1
|
Zhao D, Xu X, Xie Y, Wang X, Zhang F, Wu W, Pei X, Han X. Molecularly imprinted polymer based on covalent organic framework coated steel substrate as the mass spectrometric ionization source for the direct detect of aflatoxins in complex food matrices. Food Chem 2025; 463:140582. [PMID: 39357101 DOI: 10.1016/j.foodchem.2024.140582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/27/2024] [Accepted: 07/21/2024] [Indexed: 10/04/2024]
Abstract
Ambient mass spectrometry allows direct analysis of various sample types with minimal or no pretreatment. However, due to the influence of matrix effects, there are sensitivity and issues in analyzing trace analytes in complex food samples. In this work, we developed a spray mass spectrometry platform based on SSS@TPBD-TPA@MIPs (Stainless steel substrate (SSS), terephthalaldehyde (TPA), N, N, N', N'-tetrakis(p-aminophenyl)-p-phenylenediamine (TPBD), molecularly imprinted polymer (MIP)), for rapid, in situ, high-throughput, highly enrichment efficiency and highly selective trace analysis of aflatoxins. By simplifying the sample pretreatment and directly applying high voltage for ESI-MS, the analysis can be completed within 1 min. The established method base on SSS@TPBD-TPA@MIPs exhibited high sensitivity and accuracy when determine trace level AFs in maize and peanuts. The results demonstrated a good linear relationship within the range of 0.01-10 μg/L, with the determination coefficient (R2) ≥ 0.9956. The limits of detection (LODs) was 0.035-0.3 ng/mL and limits of quantitation (LOQs) was 0.12-0.99 ng/mL, with acceptable recovery rate of 82.09-115.66 % and good repeatability represented by the relative standard deviation (RSD) less than 17.43 %. Furthermore, SSS@TPBD-TPA@MIPs exhibited excellent reusability, with more than 8 repeated uses, and showed good adsorption performance.
Collapse
Affiliation(s)
- Dongyue Zhao
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China; School of Food Science and Engineering, Qingdao Agricultural University, Shandong, Qingdao 266109, China; Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing, 100176, China; Shandong Product Quality Inspection Institute, Shandong, Jinan 250100, China
| | - Xiuli Xu
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China; Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing, 100176, China
| | - Yun Xie
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China; Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing, 100176, China
| | - Xiujuan Wang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China; Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing, 100176, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China; Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing, 100176, China.
| | - Wei Wu
- School of Food Science and Engineering, Qingdao Agricultural University, Shandong, Qingdao 266109, China
| | - Xiaoyan Pei
- National Center of Technology Innovation for Dairy, Inner Mongolia, Hohhot 010000, China; Inner Mongolia Yili Industrial Group Co.,Ltd, Inner Mongolia, Hohhot 010000, China
| | - Xiaoxu Han
- National Center of Technology Innovation for Dairy, Inner Mongolia, Hohhot 010000, China; Inner Mongolia Yili Industrial Group Co.,Ltd, Inner Mongolia, Hohhot 010000, China
| |
Collapse
|
2
|
Matsuno Y, Endo N, Ueno K, Ishihara A. Isolation of aflatoxin biosynthetic inhibitor from Chondrostereum purpureum mushroom culture filtrate. J Biosci Bioeng 2024; 138:308-313. [PMID: 39068142 DOI: 10.1016/j.jbiosc.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Aflatoxins (AFs) are highly toxic mycotoxins produced by the fungi, Aspergillus flavus and Aspergillus parasiticus. AFs pose severe health risks owing to their acute toxicity and carcinogenic properties. The control of AF contamination remains significantly challenging despite the extensive efforts toward controlling it. Here, we investigated the potential of mushroom extracts as a source of AF biosynthetic inhibitors. The A. parasiticus mutant strain, NFRI-95, that accumulates an AF biosynthesis intermediate, norsolorinic acid, was used in the bioassay to detect the inhibitory activity against AF biosynthesis. The screening of 195 mushroom extracts revealed that the culture filtrate extract of Chondrostereum purpureum exhibited strong inhibitory activity against AF biosynthesis. Next, large-scale culturing of C. purpureum was performed to isolate the compounds accounting for the inhibitory activity. The culture filtrate was extracted with ethyl acetate, after which the active compound was isolated by silica gel column chromatography and preparative high performance liquid chromatography (HPLC). The active compound was identified as cyclo(Val-Pro) by spectroscopic analyses. Further, four stereoisomers of cyclo(Val-Pro) were synthesized by the condensation of the N-Boc derivatives of d- and l-valine with the methyl esters of d- and l-proline. The naturally isolated compound was identified as cyclo(l-Val-l-Pro) by comparing its retention time with those of synthetic compounds by chiral HPLC analysis and CD spectra. The IC50 value of cyclo(L-Val-L-Pro) was 2.4 mM, whereas the LD, DL, and DD isomers exhibited weaker activities, with IC50 values of >5 mM.
Collapse
Affiliation(s)
- Yuya Matsuno
- Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan
| | - Naoki Endo
- Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan; Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Kotomi Ueno
- Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan
| | - Atsushi Ishihara
- Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan; Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.
| |
Collapse
|
3
|
Sweany RR, Mack BM, Gebru ST, Mammel MK, Cary JW, Moore GG, Lebar MD, Carter-Wientjes CH, Gilbert MK. Divergent Aspergillus flavus corn population is composed of prolific conidium producers: Implications for saprophytic disease cycle. Mycologia 2024; 116:536-557. [PMID: 38727560 DOI: 10.1080/00275514.2024.2343645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/12/2024] [Indexed: 06/29/2024]
Abstract
The ascomycete fungus Aspergillus flavus infects and contaminates corn, peanuts, cottonseed, and tree nuts with toxic and carcinogenic aflatoxins. Subdivision between soil and host plant populations suggests that certain A. flavus strains are specialized to infect peanut, cotton, and corn despite having a broad host range. In this study, the ability of strains isolated from corn and/or soil in 11 Louisiana fields to produce conidia (field inoculum and male gamete) and sclerotia (resting bodies and female gamete) was assessed and compared with genotypic single-nucleotide polymorphism (SNP) differences between whole genomes. Corn strains produced upward of 47× more conidia than strains restricted to soil. Conversely, corn strains produced as much as 3000× fewer sclerotia than soil strains. Aspergillus flavus strains, typified by sclerotium diameter (small S-strains, <400 μm; large L-strains, >400 μm), belonged to separate clades. Several strains produced a mixture (M) of S and L sclerotia, and an intermediate number of conidia and sclerotia, compared with typical S-strains (minimal conidia, copious sclerotia) and L-strains (copious conidia, minimal sclerotia). They also belonged to a unique phylogenetic mixed (M) clade. Migration from soil to corn positively correlated with conidium production and negatively correlated with sclerotium production. Genetic differences correlated with differences in conidium and sclerotium production. Opposite skews in female (sclerotia) or male (conidia) gametic production by soil or corn strains, respectively, resulted in reduced effective breeding population sizes when comparing male:female gamete ratio with mating type distribution. Combining both soil and corn populations increased the effective breeding population, presumably due to contribution of male gametes from corn, which fertilize sclerotia on the soil surface. Incongruencies between aflatoxin clusters, strain morphotype designation, and whole genome phylogenies suggest a history of sexual reproduction within this Louisiana population, demonstrating the importance of conidium production, as infectious propagules and as fertilizers of the A. flavus soil population.
Collapse
Affiliation(s)
- Rebecca R Sweany
- Food and Feed Safety Research Unit, Southern Regional Research Center, U.S. Department of Agriculture, New Orleans, Louisiana, 70124
| | - Brian M Mack
- Food and Feed Safety Research Unit, Southern Regional Research Center, U.S. Department of Agriculture, New Orleans, Louisiana, 70124
| | - Solomon T Gebru
- Division of Virulence Assessment, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, 20708
| | - Mark K Mammel
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, 20708
| | - Jeffrey W Cary
- Food and Feed Safety Research Unit, Southern Regional Research Center, U.S. Department of Agriculture, New Orleans, Louisiana, 70124
| | - Geromy G Moore
- Food and Feed Safety Research Unit, Southern Regional Research Center, U.S. Department of Agriculture, New Orleans, Louisiana, 70124
| | - Matthew D Lebar
- Food and Feed Safety Research Unit, Southern Regional Research Center, U.S. Department of Agriculture, New Orleans, Louisiana, 70124
| | - Carol H Carter-Wientjes
- Food and Feed Safety Research Unit, Southern Regional Research Center, U.S. Department of Agriculture, New Orleans, Louisiana, 70124
| | - Matthew K Gilbert
- Food and Feed Safety Research Unit, Southern Regional Research Center, U.S. Department of Agriculture, New Orleans, Louisiana, 70124
| |
Collapse
|
4
|
Ouadhene MA, Callicott KA, Ortega‐Beltran A, Mehl HL, Cotty PJ, Battilani P. Structure of Aspergillus flavus populations associated with maize in Greece, Spain, and Serbia: Implications for aflatoxin biocontrol on a regional scale. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13249. [PMID: 38634243 PMCID: PMC11024511 DOI: 10.1111/1758-2229.13249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/12/2024] [Indexed: 04/19/2024]
Abstract
Aspergillus flavus is the most frequently identified producer of aflatoxins. Non-aflatoxigenic members of the A. flavus L strains are used in various continents as active ingredients of bioprotectants directed at preventing aflatoxin contamination by competitive displacement of aflatoxin producers. The current research examined the genetic diversity of A. flavus L strain across southern Europe to gain insights into the population structure and evolution of this species and to evaluate the prevalence of genotypes closely related to MUCL54911, the active ingredient of AF-X1. A total of 2173L strain isolates recovered from maize collected across Greece, Spain, and Serbia in 2020 and 2021 were subjected to simple sequence repeat (SSR) genotyping. The analysis revealed high diversity within and among countries and dozens of haplotypes shared. Linkage disequilibrium analysis indicated asexual reproduction and clonal evolution of A. flavus L strain resident in Europe. Moreover, haplotypes closely related to MUCL54911 were found to belong to the same vegetative compatibility group (VCG) IT006 and were relatively common in all three countries. The results indicate that IT006 is endemic to southern Europe and may be utilized as an aflatoxin mitigation tool for maize across the region without concern for potential adverse impacts associated with the introduction of an exotic microorganism.
Collapse
Affiliation(s)
- Mohamed Ali Ouadhene
- Department of Sustainable Crop ProductionUniversità Cattolica del Sacro CuorePiacenzaItaly
| | | | | | | | - Peter J. Cotty
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
| | - Paola Battilani
- Department of Sustainable Crop ProductionUniversità Cattolica del Sacro CuorePiacenzaItaly
| |
Collapse
|
5
|
Ortega-Beltran A, Bandyopadhyay R. Aflatoxin biocontrol in practice requires a multidisciplinary, long-term approach. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
One of the most elusive food safety problems is the contamination of staple crops with the highly carcinogenic aflatoxins produced by Aspergillus section Flavi fungi. Governments, farmers, institutions, consumers, and companies demand aflatoxin solutions. Many aflatoxin management technologies exist, but their real-life use and effectiveness is determined by diverse factors. Biocontrol products based on atoxigenic isolates of A. flavus can effectively reduce aflatoxins from field to fork. However, development, testing, and registration of this technology is a laborious process. Further, several barriers prevent the sustainable use of biocontrol products. There are challenges to have the products accepted, to make them available at scale and develop mechanisms for farmers to buy them, to have the products correctly used, to demonstrate their value, and to link farmers to buyers of aflatoxin-safe crops. Developing an effective aflatoxin management technology is the first, major step. The second one, perhaps more complicated and unfortunately seldomly discussed, is to develop mechanisms to have it used at scale, sustainably, and converged with other complementary technologies. Here, challenges and actions to scale the aflatoxin biocontrol technology in several countries in sub-Saharan Africa are described with a view to facilitating aflatoxin management efforts in Africa and beyond.
