1
|
Aparicio-Soto M, Curato C, Riedel F, Thierse HJ, Luch A, Siewert K. In Vitro Monitoring of Human T Cell Responses to Skin Sensitizing Chemicals-A Systematic Review. Cells 2021; 11:cells11010083. [PMID: 35011644 PMCID: PMC8750770 DOI: 10.3390/cells11010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Chemical allergies are T cell-mediated diseases that often manifest in the skin as allergic contact dermatitis (ACD). To prevent ACD on a public health scale and avoid elicitation reactions at the individual patient level, predictive and diagnostic tests, respectively, are indispensable. Currently, there is no validated in vitro T cell assay available. The main bottlenecks concern the inefficient generation of T cell epitopes and the detection of rare antigen-specific T cells. Methods: Here, we systematically review original experimental research papers describing T cell activation to chemical skin sensitizers. We focus our search on studies published in the PubMed and Scopus databases on non-metallic allergens in the last 20 years. Results: We identified 37 papers, among them 32 (86%) describing antigen-specific human T cell activation to 31 different chemical allergens. The remaining studies measured the general effects of chemical allergens on T cell function (five studies, 14%). Most antigen-specific studies used peripheral blood mononuclear cells (PBMC) as antigen-presenting cells (APC, 75%) and interrogated the blood T cell pool (91%). Depending on the individual chemical properties, T cell epitopes were generated either by direct administration into the culture medium (72%), separate modification of autologous APC (29%) or by use of hapten-modified model proteins (13%). Read-outs were mainly based on proliferation (91%), often combined with cytokine secretion (53%). The analysis of T cell clones offers additional opportunities to elucidate the mechanisms of epitope formation and cross-reactivity (13%). The best researched allergen was p-phenylenediamine (PPD, 12 studies, 38%). For this and some other allergens, stronger immune responses were observed in some allergic patients (15/31 chemicals, 48%), illustrating the in vivo relevance of the identified T cells while detection limits remain challenging in many cases. Interpretation: Our results illustrate current hardships and possible solutions to monitoring T cell responses to individual chemical skin sensitizers. The provided data can guide the further development of T cell assays to unfold their full predictive and diagnostic potential, including cross-reactivity assessments.
Collapse
Affiliation(s)
- Marina Aparicio-Soto
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
| | - Caterina Curato
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
| | - Franziska Riedel
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Hermann-Josef Thierse
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Katherina Siewert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
- Correspondence: ; Tel.: +49-(0)30-18412-57001
| |
Collapse
|
2
|
Martins JD, Maciel EA, Silva A, Ferreira I, Ricardo F, Domingues P, Neves BM, Domingues MRM, Cruz MT. Phospholipidomic Profile Variation on THP-1 Cells Exposed to Skin or Respiratory Sensitizers and Respiratory Irritant. J Cell Physiol 2016; 231:2639-51. [PMID: 26946329 DOI: 10.1002/jcp.25365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/01/2016] [Indexed: 11/08/2022]
Abstract
Occupational exposure to low molecular weight reactive chemicals often leads to development of allergic reactions such as allergic contact dermatitis and respiratory allergies. Further insights into the interaction of these chemicals with physiopathological relevant cellular models might provide the foundations for novel non-animal approaches to safety assessment. In this work we used the human THP-1 cell line to determine phospholipidome changes induced by the skin sensitizer 1-fluoro-2,4-dinitrobenzene (DNFB), the respiratory allergen hexamethylene diisocyanate (HDI), and the irritant methyl salicylate (MESA). We detected that these chemicals differently induce lipid peroxidation and modulate THP-1 IL-1β, IL-12B, IL-8, CD86, and HMOX1 transcription. Decreased phosphatidylethanolamine content was detected in cells exposed to MESA, while profound alterations in the relative abundance of cardiolipin species were observed in cells exposed to DNFB. All chemicals tested induced a decrease in the relative abundance of plasmanyl phosphatidylcholine species PC (O-16:0e/18:1) and phosphatidylinositol species PI (34:1), while increasing PI (38:4). An increased abundance of oleic acid was observed in the phospholipids of cells exposed to DNFB while a decreased abundance of palmitic acid was detected in cells treated with MESA or DNFB. We conclude that both specific and common alterations at phospholipidome levels are triggered by the different chemicals, while not allowing a complete distinction between them using a Canonical Analysis of Principal Coordinates (CAP). The common effects observed at phospholipids level with all the chemicals tested might be related to unspecific cell cytotoxic mechanisms that nevertheless may contribute to the elicitation of specific immune responses. J. Cell. Physiol. 231: 2639-2651, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- João D Martins
