1
|
Kaboutari M, Asle-Rousta M, Mahmazi S. Protective effect of menthol against thioacetamide-induced hepatic encephalopathy by suppressing oxidative stress and inflammation, augmenting expression of BDNF and α7-nACh receptor, and improving spatial memory. Eur J Pharmacol 2024; 981:176916. [PMID: 39154831 DOI: 10.1016/j.ejphar.2024.176916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric syndrome that can occur in people with acute or chronic liver disease. Here, we investigated the effects of menthol, a natural monoterpene, on HE induced by thioacetamide (TA) in male Wistar rats. The rats received 200 mg/kg of TA twice a week for four weeks and were administered 10 mg/kg of menthol intraperitoneally daily for the same period. The results showed that menthol treatment reduced oxidative stress and inflammation in the livers and hippocampi of the rats that received TA. It also lowered the levels of ammonium and liver enzymes AST, ALT, ALP, and GGT in the serum of these animals and prevented liver histopathological damage. In addition, the expression and activity of acetylcholinesterase in the hippocampus of HE model rats were decreased by menthol. Likewise, this monoterpene reduced the expression of TLR4, MyD88, and NF-κB in the hippocampus while increasing the expression of BDNF and α7-nACh receptor. Menthol also reduced neuronal death in the hippocampal cornu ammonis-1 and dentate gyrus regions and reduced astrocyte swelling, which led to improved learning and spatial memory in rats with HE. In conclusion, the study suggests that menthol may have strong protective effects on the liver and brain, making it a potential treatment for HE and neurodegenerative diseases.
Collapse
Affiliation(s)
- Masoud Kaboutari
- Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | | | - Sanaz Mahmazi
- Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
2
|
Kekana MTM, Mosuang TE, Ntsendwana B, Sikhwivhilu LM, Mahladisa MA. Notable synthesis, properties and chemical gas sensing trends on molybdenum disulphides and diselenides two-dimensional nanostructures: A critical review. CHEMOSPHERE 2024; 366:143497. [PMID: 39389376 DOI: 10.1016/j.chemosphere.2024.143497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
Evaluation of synthesis methods, notable properties, and chemical gas sensing properties of molybdenum disulphides and diselenides two-dimensional nanosheets is unfold. This is motivated by the fact that the two dichalcogenides have good sensitivity and selectivity to different harmful gases at ambient temperatures. Synthesis methods explored include exceptional top-down and bottom-up approaches, which consider physical and chemical compositional inceptions. Mechanical exfoliation in both molybdenum disulphides and diselenides nanosheets demonstrate good crystalline purity with structural alterations under varying stacking conditions. These chalcogenides exhibit low energy band gaps of ±1.80 eV for MoS2 and ±1.60 eV for MoSe2, which reduces with introduction of impurities. Thus, upon doping with other metal elements, a transformation from either n-type or p-type semiconductors is normally observed, leading to tuneable electronic properties. Thus, different gases such as methane, ethanol, toluene, ammonia, nitrogen oxide have been systematically detected using molybdenum disulphide and diselenide based thin films as sensing platforms. This review highlights structural, electronic and morphological characteristics of the two dichalcogenides which influences the sensitivity and selectivity ability for a couple of gases at ambient temperatures. The strategies for enhancing the selectivity by introducing defects, impurities and interfacing with other composites expanding the choice of these gases wider is also discussed in details. The review also provides overviews of challenges and limitations that open new research avenues to further enriching both chalcogenides as flexible, stable and cost effective state-of-the-art chemical gas sensors.
Collapse
Affiliation(s)
- M T M Kekana
- University of Limpopo, Department of Physics, Private Bag x1106, Sovenga, 0727, South Africa; Advanced Materials Division/MINTEK, Private Bag X3015, Randburg, 2125, Gauteng Province, South Africa
| | - T E Mosuang
- University of Limpopo, Department of Physics, Private Bag x1106, Sovenga, 0727, South Africa.
| | - B Ntsendwana
- Advanced Materials Division/MINTEK, Private Bag X3015, