysteine (NAC), which promotes the recovery of hepatic GSH. If administered during the metabolism phase, GSH scavenges the reactive metabolite N-acetyl-p-benzoquinone imine. More recently, it was shown that NAC can also reconstitute mitochondrial GSH levels and scavenge reactive oxygen/peroxynitrite and can support mitochondrial bioenergetics. However, NAC has side effects and may not be efficacious after high overdoses. Repurposing of additional drugs based on their alternate mechanisms of action could be a promising approach. 4-Methylpyrazole (4MP) was shown to be highly effective against APAP toxicity by inhibiting cytochrome P450 enzymes in mice and humans. In addition, 4MP is a potent c-Jun N-terminal kinase inhibitor expanding its therapeutic window. Calmangafodipir (CMFP) is a SOD mimetic, which is well tolerated in patients and has the potential to be effective after severe overdoses. Other drugs approved for humans such as metformin and methylene blue were shown to be protective in mice at high doses or at human therapeutic doses, respectively. Additional protective strategies such as enhancing antioxidant activities, Nrf2-dependent gene induction and autophagy activation by herbal medicine components are being evaluated. However, at this point, their mechanistic insight is limited, and the doses used are high. More rigorous mechanistic studies are needed to advance these herbal compounds. Nevertheless, based on recent studies, 4-methylpyrazole and calmangafodipir have realistic prospects to become complimentary or even alternative antidotes to NAC for APAP overdose.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Jephte Y Akakpo
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - David S Umbaugh
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
10
|
Akakpo JY, Ramachandran A, Jaeschke H. Novel strategies for the treatment of acetaminophen hepatotoxicity. Expert Opin Drug Metab Toxicol 2020; 16:1039-1050. [PMID: 32862728 PMCID: PMC7606761 DOI: 10.1080/17425255.2020.1817896] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Acetaminophen (APAP) hepatotoxicity is the leading cause of acute liver failure in the western world. Despite extensive investigations into the mechanisms of cell death, only a single antidote, N-acetylcysteine, is in clinical use. However, there have recently been more efforts made to translate mechanistic insight into identification of therapeutic targets and potential new drugs for this indication. AREAS COVERED After a short review of the key events in the pathophysiology of APAP-induced liver injury and recovery, the pros and cons of targeting individual steps in the pathophysiology as therapeutic targets are discussed. While the re-purposed drug fomepizole (4-methylpyrazole) and the new entity calmangafodipir are most advanced based on the understanding of their mechanism of action, several herbal medicine extracts and their individual components are also considered. EXPERT OPINION Fomepizole (4-methylpyrazole) is safe and has shown efficacy in preclinical models, human hepatocytes and in volunteers against APAP overdose. The safety of calmangafodipir in APAP overdose patients was shown but it lacks solid preclinical efficacy studies. Both drugs require a controlled phase III trial to achieve regulatory approval. All studies of herbal medicine extracts and components suffer from poor experimental design, which questions their clinical utility at this point.
Collapse
Affiliation(s)
- Jephte Y. Akakpo
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| |
Collapse
|
11
|
McGill MR, Hinson JA. The development and hepatotoxicity of acetaminophen: reviewing over a century of progress. Drug Metab Rev 2020; 52:472-500. [PMID: 33103516 DOI: 10.1080/03602532.2020.1832112] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acetaminophen (APAP) was first synthesized in the 1800s, and came on the market approximately 65 years ago. Since then, it has become one of the most used drugs in the world. However, it is also a major cause of acute liver failure. Early investigations of the mechanisms of toxicity revealed that cytochrome P450 enzymes catalyze formation of a reactive metabolite in the liver that depletes glutathione and covalently binds to proteins. That work led to the introduction of N-acetylcysteine (NAC) as an antidote for APAP overdose. Subsequent studies identified the reactive metabolite N-acetyl-p-benzoquinone imine, specific P450 enzymes involved, the mechanism of P450-mediated oxidation, and major adducted proteins. Significant gaps remain in our understanding of the mechanisms downstream of metabolism, but several events appear critical. These events include development of an initial oxidative stress, reactive nitrogen formation, altered calcium flux, JNK activation and mitochondrial translocation, inhibition of mitochondrial respiration, the mitochondrial permeability transition, and nuclear DNA fragmentation. Additional research is necessary to complete our knowledge of the toxicity, such as the source of the initial oxidative stress, and to greatly improve our understanding of liver regeneration after APAP overdose. A better understanding of these mechanisms may lead to additional treatment options. Even though NAC is an excellent antidote, its effectiveness is limited to the first 16 hours following overdose.