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Elisabete A Maciel
- Department of Chemistry, Mass Spectrometry Centre, University of Aveiro, Aveiro, Portugal.,Departament of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Ana Silva
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Isabel Ferreira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Fernando Ricardo
- Departament of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Pedro Domingues
- Department of Chemistry, Mass Spectrometry Centre, University of Aveiro, Aveiro, Portugal
| | - Bruno M Neves
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Department of Chemistry, Mass Spectrometry Centre, University of Aveiro, Aveiro, Portugal
| | | | - Maria Teresa Cruz
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
3
|
Høgsberg T, Thomsen BM, Serup J. Histopathology and immune histochemistry of red tattoo reactions. Interface dermatitis is the lead pathology, with increase in T-lymphocytes and Langerhans cells suggesting an allergic pathomechanism. Skin Res Technol 2015; 21:449-58. [PMID: 26031754 DOI: 10.1111/srt.12213] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND The majority of tattoo reactions are affiliated to red pigmented areas and often suspected to be allergic in nature. A sizeable series of biopsies of such reactions has not previously been performed. The aim of this study was to type and grade epidermal and dermal changes in tattoo reactions to red/red nuances by microscopy and immunochemistry relevant for the assessment of a possible allergic pathomechanism. METHODS Skin biopsies were taken from red tattoo reactions, graded by conventional microscopy and stained for T and B-lymphocytes, Langerhans cells, macrophages and tumour necrosis factor (TNF)-α. RESULTS The study included 19 biopsies from 19 patients. The culprit colours were red/pink (n = 15) and purple/bordeaux (n = 4). Interface dermatitis was clearly the lead pathology found in 78% of samples, overlapped with granulomatous (in 32%) and pseudolymphomatous reaction patterns (in 32%). Epidermal hyperkeratosis (in 89%) was common as was leakage of red pigment across the dermo-epidermal junction, with transepidermal elimination (in 28%). The dermal cellular infiltration was dominated by T-lymphocytes (in 100%), Langerhans cells (in 95%) and macrophages (in 100%). TNF-α was common. CONCLUSION The predominant histological pattern of chronic tattoo reactions in red/red nuances is interface dermatitis. T-lymphocytes and Langerhans cells are increased suggesting an allergic pathomechanism. TNF-α may contribute to reactions. In many cases, overlapping reactive patterns were identified.
Collapse
Affiliation(s)
- T Høgsberg
- Department of Dermatology, Bispebjerg University Hospital, Copenhagen NV, Denmark
| | - B M Thomsen
- Department of Pathology, Bispebjerg University Hospital, Copenhagen NV, Denmark
| | - J Serup
- Department of Dermatology, Bispebjerg University Hospital, Copenhagen NV, Denmark
| |
Collapse
|
4
|
Gonçalo M, Martins J, Silva A, Neves B, Figueiredo A, Cruz T, Lopes C. Systemic drugs inducing non-immediate cutaneous adverse reactions and contact sensitizers evoke similar responses in THP-1 cells. J Appl Toxicol 2014; 35:398-406. [PMID: 25091725 DOI: 10.1002/jat.3033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/03/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Contact sensitizers induce phenotypic and functional changes in dendritic cells (DC) that enhance their antigen-presenting capacity and, ultimately, modulate the T cell response. To evaluate if there is a similar effect of drugs causing T-cell-mediated cutaneous adverse drug reactions (CADR), we studied the in vitro effect of drugs on THP-1 cells, a cell line widely used to evaluate the early molecular and cellular events triggered by contact sensitizers. The effect of allopurinol, oxypurinol, ampicillin, amoxicillin, carbamazepine and sodium valproate, at EC30 concentrations, was evaluated on p38 MAPK activation, by Western Blot, and on the expression of genes coding for DC maturation markers, pro-inflammatory cytokine/chemokines and hemeoxygenase 1 (HMOX1), by real-time RT-PCR. Results were compared with lipopolysaccharide (LPS), a DC maturation stimulus, and the strong contact sensitizer, 1-fluoro-2,4-dinitrobenzene (DNFB). All drugs studied significantly upregulated HMOX1 gene transcription and all, except the anticonvulsants, also upregulated IL8. Allopurinol and oxypurinol showed the most intense effect, in a magnitude similar to DNFB and superior to betalactams. Transcription of CD40, IL12B and CXCL10 genes by drugs was more irregular. Moreover, like DNFB, all drugs activated p38 MAPK, although significantly only for oxypurinol. Like contact sensitizers, drugs that cause non-immediate CADR activate THP-1 cells in vitro, using different signalling pathways and affecting gene transcription with an intensity that may reflect the frequency and severity of the CADR they cause. Direct activation of antigen-presenting DC by systemic drugs may be an important early step in the pathophysiology of non-immediate CADR.