Collapse
|
6
|
Wu Q, Li H, Wang S, Zhang Z, Zhang Z, Jin T, Hu X, Zeng G. Differential Expression of Genes Related to Growth and Aflatoxin Synthesis in Aspergillus flavus When Inhibited by Bacillus velezensis Strain B2. Foods 2022; 11:foods11223620. [PMID: 36429212 PMCID: PMC9689179 DOI: 10.3390/foods11223620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Aspergillus flavus is a saprophytic soil fungus that infects and contaminates seed crops with the highly carcinogenic aflatoxin, which brings health hazards to animals and humans. In this study, bacterial strains B1 and B2 isolated from the rhizosphere soil of camellia sinensis had significant antagonistic activities against A. flavus. Based on the phylogenetic analysis of 16SrDNA gene sequence, bacterial strains B1 and B2 were identified as Bacillus tequilensis and Bacillus velezensis, respectively. In addition, the transcriptome analysis showed that some genes related to A. flavus growth and aflatoxin synthesis were differential expressed and 16 genes in the aflatoxin synthesis gene cluster showed down-regulation trends when inhibited by Bacillus velezensis strain B2. We guessed that the Bacillus velezensis strain B2 may secrete some secondary metabolites, which regulate the related gene transcription of A. flavus to inhibit growth and aflatoxin production. In summary, this work provided the foundation for the more effective biocontrol of A. flavus infection and aflatoxin contamination by the determination of differential expression of genes related to growth and aflatoxin synthesis in A. flavus when inhibited by B. velezensis strain B2.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guohong Zeng
- Correspondence: ; Tel.: +86-0571-86843195; Fax: +86-571-86843196
| |
Collapse
|
7
|
Pre-harvest strategy for reducing aflatoxin accumulation during storage of maize in Argentina. Int J Food Microbiol 2022; 380:109887. [DOI: 10.1016/j.ijfoodmicro.2022.109887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022]
|
8
|
Molo MS, White JB, Cornish V, Gell RM, Baars O, Singh R, Carbone MA, Isakeit T, Wise KA, Woloshuk CP, Bluhm BH, Horn BW, Heiniger RW, Carbone I. Asymmetrical lineage introgression and recombination in populations of Aspergillus flavus: Implications for biological control. PLoS One 2022; 17:e0276556. [PMID: 36301851 PMCID: PMC9620740 DOI: 10.1371/journal.pone.0276556] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/08/2022] [Indexed: 11/23/2022] Open
Abstract
Aspergillus flavus is an agriculturally important fungus that causes ear rot of maize and produces aflatoxins, of which B1 is the most carcinogenic naturally-produced compound. In the US, the management of aflatoxins includes the deployment of biological control agents that comprise two nonaflatoxigenic A. flavus strains, either Afla-Guard (member of lineage IB) or AF36 (lineage IC). We used genotyping-by-sequencing to examine the influence of both biocontrol agents on native populations of A. flavus in cornfields in Texas, North Carolina, Arkansas, and Indiana. This study examined up to 27,529 single-nucleotide polymorphisms (SNPs) in a total of 815 A. flavus isolates, and 353 genome-wide haplotypes sampled before biocontrol application, three months after biocontrol application, and up to three years after initial application. Here, we report that the two distinct A. flavus evolutionary lineages IB and IC differ significantly in their frequency distributions across states. We provide evidence of increased unidirectional gene flow from lineage IB into IC, inferred to be due to the applied Afla-Guard biocontrol strain. Genetic exchange and recombination of biocontrol strains with native strains was detected in as little as three months after biocontrol application and up to one and three years later. There was limited inter-lineage migration in the untreated fields. These findings suggest that biocontrol products that include strains from lineage IB offer the greatest potential for sustained reductions in aflatoxin levels over several years. This knowledge has important implications for developing new biocontrol strategies.
Collapse
Affiliation(s)
- Megan S. Molo
- Department of Entomology and Plant Pathology, Center for Integrated
Fungal Research, North Carolina State University, Raleigh, NC, United States of
America
| | - James B. White
- Department of Entomology and Plant Pathology, Center for Integrated
Fungal Research, North Carolina State University, Raleigh, NC, United States of
America
| | - Vicki Cornish
- Department of Entomology and Plant Pathology, Center for Integrated
Fungal Research, North Carolina State University, Raleigh, NC, United States of
America
| | - Richard M. Gell
- Department of Entomology and Plant Pathology, Center for Integrated
Fungal Research, North Carolina State University, Raleigh, NC, United States of
America
- Program of Genetics, North Carolina State University, Raleigh, North
Carolina, United States of America
| | - Oliver Baars
- Department of Entomology and Plant Pathology, Center for Integrated
Fungal Research, North Carolina State University, Raleigh, NC, United States of
America
| | - Rakhi Singh
- Department of Entomology and Plant Pathology, Center for Integrated
Fungal Research, North Carolina State University, Raleigh, NC, United States of
America
| | - Mary Anna Carbone
- Center for Integrated Fungal Research and Department of Plant and
Microbial Biology, North Carolina State University, Raleigh, NC, United States
of America
| | - Thomas Isakeit
- Department of Plant Pathology and Microbiology, Texas AgriLife Extension
Service, Texas A&M University, College Station, TX, United States of
America
| | - Kiersten A. Wise
- Department of Plant Pathology, University of Kentucky, Princeton, KY,
United States of America
| | - Charles P. Woloshuk
- Department of Plant Pathology and Botany, Purdue University, West
Lafayette, IN, United States of America
| | - Burton H. Bluhm
- University of Arkansas Division of Agriculture, Department of Entomology
and Plant Pathology, Fayetteville, AR, United States of
America
| | - Bruce W. Horn
- United States Department of Agriculture, Agriculture Research Service,
Dawson, GA, United States of America
| | - Ron W. Heiniger
- Department of Crop and Soil Sciences, North Carolina State University,
Raleigh, NC, United States of America
| | - Ignazio Carbone
- Department of Entomology and Plant Pathology, Center for Integrated
Fungal Research, North Carolina State University, Raleigh, NC, United States of
America
- Program of Genetics, North Carolina State University, Raleigh, North
Carolina, United States of America
- * E-mail:
| |
Collapse
|
9
|
Sweany RR, DeRobertis CD, Kaller MD, Damann KE. Intraspecific Growth and Aflatoxin Inhibition Responses to Atoxigenic Aspergillus flavus: Evidence of Secreted, Inhibitory Substances in Biocontrol. PHYTOPATHOLOGY 2022; 112:2084-2098. [PMID: 35502929 DOI: 10.1094/phyto-01-21-0022-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The fungus Aspergillus flavus infects corn, peanut, and cottonseed, and contaminates seeds with acutely poisonous and carcinogenic aflatoxin. Aflatoxin contamination is a perennial threat in tropical and subtropical climates. Nonaflatoxin-producing isolates (atoxigenic) are deployed in fields to mitigate aflatoxin contamination. The biocontrol competitively excludes toxigenic A. flavus via direct replacement and thigmoregulated (touch) toxin inhibition mechanisms. To understand the broad-spectrum toxin inhibition, toxigenic isolates representing different mating types and sclerotia sizes were individually cocultured with different atoxigenic biocontrol isolates. To determine whether more inhibitory isolates had a competitive advantage to displace or touch inhibit toxigenic isolates, biomass accumulation rates were determined for each isolate. Finally, to determine whether atoxigenic isolates could inhibit aflatoxin production without touch, atoxigenic isolates were grown separated from a single toxigenic isolate by a membrane. Atoxigenic isolates 17, Af36, and K49 had superior abilities to inhibit toxin production. Small (<400 µm) sclerotial, Mat1-1 isolates were not as completely inhibited as others by most atoxigenic isolates. As expected for both direct replacement and touch inhibition, the fastest-growing atoxigenic isolates inhibited aflatoxin production the most, except for atoxigenic Af36 and K49. Aflatoxin production was inhibited when toxigenic and atoxigenic isolates were grown separately, especially by slow-growing atoxigenic Af36 and K49. Additionally, fungus-free filtrates from atoxigenic cultures inhibited aflatoxin production. Toxin production inhibition without direct contact revealed secretion of diffusible chemicals as an additional biocontrol mechanism. Biocontrol formulations should be improved by identifying isolates with broad-spectrum, high-inhibition capabilities and production of secreted inhibitory chemicals.
Collapse
Affiliation(s)
- Rebecca R Sweany
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803
| | - Catherine D DeRobertis
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803
| | - Michael D Kaller
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70803
| | - Kenneth E Damann
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803
| |
Collapse
|
10
|
Chupia V, Tangtrongsup S, Saedan A, Ounnunkad J, Pikulkaew S, Suriyasathaporn W, Chaisri W. Impact of Storage Conditions and Mold Types on Aflatoxin B 1 Concentration in Corn Residue used as Dairy Feed in Small Holder Dairy Farms, Thailand. Biocontrol Sci 2022; 27:99-105. [PMID: 35753798 DOI: 10.4265/bio.27.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The aims of this study were to determine the impact of storage practice and mold types on mold growth and aflatoxin B1 (AFB1) concentration in corn residue from local seed corn plants, the main roughage source of dairy farms in the northern region in Thailand. A total of 223 samples from 2 types of corn residue - dried and wet - were collected. Mold contamination was determined by spread plate technique, and aflatoxin B1 (AFB1) quantification was performed by a commercial enzyme-linked immunosorbent assay. Multivariate linear models were created to determine factors associated with fungal quantity and AFB1 concentration. Results showed that the presence of Cladosporium spp. in the samples was associated with a lower risk of AFB1 contamination (P<0.05). In addition, appropriate storage practices, e.g. keeping feeds under a roof and using floor canvas under feed piles, gave lower risk of mold contamination and decreasing AFB1 contamination.
Collapse
Affiliation(s)
- Veena Chupia
- Research center of Producing and Development of Products and Innovations for Animal Health and Production, Faculty of Veterinary Medicine, Chiang Mai University
| | | | - Arpussara Saedan
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University
| | - Jaturaporn Ounnunkad
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University
| | - Surachai Pikulkaew
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University
| | - Witaya Suriyasathaporn
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University.,Research center of Producing and Development of Products and Innovations for Animal Health and Production, Faculty of Veterinary Medicine, Chiang Mai University
| | - Wasana Chaisri
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University.,Research center of Producing and Development of Products and Innovations for Animal Health and Production, Faculty of Veterinary Medicine, Chiang Mai University
| |
Collapse
|
11
|
Inhibition of Aspergillus flavus Growth and Aflatoxin Production in Zea mays L. Using Endophytic Aspergillus fumigatus. J Fungi (Basel) 2022; 8:jof8050482. [PMID: 35628738 PMCID: PMC9146429 DOI: 10.3390/jof8050482] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
Aspergillus flavus infection of vegetative tissues can affect the development and integrity of the plant and poses dangerous risks on human and animal health. Thus, safe and easily applied approaches are employed to inhibit A. flavus growth. To this end, the fungal endophyte, i.e., Aspergillus fumigatus, was used as a safe biocontrol agent to reduce the growth of A. flavus and its infection in maize seedlings. Interestingly, the safe endophytic A. fumigatus exhibited antifungal activity (e.g., 77% of growth inhibition) against A. flavus. It also reduced the creation of aflatoxins, particularly aflatoxin B1 (AFB1, 90.9%). At plant level, maize seedling growth, leaves and root anatomy and the changes in redox status were estimated. Infected seeds treated with A. fumigatus significantly improved the germination rate by 88.53%. The ultrastructure of the infected leaves showed severe disturbances in the internal structures, such as lack of differentiation in cells, cracking, and lysis in the cell wall and destruction in the nucleus semi-lysis of chloroplasts. Ultrastructure observations indicated that A. fumigatus treatment increased maize (leaf and root) cell wall thickness that consequentially reduced the invasion of the pathogenic A. flavus. It was also interesting that the infected seedlings recovered after being treated with A. fumigatus, as it was observed in growth characteristics and photosynthetic pigments. Moreover, infected maize plants showed increased oxidative stress (lipid peroxidation and H2O2), which was significantly mitigated by A. fumigatus treatment. This mitigation was at least partially explained by inducing the antioxidant defense system, i.e., increased phenols and proline levels (23.3 and 31.17%, respectively) and POD, PPO, SOD and CAT enzymes activity (29.50, 57.58, 32.14 and 29.52%, respectively). Overall, our study suggests that endophytic A. fumigatus treatment could be commercially used for the safe control of aflatoxins production and for inducing biotic stress tolerance of A. flavus-infected maize plants.