Collapse
Affiliation(s)
- Mitchell R McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, Little Rock, AR, USA.,Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jack A Hinson
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
12
|
Mullins ME, Yeager LH, Freeman WE. Metabolic and mitochondrial treatments for severe paracetamol poisoning: a systematic review. Clin Toxicol (Phila) 2020; 58:1284-1296. [PMID: 32762579 DOI: 10.1080/15563650.2020.1798979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Paracetamol (acetaminophen) remains a leading cause of poisoning in Europe, North America, and Australia. For over four decades, acetylcysteine has been the antidote of choice. However, despite the use of acetylcysteine, some patients who ingest very large doses of paracetamol or who reach hospital late in the course of their poisoning, develop acute liver failure. Some will develop metabolic acidosis indicating mitochondrial toxicity. OBJECTIVE We review the experimental and clinical data reported with the use of cimetidine, fomepizole, and calmangafodipir in the treatment of paracetamol toxicity to determine if these treatments alone or in combination with acetylcysteine might be of benefit. METHODS We searched Ovid Medline 1946-2020, Embase 1947-2020, Scopus 2004-2020, Cochrane Databases of Systematic Reviews (CDSR), Cochrane Central Register of Controlled Trials (CENTRAL), and clinicaltrials.gov 1997-2020 for records including the concepts of paracetamol poisoning and cimetidine, fomepizole, calmangafodipir, and acetylcysteine. We included basic science studies in animals and all available study types in humans. We reviewed the reference lists of included articles to search for references missed in the original search. We registered the protocol in PROSPERO. RESULTS We completed all search strategies on 20 August 2019, 27 January 2020, and 15 June 2020. These produced 6,826 citations. We identified and deleted 2,843 duplicate resulting in a total of 3,856 unique citations. After applying inclusion and exclusion criteria, 89 studies remained. The largest numbers of studies described the past use of cimetidine, and the more recent use of fomepizole.Cimetidine: There is good animal evidence that cimetidine blocks CYP 2E1 with the potential to inhibit the toxic metabolism of paracetamol. Early case reports were inconclusive regarding the benefit to humans in paracetamol poisoning. Two comparative trials found no benefit of cimetidine in paracetamol poisoning, but few patients had severe poisoning.Fomepizole: There is good animal evidence that fomepizole blocks CYP 2E1 with the potential to inhibit the toxic metabolism of paracetamol. There are no comparative trials of fomepizole for acute paracetamol poisoning. Case reports are inconclusive due to multiple other interventions including the use of acetylcysteine in all cases. The benefit of fomepizole as adjunct treatment has not been demonstrated.Calmangafodipir: Calmangafodipir, a drug mimicking superoxide dismutase, has emerged as a potential treatment for severe paracetamol toxicity because the formation of superoxide free radicals appears to explain part of the mitochondrial toxicity of extremely large paracetamol overdoses. Calmangafodipir has reached Phase I/II trial of safety in humans with acute paracetamol overdose. Planning for a Phase III study of efficacy is currently underway. CONCLUSIONS The vast majority of patients with acute paracetamol overdose enjoy excellent outcomes with acetylcysteine alone. Although cimetidine and fomepizole inhibit CYP 2E1 in animals, there is insufficient evidence to recommend their use either as a primary treatment or adjunct therapy in paracetamol poisoning. Calmangafodipir remains investigational.