Collapse
Affiliation(s)
- Margarida Gonçalo
- Department of Dermatology, University Hospital and Faculty of Medicine, University of Coimbra, 3000-075, Coimbra, Portugal
| | | | | | | | | | | | | |
Collapse
|
5
|
|
6
|
|
7
|
Mossine VV, Waters JK, Hannink M, Mawhinney TP. piggyBac transposon plus insulators overcome epigenetic silencing to provide for stable signaling pathway reporter cell lines. PLoS One 2013; 8:e85494. [PMID: 24376882 PMCID: PMC3869926 DOI: 10.1371/journal.pone.0085494] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 12/04/2013] [Indexed: 12/28/2022] Open
Abstract
Genetically modified hematopoietic progenitors represent an important testing platform for a variety of cell-based therapies, pharmaceuticals, diagnostics and other applications. Stable expression of a transfected gene of interest in the cells is often obstructed by its silencing. DNA transposons offer an attractive non-viral alternative of transgene integration into the host genome, but their broad applicability to leukocytes and other "transgene unfriendly" cells has not been fully demonstrated. Here we assess stability of piggyBac transposon-based reporter expression in murine prostate adenocarcinoma TRAMP-C2, human monocyte THP-1 and erythroleukemia K562 cell lines, along with macrophages and dendritic cells (DCs) that have differentiated from the THP-1 transfects. The most efficient and stable reporter activity was observed for combinations of the transposon inverted terminal repeats and one 5'- or two cHS4 core insulators flanking a green fluorescent protein reporter construct, with no detectable silencing over 10 months of continuous cell culture in absence of any selective pressure. In monocytic THP-1 cells, the functional activity of luciferase reporters for NF-κB, Nrf2, or HIF-1α has not decreased over time and was retained following differentiation into macrophages and DCs, as well. These results imply pB as a versatile tool for gene integration in monocytic cells in general, and as a convenient access route to DC-based signaling pathway reporters suitable for high-throughput assays, in particular.
Collapse
Affiliation(s)
- Valeri V. Mossine
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- Experiment Station Chemical Labs, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| | - James K. Waters
- Experiment Station Chemical Labs, University of Missouri, Columbia, Missouri, United States of America
| | - Mark Hannink
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Thomas P. Mawhinney
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- Experiment Station Chemical Labs, University of Missouri, Columbia, Missouri, United States of America
- Department of Child Health, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
8
|
Goebel C, Troutman J, Hennen J, Rothe H, Schlatter H, Gerberick GF, Blömeke B. Introduction of a methoxymethyl side chain into p-phenylenediamine attenuates its sensitizing potency and reduces the risk of allergy induction. Toxicol Appl Pharmacol 2013; 274:480-7. [PMID: 24333256 DOI: 10.1016/j.taap.2013.11.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/04/2013] [Accepted: 11/26/2013] [Indexed: 11/16/2022]
Abstract
The strong sensitizing potencies of the most important primary intermediates of oxidative hair dyes, p-phenylenediamine (PPD) and p-toluylenediamine (PTD, i.e. 2-methyl-PPD) are well established. They are considered as the key sensitizers in hair dye allergic contact dermatitis. While modification of their molecular structure is expected to alter their sensitizing properties, it may also impair their color performance. With introduction of a methoxymethyl side chain we found the primary intermediate 2-methoxymethyl-p-phenylenediamine (ME-PPD) with excellent hair coloring performance but significantly reduced sensitizing properties compared to PPD and PTD: In vitro, ME-PPD showed an attenuated innate immune response when analyzed for its protein reactivity and dendritic cell activation potential. In vivo, the effective concentration of ME-PPD necessary to induce an immune response 3-fold above vehicle control (EC3 value) in the local lymph node assay (LLNA) was 4.3%, indicating a moderate skin sensitizing potency compared to values of 0.1 and 0.17% for PPD and PTD, respectively. Finally, assessing the skin sensitizing potency of ME-PPD under consumer hair dye usage conditions through a quantitative risk assessment (QRA) indicated an allergy induction risk negligible compared to PPD or PTD.
Collapse
Affiliation(s)
- Carsten Goebel
- The Procter & Gamble Co., Central Product Safety and Communications, Darmstadt, Germany.
| | - John Troutman
- The Procter & Gamble Co., Central Product Safety, Cincinnati, OH, USA
| | - Jenny Hennen
- Dept. of Environmental Toxicology, Trier University, Trier, Germany
| | - Helga Rothe
- The Procter & Gamble Co., Central Product Safety and Communications, Darmstadt, Germany
| | - Harald Schlatter
- The Procter & Gamble Co., Central Product Safety and Communications, Darmstadt, Germany
| | - G Frank Gerberick
- The Procter & Gamble Co., Central Product Safety, Cincinnati, OH, USA
| | | |
Collapse
|
9
|
Fabian E, Vogel D, Blatz V, Ramirez T, Kolle S, Eltze T, van Ravenzwaay B, Oesch F, Landsiedel R. Xenobiotic metabolizing enzyme activities in cells used for testing skin sensitization in vitro. Arch Toxicol 2013; 87:1683-96. [DOI: 10.1007/s00204-013-1090-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/27/2013] [Indexed: 01/10/2023]
|