Collapse
|
12
|
Alam S, Abbas HK, Sulyok M, Khambhati VH, Okunowo WO, Shier WT. Pigment Produced by Glycine-Stimulated Macrophomina Phaseolina Is a (−)-Botryodiplodin Reaction Product and the Basis for an In-Culture Assay for (−)-Botryodiplodin Production. Pathogens 2022; 11:pathogens11030280. [PMID: 35335604 PMCID: PMC8951085 DOI: 10.3390/pathogens11030280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
An isolate of Macrophomina phaseolina from muskmelons (Cucumis melo) was reported by Dunlap and Bruton to produce red pigment(s) in melons and in culture in the presence of added glycine, alanine, leucine, or asparagine in the medium, but not with some other amino acids and nitrogen-containing compounds. We explored the generality and mechanism of this pigment production response using pathogenic M. phaseolina isolates from soybean plants expressing symptoms of charcoal rot disease. A survey of 42 M. phaseolina isolates growing on Czapek-Dox agar medium supplemented with glycine confirmed pigment production by 71% of isolates at the optimal glycine concentration (10 g/L). Studies in this laboratory have demonstrated that some pathogenic isolates of M. phaseolina produce the mycotoxin (−)-botryodiplodin, which has been reported to react with amino acids, proteins, and other amines to produce red pigments. Time course studies showed a significant positive correlation between pigment and (−)-botryodiplodin production by selected M. phaseolina isolates with maximum production at seven to eight days. Pigments produced in agar culture medium supplemented with glycine, beta-alanine, or other amines exhibited similar UV-vis adsorption spectra as did pigments produced by (±)-botryodiplodin reacting in the same agar medium. In a separate study of 39 M. phaseolina isolates, red pigment production (OD520) on 10 g/L glycine-supplemented Czapek-Dox agar medium correlated significantly with (−)-botryodiplodin production (LC/MS analysis of culture filtrates) in parallel cultures on un-supplemented medium. These results support pigment production on glycine-supplemented agar medium as a simple and inexpensive in-culture method for detecting (−)-botryodiplodin production by M. phaseolina isolates.
Collapse
Affiliation(s)
- Sahib Alam
- Department of Medicinal Chemistry, College of Pharmacy, The University of Minnesota, Minneapolis, MN 55455, USA; (S.A.); (W.O.O.)
- Department of Agricultural Chemistry and Biochemistry, The University of Agriculture Peshawar, Peshawar 25130, Pakistan
| | - Hamed K. Abbas
- Biological Control of Pests Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Stoneville, MS 38776, USA;
- Correspondence: (H.K.A.); (W.T.S.)
| | - Michael Sulyok
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna, Konrad Lorenzstr. 20, A-3430 Tulln, Austria;
| | - Vivek H. Khambhati
- Biological Control of Pests Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Stoneville, MS 38776, USA;
| | - Wahab O. Okunowo
- Department of Medicinal Chemistry, College of Pharmacy, The University of Minnesota, Minneapolis, MN 55455, USA; (S.A.); (W.O.O.)
- Department of Biochemistry, College of Medicine, University of Lagos, Surulere 101017, Lagos State, Nigeria
| | - Wayne Thomas Shier
- Department of Medicinal Chemistry, College of Pharmacy, The University of Minnesota, Minneapolis, MN 55455, USA; (S.A.); (W.O.O.)
- Correspondence: (H.K.A.); (W.T.S.)
| |
Collapse
|
13
|
Sweany RR, Mack BM, Moore GG, Gilbert MK, Cary JW, Lebar MD, Rajasekaran K, Damann Jr. KE. Genetic Responses and Aflatoxin Inhibition during Co-Culture of Aflatoxigenic and Non-Aflatoxigenic Aspergillus flavus. Toxins (Basel) 2021; 13:794. [PMID: 34822579 PMCID: PMC8618995 DOI: 10.3390/toxins13110794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Aflatoxin is a carcinogenic mycotoxin produced by Aspergillus flavus. Non-aflatoxigenic (Non-tox) A. flavus isolates are deployed in corn fields as biocontrol because they substantially reduce aflatoxin contamination via direct replacement and additionally via direct contact or touch with toxigenic (Tox) isolates and secretion of inhibitory/degradative chemicals. To understand touch inhibition, HPLC analysis and RNA sequencing examined aflatoxin production and gene expression of Non-tox isolate 17 and Tox isolate 53 mono-cultures and during their interaction in co-culture. Aflatoxin production was reduced by 99.7% in 72 h co-cultures. Fewer than expected unique reads were assigned to Tox 53 during co-culture, indicating its growth and/or gene expression was inhibited in response to Non-tox 17. Predicted secreted proteins and genes involved in oxidation/reduction were enriched in Non-tox 17 and co-cultures compared to Tox 53. Five secondary metabolite (SM) gene clusters and kojic acid synthesis genes were upregulated in Non-tox 17 compared to Tox 53 and a few were further upregulated in co-cultures in response to touch. These results suggest Non-tox strains can inhibit growth and aflatoxin gene cluster expression in Tox strains through touch. Additionally, upregulation of other SM genes and redox genes during the biocontrol interaction demonstrates a potential role of inhibitory SMs and antioxidants as additional biocontrol mechanisms and deserves further exploration to improve biocontrol formulations.
Collapse
Affiliation(s)
- Rebecca R. Sweany
- Food and Feed Safety Research Unit, Southern Regional Research Center, US Department of Agriculture, New Orleans, LA 70124, USA; (B.M.M.); (M.K.G.); (J.W.C.); (M.D.L.)
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA 70808, USA;
| | - Brian M. Mack
- Food and Feed Safety Research Unit, Southern Regional Research Center, US Department of Agriculture, New Orleans, LA 70124, USA; (B.M.M.); (M.K.G.); (J.W.C.); (M.D.L.)
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA 70808, USA;
| | - Geromy G. Moore
- Food and Feed Safety Research Unit, Southern Regional Research Center, US Department of Agriculture, New Orleans, LA 70124, USA; (B.M.M.); (M.K.G.); (J.W.C.); (M.D.L.)
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA 70808, USA;
| | - Matthew K. Gilbert
- Food and Feed Safety Research Unit, Southern Regional Research Center, US Department of Agriculture, New Orleans, LA 70124, USA; (B.M.M.); (M.K.G.); (J.W.C.); (M.D.L.)
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA 70808, USA;
| | - Jeffrey W. Cary
- Food and Feed Safety Research Unit, Southern Regional Research Center, US Department of Agriculture, New Orleans, LA 70124, USA; (B.M.M.); (M.K.G.); (J.W.C.); (M.D.L.)
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA 70808, USA;
| | - Matthew D. Lebar
- Food and Feed Safety Research Unit, Southern Regional Research Center, US Department of Agriculture, New Orleans, LA 70124, USA; (B.M.M.); (M.K.G.); (J.W.C.); (M.D.L.)
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA 70808, USA;
| | - Kanniah Rajasekaran
- Food and Feed Safety Research Unit, Southern Regional Research Center, US Department of Agriculture, New Orleans, LA 70124, USA; (B.M.M.); (M.K.G.); (J.W.C.); (M.D.L.)
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA 70808, USA;
| | - Kenneth E. Damann Jr.
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA 70808, USA;
| |
Collapse
|
14
|
Ortega-Beltran A, Agbetiameh D, Atehnkeng J, Falade TDO, Bandyopadhyay R. Does Use of Atoxigenic Biocontrol Products to Mitigate Aflatoxin in Maize Increase Fumonisin Content in Grains? PLANT DISEASE 2021; 105:2196-2201. [PMID: 33210967 DOI: 10.1094/pdis-07-20-1447-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the tropics and subtropics, maize (Zea mays) and other crops are frequently contaminated with aflatoxins by Aspergillus flavus. Treatment of crops with atoxigenic isolates of A. flavus formulated into biocontrol products can significantly reduce aflatoxin contamination. Treated crops contain up to 100% fewer aflatoxins compared with untreated crops. However, there is the notion that protecting crops from aflatoxin contamination may result in increased accumulation of other toxins, particularly fumonisins produced by a few Fusarium species. The objective of this study was to determine if treatment of maize with aflatoxin biocontrol products increased fumonisin concentration and fumonisin-producing fungi in grains. Over 200 maize samples from fields treated with atoxigenic biocontrol products in Nigeria and Ghana were examined for fumonisin content and contrasted with maize from untreated fields. Apart from low aflatoxin levels, most treated maize also harbored fumonisin levels considered safe by the European Union (<1 part per million; ppm). Most untreated maize also harbored equally low fumonisin levels but contained higher aflatoxin levels. In addition, during one year, we detected considerably lower Fusarium spp. densities in treated maize than in untreated maize. Our results do not support the hypothesis that treating crops with atoxigenic isolates of A. flavus used in biocontrol formulations results in higher grain fumonisin levels.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
| | - Daniel Agbetiameh
- International Institute of Tropical Agriculture, Ibadan 200001, Nigeria
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Agro Enterprise Development, Faculty of Applied Science and Technology, Ho Technical University, Ho, Ghana
| | - Joseph Atehnkeng
- International Institute of Tropical Agriculture, Bukavu, D. R. Congo
| | | | | |
Collapse
|
15
|
Garcia-Lopez MT, Luo Y, Ortega-Beltran A, Jaime R, Moral J, Michailides TJ. Quantification of the Aflatoxin Biocontrol Strain Aspergillus flavus AF36 in Soil and in Nuts and Leaves of Pistachio by Real-Time PCR. PLANT DISEASE 2021; 105:1657-1665. [PMID: 33084543 DOI: 10.1094/pdis-05-20-1097-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The species Aspergillus flavus and A. parasiticus are commonly found in the soils of nut-growing areas in California. Several isolates can produce aflatoxins that occasionally contaminate nut kernels, conditioning their sale. Strain AF36 of A. flavus, which does not produce aflatoxins, is registered as a biocontrol agent for use in almond, pistachio, and fig crops in California. After application in orchards, AF36 displaces aflatoxin-producing Aspergillus spp. and thus reduces aflatoxin contamination. Vegetative compatibility assays (VCAs) have traditionally been used to track AF36 in soils and crops where it has been applied. However, VCAs are labor intensive and time consuming. Here, we developed a quantitative real-time PCR (qPCR) protocol to quantify proportions of AF36 accurately and efficiently in different substrates. Specific primers to target AF36 and toxigenic strains of A. flavus and A. parasiticus were designed based on the sequence of aflC, a gene essential for aflatoxin biosynthesis. Standard curves were generated to calculate proportions of AF36 based on threshold cycle values. Verification assays using pure DNA and conidial suspension mixtures demonstrated a significant relationship by regression analysis between known and qPCR-measured AF36 proportions in DNA (R2 = 0.974; P < 0.001) and conidia mixtures (R2 = 0.950; P < 0.001). Tests conducted by qPCR in pistachio leaves, nuts, and soil samples demonstrated the usefulness of the qPCR method to precisely quantify proportions of AF36 in diverse substrates, ensuring important time and cost savings. The outputs of this study will serve to design better aflatoxin management strategies for pistachio and other crops.
Collapse
Affiliation(s)
- M Teresa Garcia-Lopez
- Department of Agronomy (Maria de Maeztu Excellence Unit), University of Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
- Department of Plant Pathology, University of California-Davis Kearney Agricultural Research and Extension Center, Parlier, CA 93648, U.S.A
| | - Yong Luo
- Department of Plant Pathology, University of California-Davis Kearney Agricultural Research and Extension Center, Parlier, CA 93648, U.S.A
| | | | - Ramon Jaime
- Department of Plant Pathology, University of California-Davis Kearney Agricultural Research and Extension Center, Parlier, CA 93648, U.S.A
| | - Juan Moral
- Department of Agronomy (Maria de Maeztu Excellence Unit), University of Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| | - Themis J Michailides
- Department of Plant Pathology, University of California-Davis Kearney Agricultural Research and Extension Center, Parlier, CA 93648, U.S.A
| |
Collapse
|
16
|
Khan R, Ghazali FM, Mahyudin NA, Samsudin NIP. Biocontrol of Aflatoxins Using Non-Aflatoxigenic Aspergillus flavus: A Literature Review. J Fungi (Basel) 2021; 7:jof7050381. [PMID: 34066260 PMCID: PMC8151999 DOI: 10.3390/jof7050381] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
Aflatoxins (AFs) are mycotoxins, predominantly produced by Aspergillus flavus, A. parasiticus, A. nomius, and A. pseudotamarii. AFs are carcinogenic compounds causing liver cancer in humans and animals. Physical and biological factors significantly affect AF production during the pre-and post-harvest time. Several methodologies have been developed to control AF contamination, yet; they are usually expensive and unfriendly to the environment. Consequently, interest in using biocontrol agents has increased, as they are convenient, advanced, and friendly to the environment. Using non-aflatoxigenic strains of A. flavus (AF−) as biocontrol agents is the most promising method to control AFs’ contamination in cereal crops. AF− strains cannot produce AFs due to the absence of polyketide synthase genes or genetic mutation. AF− strains competitively exclude the AF+ strains in the field, giving an extra advantage to the stored grains. Several microbiological, molecular, and field-based approaches have been used to select a suitable biocontrol agent. The effectiveness of biocontrol agents in controlling AF contamination could reach up to 99.3%. Optimal inoculum rate and a perfect time of application are critical factors influencing the efficacy of biocontrol agents.