Collapse
Affiliation(s)
- Michael E Mullins
- Section of Medical Toxicology, Department of Emergency Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lauren H Yeager
- School of Medicine, Bernard Becker Medical Library Medicine, Washington University, St. Louis, Missouri, USA
| | - William E Freeman
- Section of Medical Toxicology, Department of Emergency Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
13
|
Akakpo JY, Ramachandran A, Duan L, Schaich MA, Jaeschke MW, Freudenthal BD, Ding WX, Rumack BH, Jaeschke H. Delayed Treatment With 4-Methylpyrazole Protects Against Acetaminophen Hepatotoxicity in Mice by Inhibition of c-Jun n-Terminal Kinase. Toxicol Sci 2020; 170:57-68. [PMID: 30903181 DOI: 10.1093/toxsci/kfz077] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Acetaminophen (APAP) overdose is the most common cause of hepatotoxicity and acute liver failure in the United States and many western countries. However, the only clinically approved antidote, N-acetylcysteine, has a limited therapeutic window. 4-Methylpyrazole (4MP) is an antidote for methanol and ethylene glycol poisoning, and we have recently shown that cotreatment of 4MP with APAP effectively prevents toxicity by inhibiting Cyp2E1. To evaluate if 4MP can be used therapeutically, C57BL/6J mice were treated with 300 mg/kg APAP followed by 50 mg/kg 4MP 90 min later (after the metabolism phase). In these experiments, 4MP significantly attenuated liver injury at 3, 6, and 24 h after APAP as shown by 80%-90% reduction in plasma alanine aminotransferase activities and reduced areas of necrosis. 4MP prevented c-Jun c-Jun N-terminal kinase (JNK) activation and its mitochondrial translocation, and reduced mitochondrial oxidant stress and nuclear DNA fragmentation. 4MP also prevented JNK activation in other liver injury models. Molecular docking experiments showed that 4MP can bind to the ATP binding site of JNK. These data suggest that treatment with 4MP after the metabolism phase effectively prevents APAP-induced liver injury in the clinically relevant mouse model in vivo mainly through the inhibition of JNK activation. 4MP, a drug approved for human use, is as effective as N-acetylcysteine or can be even more effective in cases of severe overdoses with prolonged metabolism (600 mg/kg). 4MP acts on alternative therapeutic targets and thus may be a novel approach to treatment of APAP overdose in patients that complements N-acetylcysteine.
Collapse
Affiliation(s)
| | | | - Luqi Duan
- Department of Pharmacology Toxicology & Therapeutics
| | - Matthew A Schaich
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | | | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Wen-Xing Ding
- Department of Pharmacology Toxicology & Therapeutics
| | - Barry H Rumack
- Department of Emergency Medicine and Pediatrics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | | |
Collapse
|
14
|
Rampon G, Wartman H, Osmon S, Scalzo A. Use of fomepizole as an adjunct in the treatment of acetaminophen overdose: a case series. TOXICOLOGY COMMUNICATIONS 2019. [DOI: 10.1080/24734306.2019.1705596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Garrett Rampon
- Saint Louis University School of Medicine, SSM Health Saint Louis University Hospital, SSM Health Cardinal Glennon Children’s Hospital, Saint Louis, MO, USA
- Department of Internal Medicine, SSM Health Saint Louis University Hospital, SSM Health Cardinal Glennon Children’s Hospital, Saint Louis, MO, USA
| | - Haley Wartman
- Saint Louis University School of Medicine, SSM Health Saint Louis University Hospital, SSM Health Cardinal Glennon Children’s Hospital, Saint Louis, MO, USA
| | - Stephen Osmon
- Saint Louis University School of Medicine, SSM Health Saint Louis University Hospital, SSM Health Cardinal Glennon Children’s Hospital, Saint Louis, MO, USA
- Department of Internal Medicine, SSM Health Saint Louis University Hospital, SSM Health Cardinal Glennon Children’s Hospital, Saint Louis, MO, USA
- Division of Pulmonary & Critical Care, SSM Health Saint Louis University Hospital, SSM Health Cardinal Glennon Children’s Hospital, Saint Louis, MO, USA