Collapse
Affiliation(s)
- Rahim Khan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.K.); (N.I.P.S.)
| | - Farinazleen Mohamad Ghazali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.K.); (N.I.P.S.)
- Correspondence: ; Tel.: +60-12219-8912
| | - Nor Ainy Mahyudin
- Department of Food Service and Management, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Nik Iskandar Putra Samsudin
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.K.); (N.I.P.S.)
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
17
|
Fountain J, Pandey A, Nayak S, Bajaj P, Wang H, Kumar V, Chitikineni A, Abbas H, Scully B, Kemerait R, Pandey M, Guo B, Varshney R. Transcriptional responses of toxigenic and atoxigenic isolates of Aspergillus flavus to oxidative stress in aflatoxin-conducive and non-conducive media. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2020.2566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aflatoxin production by isolates of Aspergillus flavus varies, ranging from highly toxigenic to completely atoxigenic. Several mechanisms have been identified which regulate aflatoxin production including medium carbon source and oxidative stress. In recent studies, aflatoxin production has been implicated in partially ameliorating oxidative stress in A. flavus. To better understand the role of aflatoxin production in oxidative stress responses, a selection of toxigenic and atoxigenic isolates of A. flavus with moderate to high oxidative stress tolerance were exposed to increasing concentrations of H2O2 in both aflatoxin-conducive and non-conducive media. Mycelial mats were collected for global transcriptome sequencing followed by differential expression, functional prediction, and weighted co-expression analyses. Oxidative stress and medium carbon source had a significant effect on the expression of several secondary metabolite gene clusters including those for aflatoxin, aflatrem, aflavarin, cyclopiazonic acid, and kojic acid. Atoxigenic biological control isolates showed less differential expression under stress than other atoxigenic isolates suggesting expression profiles may be useful in screening. Increasing stress also resulted in regulation of SakA/Hog1 and MpkA MAP kinase signalling pathways pointing to their potential roles in regulating oxidative stress responses. Their expression was also influenced by medium carbon source. These results suggest that aflatoxin production along with that of other mycotoxins may occur as part of a concerted coping mechanism for oxidative stress and its effects in the environment. This mechanism is also regulated by availability of simple sugars and glycolytic compounds for their biosynthesis.
Collapse
Affiliation(s)
- J.C. Fountain
- USDA-ARS, Crop Protection and Management Research Unit, Tifton, GA 31793, USA
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA
| | - A.K. Pandey
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana 502324, India
| | - S.N. Nayak
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, Karnataka 580005, India
| | - P. Bajaj
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana 502324, India
| | - H. Wang
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA
| | - V. Kumar
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana 502324, India
| | - A. Chitikineni
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana 502324, India
| | - H.K. Abbas
- USDA-ARS, Biological Control of Pests Research Unit, Stoneville, MS, USA
| | - B.T. Scully
- USDA-ARS, National Horticultural Research Laboratory, Fort Pierce, FL, USA
| | - R.C. Kemerait
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA
| | - M.K. Pandey
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana 502324, India
| | - B. Guo
- USDA-ARS, Crop Protection and Management Research Unit, Tifton, GA 31793, USA
| | - R.K. Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana 502324, India
| |
Collapse
|
18
|
Fountain J, Pandey A, Nayak S, Bajaj P, Wang H, Kumar V, Chitikineni A, Abbas H, Scully B, Kemerait R, Pandey M, Guo B, Varshney R. Transcriptional responses of toxigenic and atoxigenic isolates of Aspergillus flavus to oxidative stress in aflatoxin-conducive and non-conducive media. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2020.test2566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aflatoxin production by isolates of Aspergillus flavus varies, ranging from highly toxigenic to completely atoxigenic. Several mechanisms have been identified which regulate aflatoxin production including medium carbon source and oxidative stress. In recent studies, aflatoxin production has been implicated in partially ameliorating oxidative stress in A. flavus. To better understand the role of aflatoxin production in oxidative stress responses, a selection of toxigenic and atoxigenic isolates of A. flavus with moderate to high oxidative stress tolerance were exposed to increasing concentrations of H2O2 in both aflatoxin-conducive and non-conducive media. Mycelial mats were collected for global transcriptome sequencing followed by differential expression, functional prediction, and weighted co-expression analyses. Oxidative stress and medium carbon source had a significant effect on the expression of several secondary metabolite gene clusters including those for aflatoxin, aflatrem, aflavarin, cyclopiazonic acid, and kojic acid. Atoxigenic biological control isolates showed less differential expression under stress than other atoxigenic isolates suggesting expression profiles may be useful in screening. Increasing stress also resulted in regulation of SakA/Hog1 and MpkA MAP kinase signalling pathways pointing to their potential roles in regulating oxidative stress responses. Their expression was also influenced by medium carbon source. These results suggest that aflatoxin production along with that of other mycotoxins may occur as part of a concerted coping mechanism for oxidative stress and its effects in the environment. This mechanism is also regulated by availability of simple sugars and glycolytic compounds for their biosynthesis.
Collapse
Affiliation(s)
- J.C. Fountain
- USDA-ARS, Crop Protection and Management Research Unit, Tifton, GA 31793, USA
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA
| | - A.K. Pandey
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana 502324, India
| | - S.N. Nayak
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, Karnataka 580005, India
| | - P. Bajaj
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana 502324, India
| | - H. Wang
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA
| | - V. Kumar
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana 502324, India
| | - A. Chitikineni
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana 502324, India
| | - H.K. Abbas
- USDA-ARS, Biological Control of Pests Research Unit, Stoneville, MS, USA
| | - B.T. Scully
- USDA-ARS, National Horticultural Research Laboratory, Fort Pierce, FL, USA
| | - R.C. Kemerait
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA
| | - M.K. Pandey
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana 502324, India
| | - B. Guo
- USDA-ARS, Crop Protection and Management Research Unit, Tifton, GA 31793, USA
| | - R.K. Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana 502324, India
| |
Collapse
|
19
|
Lyu A, Yang L, Wu M, Zhang J, Li G. High Efficacy of the Volatile Organic Compounds of Streptomyces yanglinensis 3-10 in Suppression of Aspergillus Contamination on Peanut Kernels. Front Microbiol 2020; 11:142. [PMID: 32117161 PMCID: PMC7015977 DOI: 10.3389/fmicb.2020.00142] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/21/2020] [Indexed: 11/13/2022] Open
Abstract
Aspergillus flavus and Aspergillus parasiticus are saprophytic fungi which can infect and contaminate preharvest and postharvest food/feed with production of aflatoxins (B1, B2, and G). They are also an opportunistic pathogen causing aspergillosis diseases of animals and humans. In this study, the volatile organic compounds (VOCs) from Streptomyces yanglinensis 3-10 were found to be able to inhibit mycelial growth, sporulation, conidial germination, and expression of aflatoxin biosynthesis genes in A. flavus and A. parasiticus in vitro. On peanut kernels, the VOCs can also reduce the disease severity and inhibit the aflatoxins production by A. flavus and A. parasiticus under the storage conditions. Scanning electron microscope (SEM) observation showed that high dosage of the VOCs can inhibit conidial germination and colonization by the two species of Aspergillus on peanut kernels. The VOCs also showed suppression of mycelial growth on 18 other plant pathogenic fungi and one Oomycetes organism. By using SPME-GC-MS, 19 major VOCs were detected, like in other Streptomyces, 2-MIB was found as the main volatile component among the detected VOCs. Three standard chemicals, including methyl 2-methylbutyrate (M2M), 2-phenylethanol (2-PE), and β-caryophyllene (β-CA), showed antifungal activity against A. flavus and A. parasiticus. Among them, M2M showed highest inhibitory effect than other two standard compounds against conidial germination of A. flavus and A. parasiticus. To date, this is the first record about the antifungal activity of M2M against A. flavus and A. parasiticus. The VOCs from S. yanglinensis 3-10 did not affect growth of peanut seedlings. In conclusion, our results indicate that S. yanglinensis 3-10 may has a potential to become a promising biofumigant in for control of A. flavus and A. parasiticus.
Collapse
Affiliation(s)
- Ang Lyu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Plant Pathology of Hubei Province, Wuhan, China
- School of Life Sciences and Technology, Hubei Engineering University, Xiaogan, China
| | - Long Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Plant Pathology of Hubei Province, Wuhan, China
| | - Mingde Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Plant Pathology of Hubei Province, Wuhan, China
| | - Jing Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Plant Pathology of Hubei Province, Wuhan, China
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Plant Pathology of Hubei Province, Wuhan, China
| |
Collapse
|
20
|
Gasperini AM, Rodriguez-Sixtos A, Verheecke-Vaessen C, Garcia-Cela E, Medina A, Magan N. Resilience of Biocontrol for Aflatoxin Minimization Strategies: Climate Change Abiotic Factors May Affect Control in Non-GM and GM-Maize Cultivars. Front Microbiol 2019; 10:2525. [PMID: 31787944 PMCID: PMC6856084 DOI: 10.3389/fmicb.2019.02525] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/21/2019] [Indexed: 01/16/2023] Open
Abstract
There has been significant interest in the development of formulations of non-toxigenic strains of Aspergillus flavus for control of toxigenic strains to reduce the aflatoxin B1 (AFB1) contamination of maize. In the future, climate change (CC) abiotic conditions of temperature (+2–4°C), CO2 (existing levels of 400 vs. 800–1,200 ppb), and drought stress will impact on the agronomy and control of pests and diseases. This study has examined (1) the effect of two-way interacting factors of water activity × temperature on colonization and AFB1 contamination of maize cobs of different ripening ages; (2) the effect of non-toxigenic strains of A. flavus (50:50 inoculum ratio) on relative control of toxigenic A. flavus and AFB1 contamination of ripening cobs; (3) post-harvest control of AFB1 by non-toxigenic strains of A. flavus in non-GM and isogenic GM maize cultivars using the same inoculum ratio; and (4) the impact of three-way interacting CC factors on relative control of AFB1 in maize cobs pre-harvest and in stored non-GM/GM cultivars. Pre-harvest colonization and AFB1 production by a toxigenic A. flavus strain was conserved at 37°C when compared with 30°C, at the three ripening stages of cob development examined: milk ripe (R3), dough (R4), and dent (R5). However, pre-harvest biocontrol with a non-toxigenic strain was only effective at the R3 and R4 stages and not at the R5 stage. This was supported by relative expression of the aflR regulatory biosynthetic gene in the different treatments. When exposed to three-way interacting CC factors for control of AFB1 pre-harvest, the non-toxigenic A. flavus strain was effective at R3 and £4 stages but not at the R5 stage. Post-harvest storage of non-GM and GM cultivars showed that control was achievable at 30°C, with slightly better control in GM-cultivars in terms of the overall inhibition of AFB1 production. However, in stored maize, the non-toxigenic strains of A. flavus had conserved biocontrol of AFB1 contamination, especially in the GM-maize cultivars under three-way interacting CC conditions (37°C × 1,000 ppm CO2 and drought stress). This was supported by the relative expression of the aflR gene in these treatments. This study suggests that the choice of the biocontrol strains, for pre- or post-harvest control, needs to take into account their resilience in CC-related abiotic conditions to ensure that control of AFB1 contamination can be conserved.
Collapse
Affiliation(s)
- Alessandra Marcon Gasperini
- Applied Mycology Group, Cranfield Soil and Agrifood Institute, Environment and Agrifood Theme, Cranfield University, Bedford, United Kingdom
| | - Alicia Rodriguez-Sixtos
- Applied Mycology Group, Cranfield Soil and Agrifood Institute, Environment and Agrifood Theme, Cranfield University, Bedford, United Kingdom
| | - Carol Verheecke-Vaessen
- Applied Mycology Group, Cranfield Soil and Agrifood Institute, Environment and Agrifood Theme, Cranfield University, Bedford, United Kingdom
| | - Esther Garcia-Cela
- Applied Mycology Group, Cranfield Soil and Agrifood Institute, Environment and Agrifood Theme, Cranfield University, Bedford, United Kingdom
| | - Angel Medina
- Applied Mycology Group, Cranfield Soil and Agrifood Institute, Environment and Agrifood Theme, Cranfield University, Bedford, United Kingdom
| | - Naresh Magan
- Applied Mycology Group, Cranfield Soil and Agrifood Institute, Environment and Agrifood Theme, Cranfield University, Bedford, United Kingdom
| |
Collapse
|
21
|
Agbetiameh D, Ortega-Beltran A, Awuah RT, Atehnkeng J, Islam MS, Callicott KA, Cotty PJ, Bandyopadhyay R. Potential of Atoxigenic Aspergillus flavus Vegetative Compatibility Groups Associated With Maize and Groundnut in Ghana as Biocontrol Agents for Aflatoxin Management. Front Microbiol 2019; 10:2069. [PMID: 31555251 PMCID: PMC6743268 DOI: 10.3389/fmicb.2019.02069] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/22/2019] [Indexed: 11/24/2022] Open
Abstract
Increasing knowledge of the deleterious health and economic impacts of aflatoxin in crop commodities has stimulated global interest in aflatoxin mitigation. Current evidence of the incidence of Aspergillus flavus isolates belonging to vegetative compatibility groups (VCGs) lacking the ability to produce aflatoxins (i.e., atoxigenic) in Ghana may lead to the development of an aflatoxin biocontrol strategy to mitigate crop aflatoxin content. In this study, 12 genetically diverse atoxigenic African A. flavus VCGs (AAVs) were identified from fungal communities associated with maize and groundnut grown in Ghana. Representative isolates of the 12 AAVs were assessed for their ability to inhibit aflatoxin contamination by an aflatoxin-producing isolate in laboratory assays. Then, the 12 isolates were evaluated for their potential as biocontrol agents for aflatoxin mitigation when included in three experimental products (each containing four atoxigenic isolates). The three experimental products were evaluated in 50 maize and 50 groundnut farmers' fields across three agroecological zones (AEZs) in Ghana during the 2014 cropping season. In laboratory assays, the atoxigenic isolates reduced aflatoxin biosynthesis by 87-98% compared to grains inoculated with the aflatoxin-producing isolate alone. In field trials, the applied isolates moved to the crops and had higher (P < 0.05) frequencies than other A. flavus genotypes. In addition, although at lower frequencies, most atoxigenic genotypes were repeatedly found in untreated crops. Aflatoxin levels in treated crops were lower by 70-100% in groundnut and by 50-100% in maize (P < 0.05) than in untreated crops. Results from the current study indicate that combined use of appropriate, well-adapted isolates of atoxigenic AAVs as active ingredients of biocontrol products effectively displace aflatoxin producers and in so doing limit aflatoxin contamination. A member each of eight atoxigenic AAVs with superior competitive potential and wide adaptation across AEZs were selected for further field efficacy trials in Ghana. A major criterion for selection was the atoxigenic isolate's ability to colonize soils and grains after release in crop field soils. Use of isolates belonging to atoxigenic AAVs in biocontrol management strategies has the potential to improve food safety, productivity, and income opportunities for smallholder farmers in Ghana.
Collapse
Affiliation(s)
- Daniel Agbetiameh
- International Institute of Tropical Agriculture, Ibadan, Nigeria
- Department of Crop and Soil Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Richard T. Awuah
- Department of Crop and Soil Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Joseph Atehnkeng
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Md-Sajedul Islam
- Agricultural Research Service, United States Department of Agriculture, Tucson, AZ, United States
| | - Kenneth A. Callicott
- Agricultural Research Service, United States Department of Agriculture, Tucson, AZ, United States
| | - Peter J. Cotty
- Agricultural Research Service, United States Department of Agriculture, Tucson, AZ, United States
| | | |
Collapse
|
22
|
Lewis MH, Carbone I, Luis JM, Payne GA, Bowen KL, Hagan AK, Kemerait R, Heiniger R, Ojiambo PS. Biocontrol Strains Differentially Shift the Genetic Structure of Indigenous Soil Populations of Aspergillus flavus. Front Microbiol 2019; 10:1738. [PMID: 31417528 PMCID: PMC6685141 DOI: 10.3389/fmicb.2019.01738] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/15/2019] [Indexed: 01/22/2023] Open
Abstract
Biocontrol using non-aflatoxigenic strains of Aspergillus flavus has the greatest potential to mitigate aflatoxin contamination in agricultural produce. However, factors that influence the efficacy of biocontrol agents in reducing aflatoxin accumulation under field conditions are not well-understood. Shifts in the genetic structure of indigenous soil populations of A. flavus following application of biocontrol products Afla-Guard and AF36 were investigated to determine how these changes can influence the efficacy of biocontrol strains in reducing aflatoxin contamination. Soil samples were collected from maize fields in Alabama, Georgia, and North Carolina in 2012 and 2013 to determine changes in the population genetic structure of A. flavus in the soil following application of the biocontrol strains. A. flavus L was the most dominant species of Aspergillus section Flavi with a frequency ranging from 61 to 100%, followed by Aspergillus parasiticus that had a frequency of <35%. The frequency of A. flavus L increased, while that of A. parasiticus decreased after application of biocontrol strains. A total of 112 multilocus haplotypes (MLHs) were inferred from 1,282 isolates of A. flavus L using multilocus sequence typing of the trpC, mfs, and AF17 loci. A. flavus individuals belonging to the Afla-Guard MLH in the IB lineage were the most dominant before and after application of biocontrol strains, while individuals of the AF36 MLH in the IC lineage were either recovered in very low frequencies or not recovered at harvest. There were no significant (P > 0.05) differences in the frequency of individuals with MAT1-1 and MAT1-2 for clone-corrected MLH data, an indication of a recombining population resulting from sexual reproduction. Population mean mutation rates were not different across temporal and spatial scales indicating that mutation alone is not a driving force in observed multilocus sequence diversity. Clustering based on principal component analysis identified two distinct evolutionary lineages (IB and IC) across all three states. Additionally, patristic distance analysis revealed phylogenetic incongruency among single locus phylogenies which suggests ongoing genetic exchange and recombination. Levels of aflatoxin accumulation were very low except in North Carolina in 2012, where aflatoxin levels were significantly (P < 0.05) lower in grain from treated compared to untreated plots. Phylogenetic analysis showed that Afla-Guard was more effective than AF36 in shifting the indigenous soil populations of A. flavus toward the non-toxigenic or low aflatoxin producing IB lineage. These results suggest that Afla-Guard, which matches the genetic and ecological structure of indigenous soil populations of A. flavus in Alabama, Georgia, and North Carolina, is likely to be more effective in reducing aflatoxin accumulation and will also persist longer in the soil than AF36 in the southeastern United States.
Collapse
Affiliation(s)
- Mary H Lewis
- Department of Entomology and Plant Pathology, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC, United States
| | - Ignazio Carbone
- Department of Entomology and Plant Pathology, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC, United States
| | - Jane M Luis
- Department of Entomology and Plant Pathology, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC, United States
| | - Gary A Payne
- Department of Entomology and Plant Pathology, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC, United States
| | - Kira L Bowen
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Austin K Hagan
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Robert Kemerait
- Department of Plant Pathology, University of Georgia, Coastal Plain Experiment Station, Tifton, GA, United States
| | - Ron Heiniger
- Department of Crop Science, North Carolina State University, Raleigh, NC, United States
| | - Peter S Ojiambo
- Department of Entomology and Plant Pathology, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
23
|
Sandona K, Billingsley Tobias TL, Hutchinson MI, Natvig DO, Porras-Alfaro A. Diversity of thermophilic and thermotolerant fungi in corn grain. Mycologia 2019; 111:719-729. [PMID: 31348716 DOI: 10.1080/00275514.2019.1631137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Corn bins in the midwestern United States can reach temperatures up to 52 C. High temperatures combined with sufficient moisture and humidity in bins provide the perfect environment to promote the growth of thermophilic and thermotolerant fungi. In this article, we characterize for the first time thermophilic and thermotolerant fungi in corn grain bins using culture-based methods and pyrosequencing techniques. Corn samples were collected from local farms in western Illinois. Samples were plated and incubated at 50 C using a variety of approaches. Of several hundred kernels examined, more than 90% showed colonization. Species identified using culture methods included Thermomyces lanuginosus, Thermomyces dupontii, Aspergillus fumigatus, Thermoascus crustaceus, and Rhizomucor pusillus. Pyrosequencing was also performed directly on corn grain using fungal-specific primers to determine whether thermophilic fungi could be detected using this technique. Sequences were dominated by pathogenic fungi, and thermophiles were represented by less than 2% of the sequences despite being isolated from 90% of the grain samples using culturing techniques. The high abundance of previously undocumented viable fungi in corn could have negative implications for grain quality and pose a potential risk for workers and consumers of corn-derived products in the food industry. Members of the Sordariales were absent among thermophile isolates and were not represented in nuc rDNA internal transcribed spacer (ITS) sequences. This is in striking contrast with results obtained with other substrates such as litter, dung, and soils, where mesophilic and thermophilic members of the Sordariaceae and Chaetomiaceae are common. This absence appears to reflect an important difference between the ecology of Sordariales and other orders within the Ascomycota in terms of their ability to compete in microhabitats rich in sugars and living tissues.
Collapse
Affiliation(s)
- Katrina Sandona
- Department of Biological Sciences, Western Illinois University , 1 University Circle, Macomb , Illinois 61455
| | - Terri L Billingsley Tobias
- Department of Biological Sciences, Western Illinois University , 1 University Circle, Macomb , Illinois 61455
| | - Miriam I Hutchinson
- Department of Biology, University of New Mexico , 1 University of New Mexico, Albuquerque , New Mexico 87131
| | - Donald O Natvig
- Department of Biology, University of New Mexico , 1 University of New Mexico, Albuquerque , New Mexico 87131
| | - Andrea Porras-Alfaro
- Department of Biological Sciences, Western Illinois University , 1 University Circle, Macomb , Illinois 61455.,Department of Biology, University of New Mexico , 1 University of New Mexico, Albuquerque , New Mexico 87131
| |
Collapse
|
24
|
Alshannaq AF, Gibbons JG, Lee MK, Han KH, Hong SB, Yu JH. Controlling aflatoxin contamination and propagation of Aspergillus flavus by a soy-fermenting Aspergillus oryzae strain. Sci Rep 2018; 8:16871. [PMID: 30442975 PMCID: PMC6237848 DOI: 10.1038/s41598-018-35246-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/31/2018] [Indexed: 01/09/2023] Open
Abstract
Aflatoxins (AFs) are a group of carcinogenic and immunosuppressive mycotoxins that threaten global food safety. Globally, over 4.5 billion people are exposed to unmonitored levels of AFs. Aspergillus flavus is the major source of AF contamination in agricultural crops. One approach to reduce levels of AFs in agricultural commodities is to apply a non-aflatoxigenic competitor, e.g., Afla-Guard, to crop fields. In this study, we demonstrate that the food fermenting Aspergillus oryzae M2040 strain, isolated from Korean Meju (a brick of dry-fermented soybeans), can inhibit aflatoxin B1 (AFB1) production and proliferation of toxigenic A. flavus in lab culture conditions and peanuts. In peanuts, 1% inoculation level of A. oryzae M2040 could effectively displace the toxigenic A. flavus and inhibit AFB1 production. Moreover, cell-free culture filtrate of A. oryzae M2040 effectively inhibited AFB1 production and A. flavus growth, suggesting A. oryzae M2040 secretes inhibitory compounds. Whole genome-based comparative analyses indicate that the A. oryzae M2040 and Afla-Guard genomes are 37.9 and 36.4 Mbp, respectively, with each genome containing ~100 lineage specific genes. Our study establishes the idea of using A. oryzae and/or its cell-free culture fermentate as a potent biocontrol agent to control A. flavus propagation and AF contamination.
Collapse
Affiliation(s)
- Ahmad F Alshannaq
- Department of Food Science, University of Wisconsin-Madison, 1605 Linden Dr, Madison, WI, 53706, USA
- Food Research Institute, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI, 53706, USA
| | - John G Gibbons
- Department of Food Science, University of Massachusetts, 240 Chenoweth Laboratory, 102 Holdsworth Way, Amherst, MA, 01003, USA
| | - Mi-Kyung Lee
- Biological resource center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Kap-Hoon Han
- Department of Pharmaceutical Engineering, Woosuk University, Wanju, 55338, Republic of Korea
| | - Seung-Beom Hong
- Korean Agricultural Culture Collection, Agricultural Microbiology Division, NAS, RDA, Wanju, Republic of Korea
| | - Jae-Hyuk Yu
- Food Research Institute, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI, 53706, USA.
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI, 53706, USA.