| | - Anthony Scalzo
- Saint Louis University School of Medicine, SSM Health Saint Louis University Hospital, SSM Health Cardinal Glennon Children’s Hospital, Saint Louis, MO, USA
- Department of Internal Medicine, SSM Health Saint Louis University Hospital, SSM Health Cardinal Glennon Children’s Hospital, Saint Louis, MO, USA
- Division of Toxicology, SSM Health Saint Louis University Hospital, SSM Health Cardinal Glennon Children’s Hospital, Saint Louis, MO, USA
| |
Collapse
|
15
|
Jaeschke H, Duan L, Nguyen N, Ramachandran A. Mitochondrial Damage and Biogenesis in Acetaminophen-induced Liver Injury. LIVER RESEARCH 2019; 3:150-156. [PMID: 32655976 PMCID: PMC7351365 DOI: 10.1016/j.livres.2019.10.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Liver injury and acute liver failure caused by acetaminophen (APAP) overdose is the clinically most important drug toxicity in western countries. Mechanistic investigations have revealed a central role of mitochondria in the pathophysiology. Excess formation of the reactive metabolite N-acetyl-p-benzoquinone imine (NAPQI) after an overdose leads to hepatic glutathione depletion, mitochondrial protein adducts formation and an initial oxidant stress, which triggers the activation of mitogen activated protein (MAP) kinase cascade ultimately leading to c-jun N-terminal kinase (JNK) phosphorylation. Phospho-JNK translocates to the mitochondria and amplifies the oxidative and nitrosative stress eventually causing the mitochondrial membrane permeability transition pore opening and cessation of ATP synthesis. In addition, mitochondrial matrix swelling ruptures the outer membrane and releases endonucleases, which cause nuclear DNA fragmentation. Together, the nuclear DNA damage and the extensive mitochondrial dysfunction result in necrotic cell death. However, the pro-cell death signaling events are counteracted by adaptive responses such as autophagy and mitochondrial biogenesis. The improved mechanistic insight into the pathophysiology leads to better understanding of the mechanisms of action of the existing antidote N-acetylcysteine and justifies the clinical testing of novel therapeutics such as 4-methylpyrazole and calmangafodipir.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Luqi Duan
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Nga Nguyen
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
16
|
Kang AM, Padilla-Jones A, Fisher ES, Akakpo JY, Jaeschke H, Rumack BH, Gerkin RD, Curry SC. The Effect of 4-Methylpyrazole on Oxidative Metabolism of Acetaminophen in Human Volunteers. J Med Toxicol 2019; 16:169-176. [PMID: 31768936 DOI: 10.1007/s13181-019-00740-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Acetaminophen (APAP) is commonly ingested in both accidental and suicidal overdose. Oxidative metabolism by cytochrome P450 2E1 (CYP2E1) produces the hepatotoxic metabolite, N-acetyl-p-benzoquinone imine. CYP2E1 inhibition using 4-methylpyrazole (4-MP) has been shown to prevent APAP-induced liver injury in mice and human hepatocytes. This study was conducted to assess the effect of 4-MP on APAP metabolism in humans. METHODS This crossover trial examined the ability of 4-MP to inhibit CYP2E1 metabolism of APAP in five human volunteers. Participants received a single oral dose of APAP 80 mg/kg, both with and without intravenous 4-MP, after which urinary and plasma oxidative APAP metabolites were measured. The primary outcome was the fraction of ingested APAP excreted as total oxidative metabolites (APAP-CYS, APAP-NAC, APAP-GSH). RESULTS Compared with APAP alone, co-treatment with 4-MP decreased the percentage of ingested APAP recovered as oxidative metabolites in 24-hour urine from 4.48 to 0.51% (95% CI = 2.31-5.63%, p = 0.003). Plasma concentrations of these oxidative metabolites also decreased. CONCLUSIONS These results show 4-MP effectively reduced oxidative metabolism of APAP in human volunteers ingesting a supratherapeutic APAP dose. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03878693.