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Ojiambo PS, Battilani P, Cary JW, Blum BH, Carbone I. Cultural and Genetic Approaches to Manage Aflatoxin Contamination: Recent Insights Provide Opportunities for Improved Control. PHYTOPATHOLOGY 2018; 108:1024-1037. [PMID: 29869954 DOI: 10.1094/phyto-04-18-0134-rvw] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Aspergillus flavus is a morphologically complex species that can produce the group of polyketide derived carcinogenic and mutagenic secondary metabolites, aflatoxins, as well as other secondary metabolites such as cyclopiazonic acid and aflatrem. Aflatoxin causes aflatoxicosis when aflatoxins are ingested through contaminated food and feed. In addition, aflatoxin contamination is a major problem, from both an economic and health aspect, in developing countries, especially Asia and Africa, where cereals and peanuts are important food crops. Earlier measures for control of A. flavus infection and consequent aflatoxin contamination centered on creating unfavorable environments for the pathogen and destroying contaminated products. While development of atoxigenic (nonaflatoxin producing) strains of A. flavus as viable commercial biocontrol agents has marked a unique advance for control of aflatoxin contamination, particularly in Africa, new insights into the biology and sexuality of A. flavus are now providing opportunities to design improved atoxigenic strains for sustainable biological control of aflatoxin. Further, progress in the use of molecular technologies such as incorporation of antifungal genes in the host and host-induced gene silencing, is providing knowledge that could be harnessed to develop germplasm that is resistant to infection by A. flavus and aflatoxin contamination. This review summarizes the substantial progress that has been made to understand the biology of A. flavus and mitigate aflatoxin contamination with emphasis on maize. Concepts developed to date can provide a basis for future research efforts on the sustainable management of aflatoxin contamination.
Collapse
Affiliation(s)
- Peter S Ojiambo
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Paola Battilani
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Jeffrey W Cary
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Burt H Blum
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Ignazio Carbone
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| |
Collapse
|
26
|
Yin G, Hua SST, Pennerman KK, Yu J, Bu L, Sayre RT, Bennett JW. Genome sequence and comparative analyses of atoxigenic Aspergillus flavus WRRL 1519. Mycologia 2018; 110:482-493. [PMID: 29969379 DOI: 10.1080/00275514.2018.1468201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aflatoxins are toxic secondary metabolites produced by Aspergillus flavus and a few other closely related species of Aspergillus. These highly toxigenic and carcinogenic mycotoxins contaminate global food and feed supplies, posing widespread health risks to humans and domestic animals. Field application of nonaflatoxigenic strains of A. flavus to compete against aflatoxigenic strains has emerged as one of the best management practices for reducing aflatoxins contamination, yielding successful commercial products for corn, cotton seed, and peanuts. In this study, we sequenced the genome and transcriptome of atoxigenic (does not produce aflatoxin or cyclopiazonic acid) A. flavus strain WRRL 1519 isolated from a tree nut orchard to define the genetic characteristics of the strain in relation to aflatoxigenic and other nonaflatoxigenic A. flavus strains. WRRL 1519 strain was similar to other strains in size (38.0 Mb), GC content (47.2%), number of predicted secondary metabolite gene clusters (46), and number of putative proteins (12 121). About 87.4% of the predicted proteome had high shared identity with protein sequences derived from other A. flavus genomes. However, the atoxigenic A. flavus strain WRRL 1519 had deletions, or low shared identity, for many genes in the clusters required for aflatoxins and cyclopiazonic acid (CPA) synthesis. Over half of the aflatoxin synthesis gene cluster was missing, and none of the components of the CPA gene cluster were identified with high sequence similarity. Importantly, the strain appeared to maintain functional sequences of several genes thought to be required for high infectivity. Since the ability to grow on target crop is an important attribute for a successful biocontrol agent, these results indicate that the nonaflatoxigenic A. flavus strain WRRL 1519 would be a good candidate as a biocontrol agent for reducing aflatoxin and CPA accumulation in high-value nut crops.
Collapse
Affiliation(s)
- Guohua Yin
- a Department of Plant Biology, Rutgers , The State University of New Jersey , New Brunswick , New Jersey 08901.,b New Mexico Consortium and Pebble Labs , Los Alamos , New Mexico 87544
| | - Sui Sheng T Hua
- c Foodborne Toxin Detection and Prevention Research, Western Regional Research Center, Agricultural Research Service , US Department of Agriculture , Albany , California 94710
| | - Kayla K Pennerman
- a Department of Plant Biology, Rutgers , The State University of New Jersey , New Brunswick , New Jersey 08901
| | - Jiujiang Yu
- d Food Quality Laboratory, Agricultural Research Service , US Department of Agriculture, Beltsville Agricultural Research Center , Beltsville , Maryland 20705
| | - Lijing Bu
- e Center for Evolutionary & Theoretical Immunology, Department of Biology , University of New Mexico , Albuquerque , New Mexico 87131
| | - Richard T Sayre
- b New Mexico Consortium and Pebble Labs , Los Alamos , New Mexico 87544
| | - Joan W Bennett
- a Department of Plant Biology, Rutgers , The State University of New Jersey , New Brunswick , New Jersey 08901
| |
Collapse
|
27
|
Agbetiameh D, Ortega-Beltran A, Awuah RT, Atehnkeng J, Cotty PJ, Bandyopadhyay R. Prevalence of Aflatoxin Contamination in Maize and Groundnut in Ghana: Population Structure, Distribution, and Toxigenicity of the Causal Agents. PLANT DISEASE 2018; 102:764-772. [PMID: 30673407 PMCID: PMC7779968 DOI: 10.1094/pdis-05-17-0749-re] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Aflatoxin contamination in maize and groundnut is perennial in Ghana with substantial health and economic burden on the population. The present study examined for the first time the prevalence of aflatoxin contamination in maize and groundnut in major producing regions across three agroecological zones (AEZs) in Ghana. Furthermore, the distribution and aflatoxin-producing potential of Aspergillus species associated with both crops were studied. Out of 509 samples (326 of maize and 183 of groundnut), 35% had detectable levels of aflatoxins. Over 15% of maize and 11% of groundnut samples exceeded the aflatoxin threshold limits set by the Ghana Standards Authority of 15 and 20 ppb, respectively. Mycoflora analyses revealed various species and morphotypes within the Aspergillus section Flavi. A total of 5,083 isolates were recovered from both crops. The L morphotype of Aspergillus flavus dominated communities with 93.3% of the population, followed by Aspergillus spp. with S morphotype (6%), A. tamarii (0.4%), and A. parasiticus (0.3%). Within the L morphotype, the proportion of toxigenic members was significantly (P < 0.05) higher than that of atoxigenic members across AEZs. Observed and potential aflatoxin concentrations indicate that on-field aflatoxin management strategies need to be implemented throughout Ghana. The recovered atoxigenic L morphotype fungi are genetic resources that can be employed as biocontrol agents to limit aflatoxin contamination of maize and groundnut in Ghana. Copyright © 2018 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .
Collapse
Affiliation(s)
- D Agbetiameh
- International Institute of Tropical Agriculture (IITA), PMB 5320, Ibadan, Nigeria, and Department of Crop and Soil Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | | | - R T Awuah
- Department of Crop and Soil Sciences, KNUST, Kumasi, Ghana
| | - J Atehnkeng
- IITA, Chitedze Research Station, P.O. Box 30258, Lilongwe 3, Malawi
| | - P J Cotty
- United States Department of Agriculture, Agricultural Research Service, School of Plant Sciences, University of Arizona, Tucson, AZ 85721
| | | |
Collapse
|
28
|
Development of a droplet digital PCR assay for population analysis of aflatoxigenic and atoxigenic Aspergillus flavus mixtures in soil. Mycotoxin Res 2018; 34:187-194. [PMID: 29582253 DOI: 10.1007/s12550-018-0313-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
Abstract
Aflatoxin B1 is a potent hepatotoxin and carcinogen that poses a serious safety hazard to both humans and animals. Aspergillus flavus is the most common aflatoxin-producing species on corn, cotton, peanuts, and tree nuts. Application of atoxigenic strains to compete against aflatoxigenic strains of A. flavus has emerged as one of the most practical strategies for ameliorating aflatoxin contamination in food. Genes directly involved in aflatoxin biosynthesis are clustered on an 82-kb region of the genome. Three atoxigenic strains (CA12, M34, and AF123) were each paired with each of four aflatoxigenic strains (CA28, CA42, CA90, and M52), inoculated into soil and incubated at 28 °C for 2 weeks and 1 month. TaqMan probes, omtA-FAM, and norA-HEX were designed for developing a droplet digital PCR (ddPCR) assay to analyze the soil population of mixtures of A. flavus strains. DNA was extracted from each soil sample and used for ddPCR assays. The data indicated that competition between atoxigenic and aflatoxigenic was strain dependent. Variation in competitive ability among different strains of A. flavus influenced the population reduction of the aflatoxigenic strain by the atoxigenic strain. Higher ratios of atoxigenic to aflatoxigenic strains increased soil population of atoxigenic strains. This is the first study to demonstrate the utility of ddPCR to quantify mixtures of both atoxigenic and aflatoxigenic A. flavus strains in soil and allows for rapid and accurate determination of population sizes of atoxigenic and aflatoxigenic strains. This method eliminates the need for isolation and identification of individual fungal isolates from experimental soil samples.
Collapse
|
29
|
Fountain JC, Koh J, Yang L, Pandey MK, Nayak SN, Bajaj P, Zhuang WJ, Chen ZY, Kemerait RC, Lee RD, Chen S, Varshney RK, Guo B. Proteome analysis of Aspergillus flavus isolate-specific responses to oxidative stress in relationship to aflatoxin production capability. Sci Rep 2018; 8:3430. [PMID: 29467403 PMCID: PMC5821837 DOI: 10.1038/s41598-018-21653-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/03/2018] [Indexed: 12/24/2022] Open
Abstract
Aspergillus flavus is an opportunistic pathogen of plants such as maize and peanut under conducive conditions such as drought stress resulting in significant aflatoxin production. Drought-associated oxidative stress also exacerbates aflatoxin production by A. flavus. The objectives of this study were to use proteomics to provide insights into the pathogen responses to H2O2-derived oxidative stress, and to identify potential biomarkers and targets for host resistance breeding. Three isolates, AF13, NRRL3357, and K54A with high, moderate, and no aflatoxin production, were cultured in medium supplemented with varying levels of H2O2, and examined using an iTRAQ (Isobaric Tags for Relative and Absolute Quantification) approach. Overall, 1,173 proteins were identified and 220 were differentially expressed (DEPs). Observed DEPs encompassed metabolic pathways including antioxidants, carbohydrates, pathogenicity, and secondary metabolism. Increased lytic enzyme, secondary metabolite, and developmental pathway expression in AF13 was correlated with oxidative stress tolerance, likely assisting in plant infection and microbial competition. Elevated expression of energy and cellular component production in NRRL3357 and K54A implies a focus on oxidative damage remediation. These trends explain isolate-to-isolate variation in oxidative stress tolerance and provide insights into mechanisms relevant to host plant interactions under drought stress allowing for more targeted efforts in host resistance research.
Collapse
Affiliation(s)
- Jake C Fountain
- Department of Plant Pathology, University of Georgia, Tifton, GA, USA.,USDA-ARS Crop Protection and Management Research Unit, Tifton, GA, USA.,Center of Excellence in Genomics & Systems Biology, International Crop Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Jin Koh
- Department of Biology, Genetics Institute, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | - Liming Yang
- Department of Plant Pathology, University of Georgia, Tifton, GA, USA.,USDA-ARS Crop Protection and Management Research Unit, Tifton, GA, USA.,College of Biology and Environmental Science, Nanjing Forestry University, Nanjing, China
| | - Manish K Pandey
- Center of Excellence in Genomics & Systems Biology, International Crop Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Spurthi N Nayak
- Center of Excellence in Genomics & Systems Biology, International Crop Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Prasad Bajaj
- Center of Excellence in Genomics & Systems Biology, International Crop Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Wei-Jian Zhuang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhi-Yuan Chen
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA, USA
| | - Robert C Kemerait
- Department of Plant Pathology, University of Georgia, Tifton, GA, USA
| | - R Dewey Lee
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, USA
| | - Sixue Chen
- Department of Biology, Genetics Institute, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology, International Crop Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Baozhu Guo
- USDA-ARS Crop Protection and Management Research Unit, Tifton, GA, USA.
| |
Collapse
|
30
|
Mitema A, Okoth S, Rafudeen MS. Vegetative compatibility and phenotypic characterization as a means of determining genetic diversity of Aspergillus flavus isolates. Fungal Biol 2017; 122:203-213. [PMID: 29551194 DOI: 10.1016/j.funbio.2017.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/08/2017] [Accepted: 11/20/2017] [Indexed: 01/24/2023]
Abstract
Toxigenic Aspergillus species produce mycotoxins that are carcinogenic, hepatotoxic and teratogenic immunosuppressing agents in both human and animals. Kenya frequently experiences outbreaks of aflatoxicosis with the worst occurring in 2010, which resulted in 215 deaths. We examined the possible reasons for these frequent aflatoxicosis outbreaks in Kenya by studying Aspergillus flavus diversity, phenotypes and mycotoxin profiles across various agricultural regions. Using diagonal transect random sampling, maize kernels were collected from Makueni, Homa Bay, Nandi, and Kisumu counties. Out of 37 isolates, nitrate non-utilizing auxotrophs complementation test revealed 20 vegetative compatibility groups. We designated these groups by the prefix "KVCG", where "K" represented Kenya and consequently assigned numbers 1-20 based on our findings. KVCG14 and KVCG15 had highest distribution frequency (n = 13; 10.8 %). The distribution of the L-, S- and S-/L-morphotypes across the regions were 57 % (n = 21); 7 % (n = 3) and 36 % (n = 13), respectively. Furthermore, a unique isolate (KSM015) was identified that had characteristics of S-morphotype, but produced both aflatoxins B and G. Coconut agar medium (CAM) assay, TLC and HPLC analyses confirmed the presence or absence of aflatoxins in selected toxigenic and atoxigenic isolates. Diversity index (H') analyses ranged from 0.11 (Nandi samples) to 0.32 (Kisumu samples). Heterokaryon compatibility ranged from 33 % (for the Makueni samples, n = 3) to 67 % (Nandi samples, n = 6). To our knowledge, this is the first reported findings for A. flavus diversity and distribution in Nandi, Homa Bay and Kisumu counties and may assist current and future researchers in the selection of biocontrol strategies to mitigate aflatoxin contamination as has been researched in Makueni and neighbouring counties.
Collapse
Affiliation(s)
- Alfred Mitema
- Department of Molecular and Cell Biology, Plant Stress Laboratory 204/207, MCB Building, Upper Campus, University of Cape Town, Private Bag X3, Rondebosch, 7701 Cape Town, South Africa; School of Biological Sciences, University of Nairobi, P.O. Box 30596, 00100 Nairobi, Kenya
| | - Sheila Okoth
- School of Biological Sciences, University of Nairobi, P.O. Box 30596, 00100 Nairobi, Kenya
| | - Mohamed S Rafudeen
- Department of Molecular and Cell Biology, Plant Stress Laboratory 204/207, MCB Building, Upper Campus, University of Cape Town, Private Bag X3, Rondebosch, 7701 Cape Town, South Africa.
| |
Collapse
|
31
|
Medina A, Mohale S, Samsudin NIP, Rodriguez-Sixtos A, Rodriguez A, Magan N. Biocontrol of mycotoxins: dynamics and mechanisms of action. Curr Opin Food Sci 2017. [DOI: 10.1016/j.cofs.2017.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Abbas HK, Accinelli C, Shier WT. Biological Control of Aflatoxin Contamination in U.S. Crops and the Use of Bioplastic Formulations of Aspergillus flavus Biocontrol Strains To Optimize Application Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7081-7087. [PMID: 28420231 DOI: 10.1021/acs.jafc.7b01452] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Aflatoxin contamination has a major economic impact on crop production in the southern United States. Reduction of aflatoxin contamination in harvested crops has been achieved by applying nonaflatoxigenic biocontrol Aspergillus flavus strains that can out-compete wild aflatoxigenic A. flavus, reducing their numbers at the site of application. Currently, the standard method for applying biocontrol A. flavus strains to soil is using a nutrient-supplying carrier (e.g., pearled barley for Afla-Guard). Granules of Bioplastic (partially acetylated corn starch) have been investigated as an alternative nutritive carrier for biocontrol agents. Bioplastic granules have also been used to prepare a sprayable biocontrol formulation that gives effective reduction of aflatoxin contamination in harvested corn kernels with application of much smaller amounts to leaves later in the growing season. The ultimate goal of biocontrol research is to produce biocontrol systems that can be applied to crops only when long-range weather forecasting indicates they will be needed.
Collapse
Affiliation(s)
- Hamed K Abbas
- Biological Control of Pests Research Unit, Agricultural Research Service, U.S. Department of Agriculture , Stoneville, Mississippi 38776, United States
| | - Cesare Accinelli
- Department of Agricultural Sciences, Alma Mater Studiorum - University of Bologna , Bologna 40127, Italy
| | - W Thomas Shier
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
33
|
Abbas HK, Shier WT, Plasencia J, Weaver MA, Bellaloui N, Kotowicz JK, Butler AM, Accinelli C, de la Torre-Hernandez ME, Zablotowicz RM. Mycotoxin contamination in corn smut (Ustilago maydis) galls in the field and in the commercial food products. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Mylroie JE, Ozkan S, Shivaji R, Windham GL, Alpe MN, Williams WP. Identification and Quantification of a Toxigenic and Non-Toxigenic Aspergillus flavus Strain in Contaminated Maize Using Quantitative Real-Time PCR. Toxins (Basel) 2016; 8:E15. [PMID: 26742074 PMCID: PMC4728537 DOI: 10.3390/toxins8010015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/17/2015] [Accepted: 12/28/2015] [Indexed: 11/16/2022] Open
Abstract
Aflatoxins, which are produced by Aspergillus flavus, are toxic to humans, livestock, and pets. The value of maize (Zea mays) grain is markedly reduced when contaminated with aflatoxin. Plant resistance and biological control using non-toxin producing strains are considered effective strategies for reducing aflatoxin accumulation in maize grain. Distinguishing between the toxin and non-toxin producing strains is important in determining the effectiveness of bio-control strategies and understanding inter-strain interactions. Using polymorphisms found in the fungal rRNA intergenic spacer region (IGS) between a toxigenic strain of A. flavus (NRRL 3357) and the non-toxigenic strain used in the biological control agent Afla-Guard(®) (NRRL 21882), we developed a set of primers that allows for the identification and quantification of the two strains using quantitative PCR. This primer set has been used to screen maize grain that was inoculated with the two strains individually and co-inoculated with both strains, and it has been shown to be effective in both the identification and quantification of both strains. Screening of co-inoculated ears from multiple resistant and susceptible genotypic crosses revealed no significant differences in fungal biomass accumulation of either strain in the field tests from 2010 and 2011 when compared across the means of all genotypes. Only one genotype/year combination showed significant differences in strain accumulation. Aflatoxin accumulation analysis showed that, as expected, genotypes inoculated with the toxigenic strain accumulated more aflatoxin than when co-inoculated with both strains or inoculated with only the non-toxigenic strain. Furthermore, accumulation of toxigenic fungal mass was significantly correlated with aflatoxin accumulation while non-toxigenic fungal accumulation was not. This primer set will allow researchers to better determine how the two fungal strains compete on the maize ear and investigate the interaction between different maize lines and these A. flavus strains.
Collapse
Affiliation(s)
- J Erik Mylroie
- United States Department of Agriculture, Agricultural Research Service, Corn Host Plant Resistance Research Unit, Mississippi State City, MS 39762, USA.
| | - Seval Ozkan
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State City, MS 39762, USA.
| | - Renuka Shivaji
- University of North Carolina at Greensboro Molecular Core Lab, University of North Carolina at Greensboro, Greensboro, NC 27412, USA.
| | - Gary L Windham
- United States Department of Agriculture, Agricultural Research Service, Corn Host Plant Resistance Research Unit, Mississippi State City, MS 39762, USA.
| | - Michael N Alpe
- United States Department of Agriculture, Agricultural Research Service, Corn Host Plant Resistance Research Unit, Mississippi State City, MS 39762, USA.
| | - W Paul Williams
- United States Department of Agriculture, Agricultural Research Service, Corn Host Plant Resistance Research Unit, Mississippi State City, MS 39762, USA.
| |
Collapse
|
35
|
Sakuda S, Yoshinari T, Furukawa T, Jermnak U, Takagi K, Iimura K, Yamamoto T, Suzuki M, Nagasawa H. Search for aflatoxin and trichothecene production inhibitors and analysis of their modes of action. Biosci Biotechnol Biochem 2016; 80:43-54. [DOI: 10.1080/09168451.2015.1086261] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Mycotoxin contamination of crops is a serious problem throughout the world because of its impact on human and animal health as well as economy. Inhibitors of mycotoxin production are useful not only for developing effective methods to prevent mycotoxin contamination, but also for investigating the molecular mechanisms of secondary metabolite production by fungi. We have been searching for mycotoxin production inhibitors among natural products and investigating their modes of action. In this article, we review aflatoxin and trichothecene production inhibitors, including our works on blasticidin S, methyl syringate, cyclo(l-Ala-l-Pro), respiration inhibitors, and precocene II.
Collapse
Affiliation(s)
- Shohei Sakuda
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Tomoya Yoshinari
- Division of Microbiology, National Institute of Health Sciences, Tokyo, Japan
| | - Tomohiro Furukawa
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Usuma Jermnak
- Faculty of Veterinary Medicine, Department of Pharmacology, Kasetsart University, Bangkok, Thailand
| | - Keiko Takagi
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Kurin Iimura
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Toshiyoshi Yamamoto
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Hiromichi Nagasawa
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
36
|
Augustina Egbuta M, Mwanza M, Oluranti Babalola O. A Review of the Ubiquity of Ascomycetes Filamentous Fungi in Relation to Their Economic and Medical Importance. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/aim.2016.614103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Yabe K, Hatabayashi H, Ikehata A, Zheng Y, Kushiro M. Development of the dichlorvos-ammonia (DV-AM) method for the visual detection of aflatoxigenic fungi. Appl Microbiol Biotechnol 2015; 99:10681-94. [PMID: 26300294 DOI: 10.1007/s00253-015-6924-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 08/02/2015] [Accepted: 08/07/2015] [Indexed: 10/23/2022]
Abstract
Aflatoxins (AFs) are carcinogenic and toxic secondary metabolites produced mainly by Aspergillus flavus and Aspergillus parasiticus. To monitor and regulate the AF contamination of crops, a sensitive and precise detection method for these toxigenic fungi in environments is necessary. We herein developed a novel visual detection method, the dichlorvos-ammonia (DV-AM) method, for identifying AF-producing fungi using DV and AM vapor on agar culture plates, in which DV inhibits the esterase in AF biosynthesis, causing the accumulation of anthraquinone precursors (versiconal hemiacetal acetate and versiconol acetate) of AFs in mycelia on the agar plate, followed by a change in the color of the colonies from light yellow to brilliant purple-red by the AM vapor treatment. We also investigated the appropriate culture conditions to increase the color intensity. It should be noted that other species producing the same precursors of AFs such as Aspergillus nidulans and Aspergillus versicolor could be discriminated from the Aspergillus section Flavi based on the differences of their phenotypes. The DV-AM method was also useful for the isolation of nonaflatoxigenic fungi showing no color change, for screening microorganisms that inhibit the AF production by fungi, and for the characterization of the fungi infecting corn kernels. Thus, the DV-AM method can provide a highly sensitive and visible indicator for the detection of aflatoxigenic fungi.
Collapse
Affiliation(s)
- Kimiko Yabe
- National Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8642, Japan.
- Department of Environmental and Food Sciences, Fukui University of Technology, 3-6-1, Gakuen, Fukui-shi, Fukui, 910-8505, Japan.
| | - Hidemi Hatabayashi
- National Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8642, Japan
| | - Akifumi Ikehata
- National Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8642, Japan
| | - Yazhi Zheng
- National Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8642, Japan
| | - Masayo Kushiro
- National Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8642, Japan
| |
Collapse
|
38
|
Bhatnagar-Mathur P, Sunkara S, Bhatnagar-Panwar M, Waliyar F, Sharma KK. Biotechnological advances for combating Aspergillus flavus and aflatoxin contamination in crops. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 234:119-132. [PMID: 25804815 DOI: 10.1016/j.plantsci.2015.02.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 06/04/2023]
Abstract
Aflatoxins are toxic, carcinogenic, mutagenic, teratogenic and immunosuppressive byproducts of Aspergillus spp. that contaminate a wide range of crops such as maize, peanut, and cotton. Aflatoxin not only affects crop production but renders the produce unfit for consumption and harmful to human and livestock health, with stringent threshold limits of acceptability. In many crops, breeding for resistance is not a reliable option because of the limited availability of genotypes with durable resistance to Aspergillus. Understanding the fungal/crop/environment interactions involved in aflatoxin contamination is therefore essential in designing measures for its prevention and control. For a sustainable solution to aflatoxin contamination, research must be focused on identifying and improving knowledge of host-plant resistance factors to aflatoxin accumulation. Current advances in genetic transformation, proteomics, RNAi technology, and marker-assisted selection offer great potential in minimizing pre-harvest aflatoxin contamination in cultivated crop species. Moreover, developing effective phenotyping strategies for transgenic as well as precision breeding of resistance genes into commercial varieties is critical. While appropriate storage practices can generally minimize post-harvest aflatoxin contamination in crops, the use of biotechnology to interrupt the probability of pre-harvest infection and contamination has the potential to provide sustainable solution.