Collapse
Affiliation(s)
- A Min Kang
- Division of Clinical Data Analytics and Decision Support, and Division of Medical Toxicology and Precision Medicine, Department of Medicine, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA. .,Department of Medical Toxicology, Banner - University Medical Center Phoenix, 1012 E. Willetta St., Fl 2, Phoenix, AZ, 85006, USA.
| | - Angela Padilla-Jones
- Department of Medical Toxicology, Banner - University Medical Center Phoenix, 1012 E. Willetta St., Fl 2, Phoenix, AZ, 85006, USA
| | - Erik S Fisher
- Department of Medical Toxicology, Banner - University Medical Center Phoenix, 1012 E. Willetta St., Fl 2, Phoenix, AZ, 85006, USA
| | - Jephte Y Akakpo
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Barry H Rumack
- Department of Emergency Medicine, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Richard D Gerkin
- Department of Medical Toxicology, Banner - University Medical Center Phoenix, 1012 E. Willetta St., Fl 2, Phoenix, AZ, 85006, USA
| | - Steven C Curry
- Division of Clinical Data Analytics and Decision Support, and Division of Medical Toxicology and Precision Medicine, Department of Medicine, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA.,Department of Medical Toxicology, Banner - University Medical Center Phoenix, 1012 E. Willetta St., Fl 2, Phoenix, AZ, 85006, USA
| |
Collapse
|
17
|
Akakpo JY, Ramachandran A, Kandel SE, Ni HM, Kumer SC, Rumack BH, Jaeschke H. 4-Methylpyrazole protects against acetaminophen hepatotoxicity in mice and in primary human hepatocytes. Hum Exp Toxicol 2018; 37:1310-1322. [PMID: 29739258 DOI: 10.1177/0960327118774902] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Liver injury due to acetaminophen (APAP) overdose is the major cause of acute liver failure in the United States. While treatment with N-acetylcysteine is the current standard of care for APAP overdose, anecdotal evidence suggests that administration of 4-methylpyrazole (4MP) may be beneficial in the clinic. The objective of the current study was to examine the protective effect of 4MP and its mechanism of action. Male C57BL/6J mice were co-treated with 300 mg/kg of APAP and 50 mg/kg of 4MP. The severe liver injury induced by APAP at 6 h as indicated by elevated plasma alanine aminotransferase activities, centrilobular necrosis, and nuclear DNA fragmentation was almost completely eliminated by 4MP. In addition, 4MP largely prevented APAP-induced activation of c-Jun N-terminal kinase (JNK), mitochondrial translocation of phospho-JNK and Bax, and the release of mitochondrial intermembrane proteins. Importantly, 4MP inhibited the generation of APAP protein adducts and formation of APAP-glutathione (GSH) conjugates and attenuated the depletion of the hepatic GSH content. These findings are relevant to humans because 4MP also prevented APAP-induced cell death in primary human hepatocytes. In conclusion, early treatment with 4MP can completely prevent liver injury after APAP overdose by inhibiting cytochrome P450 and preventing generation of the reactive metabolite.
Collapse
Affiliation(s)
- J Y Akakpo
- 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - A Ramachandran
- 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - S E Kandel
- 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - H M Ni
- 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - S C Kumer
- 2 Department of Surgery, University of Kansas Medical Center, Kansas City, KS, USA
| | - B H Rumack
- 3 Department of Emergency Medicine and Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - H Jaeschke
- 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|