Collapse
Affiliation(s)
- Pooja Bhatnagar-Mathur
- Genetic Transformation Laboratory, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India.
| | - Sowmini Sunkara
- Genetic Transformation Laboratory, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Madhurima Bhatnagar-Panwar
- Genetic Transformation Laboratory, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Farid Waliyar
- Genetic Transformation Laboratory, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Kiran Kumar Sharma
- Genetic Transformation Laboratory, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| |
Collapse
|
39
|
Damann Jr. K. Atoxigenic Aspergillus flavus biological control of aflatoxin contamination: what is the mechanism? WORLD MYCOTOXIN J 2015. [DOI: 10.3920/wmj2014.1719] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The term ‘competitive exclusion’ involving physical blockage of growth or access of the toxigenic strain to the seed target has been used to describe the mechanism of biological control of aflatoxin contamination. However, recent evidence suggests that a form of intraspecific aflatoxin inhibition requiring growth of the competing strains together during the infection process in such a way that hyphae physically interact or touch is the trigger for preventing induction of aflatoxin synthesis. This direct touch-based inhibition of aflatoxin synthesis is posited to be the mechanistic basis of biological control in this system. Evidence for this idea comes from the published observations that co-culture of toxigenic and atoxigenic strains in a suspended disc system, in which the hyphae physically interact, prevents aflatoxin production. However, growth of the same strains in the same medium in the two compartments of a filter insert plate well system, separating the atoxigenic and toxigenic strains with a 0.4 μm or 3.0 μm filter, allows aflatoxin production approaching that of the toxigenic strain alone. When the strains are mixed and placed in both the insert and the well compartments, the intraspecific aflatoxin inhibition occurs as it did in the suspended disc culture system. This further suggests that neither nutrient competition nor soluble signal molecules, which should pass through the filter, are involved in intraspecific aflatoxin inhibition. When the two strains are separated by a 12 μm filter that would allow some passage of conidia or hyphae between the compartments the aflatoxin synthesis is approximately half that of the toxigenic strain alone. This phenomenon could be termed ‘competitive inclusion’ or ‘competitive phenotype conversion’. Work of others that relates to understanding the phenomenon is discussed, as well as an Aspergillus flavus population biology study from the Louisiana maize agro-ecosystem which has biological control implications.
Collapse
Affiliation(s)
- K.E. Damann Jr.
- Department of Plant Pathology & Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| |
Collapse
|
40
|
Solorzano CD, Abbas HK, Zablotowicz RM, Chang PK, Jones WA. Genetic variability of Aspergillus flavus isolates from a Mississippi corn field. ScientificWorldJournal 2014; 2014:356059. [PMID: 25478591 PMCID: PMC4244913 DOI: 10.1155/2014/356059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/05/2014] [Indexed: 01/17/2023] Open
Abstract
A nontoxigenic Aspergillus flavus strain, K49, is currently being tested as a biological control agent in corn fields in the Mississippi Delta. However, little is known about the overall genetic diversity of A. flavus from year to year in corn fields and specifically in Mississippi. Our objective was to assess the genetic variability of A. flavus isolates from different seasons, inoculum sources, and years, from a no-till corn field. Of the 175 A. flavus isolates examined, 74 and 97 had the typical norB-cypA type I (1.5 kb) and type II (1.0 kb) deletion patterns, respectively. Variability in the sequence of the omtA gene of the majority of the field isolates (n = 118) was compared to strain K49. High levels of haplotypic diversity (24 omtA haplotypes; Hd = 0.61 ± 0.04) were found. Among the 24 haplotypes, two were predominant, H1 (n = 71), which consists of mostly toxigenic isolates, and H49 (n = 18), which consists of mostly atoxigenic isolates including K49. Toxigenic isolates were prevalent (60%) in this natural population. Nonetheless, about 15% of the population likely shared the same ancestral origin with K49. This study provides valuable information on the diversity of A. flavus. This knowledge can be further used to develop additional biological control strains.
Collapse
Affiliation(s)
- Cesar D. Solorzano
- Biological Control of Pests Research Unit, United States Department of Agriculture, Agricultural Research Service, Stoneville, MS 38776, USA
| | - Hamed K. Abbas
- Biological Control of Pests Research Unit, United States Department of Agriculture, Agricultural Research Service, Stoneville, MS 38776, USA
| | - Robert M. Zablotowicz
- Crop Production Systems Research Unit, United States Department of Agriculture, Agricultural Research Service, Stoneville, MS 38776, USA
| | - Perng-Kuang Chang
- Food and Feed Safety Research Unit, United States Department of Agriculture, Agricultural Research Service, New Orleans, LA 70124, USA
| | - Walker A. Jones
- Biological Control of Pests Research Unit, United States Department of Agriculture, Agricultural Research Service, Stoneville, MS 38776, USA
| |
Collapse
|
41
|
|
42
|
Miller J, Schaafsma A, Bhatnagar D, Bondy G, Carbone I, Harris L, Harrison G, Munkvold G, Oswald I, Pestka J, Sharpe L, Sumarah M, Tittlemier S, Zhou T. Mycotoxins that affect the North American agri-food sector: state of the art and directions for the future. WORLD MYCOTOXIN J 2014. [DOI: 10.3920/wmj2013.1624] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This paper summarises workshop discussions at the 5th international MYCORED meeting in Ottawa, Canada (June 2012) with over 200 participants representing academics, government and industry scientists, government officials and farming organisations (present in roughly equal proportions) from 27 countries. Workshops centred on how mycotoxins in food and feed affect value chains and trade in the region covered by the North American Free Trade Agreement. Crops are contaminated by one or more of five important mycotoxins in parts of Canada and the United States every year, and when contaminated food and feed are consumed in amounts above tolerable limits, human and animal health are at risk. Economic loss from such contamination includes reduced crop yield, grain quality, animal productivity and loss of domestic and export markets. A systematic effort by grain producers, primary, transfer, and terminal elevators, millers and food and feed processers is required to manage these contaminants along the value chain. Workshops discussed lessons learned from investments in plant genetics, fungal genomics, toxicology, analytical and sampling science, management strategies along the food and feed value chains and methods to ameliorate the effects of toxins in grain on animal production and on reducing the impact of mycotoxins on population health in developing countries. These discussions were used to develop a set of priorities and recommendations.
Collapse
Affiliation(s)
- J.D. Miller
- Department of Chemistry, Carleton University, 228 Steacie Building, Ottawa, ON K1S 5B6, Canada
| | - A.W. Schaafsma
- Ridgetown Campus, University of Guelph, 120 Main Street East, Ridgetown, ON N0P 2C0, Canada
| | - D. Bhatnagar
- Southern Regional Research Center, USDA, ARS, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA
| | - G. Bondy
- Health Canada, Food Directorate, Bureau of Chemical Safety, 251 Sir Frederick Banting Driveway, 2202C Ottawa, ON K1A 0K9, Canada
| | - I. Carbone
- Department of Plant Pathology, North Carolina State University, 851 Main Campus Drive, Suite 233, Partners III, Raleigh, NC 27606, USA
| | - L.J. Harris
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - G. Harrison
- Canadian National Millers' Association, 236 Metcalfe Street, Ottawa, ON K2P 1R3, Canada
| | - G.P. Munkvold
- Department of Plant Pathology and Microbiology, Iowa State University, 160 Seed Science Building, Ames, IA 50011, USA
| | - I.P. Oswald
- Toxalim, Research Centre in Food Toxicology, INRA, UMR1331, 180 Chemin de Tournefeuille, 31027 Toulouse, France
| | - J.J. Pestka
- Department of Microbiology and Molecular Genetics, Michigan State University, 234 GM Trout Building, East Lansing, MI 48824-1224, USA
| | - L. Sharpe
- DuPont Pioneer Hi-Bred, 7398 Queen's Line, Chatham, ON N7M 5L1, Canada
| | - M.W. Sumarah
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, 1391 Sandford Street, London, ON N5V 4T3, Canada
| | - S.A. Tittlemier
- Grain Research Laboratory, Canadian Grain Commission, 1404-303 Main Street, Winnipeg, MB R3C 3G8, Canada
| | - T. Zhou
- Agriculture and Agri-Food Canada, Guelph Food Research Center, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| |
Collapse
|
43
|
Abbas HK, Zablotowicz RM, Weaver MA, Shier WT, Bruns HA, Bellaloui N, Accinelli C, Abel CA. Implications of Bt traits on mycotoxin contamination in maize: Overview and recent experimental results in southern United States. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:11759-11770. [PMID: 23750911 DOI: 10.1021/jf400754g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Mycotoxin contamination levels in maize kernels are controlled by a complex set of factors including insect pressure, fungal inoculum potential, and environmental conditions that are difficult to predict. Methods are becoming available to control mycotoxin-producing fungi in preharvest crops, including Bt expression, biocontrol, and host plant resistance. Initial reports in the United States and other countries have associated Bt expression with reduced fumonisin, deoxynivalenol, and zearalenone contamination and, to a lesser extent, reduced aflatoxin contamination in harvested maize kernels. However, subsequent field results have been inconsistent, confirming that fumonisin contamination can be reduced by Bt expression, but the effect on aflatoxin is, at present, inconclusive. New maize hybrids have been introduced with increased spectra of insect control and higher levels of Bt expression that may provide important tools for mycotoxin reduction and increased yield due to reduced insect feeding, particularly if used together with biocontrol and host plant resistance.
Collapse
Affiliation(s)
- Hamed K Abbas
- Biological Control of Pests Research Unit, Agricultural Research Service, U.S. Department of Agriculture , Stoneville, Mississippi 38776, United States
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Prevention of aflatoxin contamination by a soil bacterium of Stenotrophomonas sp. that produces aflatoxin production inhibitors. Microbiology (Reading) 2013; 159:902-912. [DOI: 10.1099/mic.0.065813-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
45
|
Henry WB. Maize aflatoxin accumulation segregates with early maturing selections from an S2 breeding cross population. Toxins (Basel) 2013; 5:162-72. [PMID: 23322131 PMCID: PMC3564075 DOI: 10.3390/toxins5010162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 01/09/2013] [Accepted: 01/09/2013] [Indexed: 11/22/2022] Open
Abstract
Maize breeders continue to seek new sources of aflatoxin resistance, but most lines identified as resistance sources are late maturing. The vast difference in flowering time makes it hard to cross these lines with proprietary commercial lines that mature much earlier and often subjects the reproductive phase of these resistant lines to the hottest and driest portion of the summer, making silking, pollination and grain fill challenging. Two hundred crosses from the GEM Project were screened for aflatoxin accumulation at Mississippi State in 2008, and a subset of these lines were screened again in 2009. The breeding cross UR13085:S99g99u was identified as a potential source of aflatoxin resistance, and maturity-based selections were made from an S2 breeding population from this same germplasm source: UR13085:S99g99u-B-B. The earliest maturing selections performed poorly for aflatoxin accumulation, but later maturing selections were identified with favorable levels of aflatoxin accumulation. These selections, while designated as "late" within this study, matured earlier than most aflatoxin resistant lines presently available to breeders. Two selections from this study, designated S5_L7 and S5_L8, are potential sources of aflatoxin resistance and will be advanced for line development and additional aflatoxin screening over more site years and environments.
Collapse
Affiliation(s)
- W Brien Henry
- Department of Plant and Soil Sciences, Mississippi State University, 117 Dorman Hall, Box 9555, MS 39762, USA.
| |
Collapse
|
46
|
Nyirahakizimana H, Mwamburi L, Wakhisi J, Mutegi CK, Christie ME, Wagacha JM. Occurrence of <i>Aspergillus</i> Species and Aflatoxin Contamination in Raw and Roasted Peanuts from Formal and Informal Markets in Eldoret and Kericho Towns, Kenya. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/aim.2013.34047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|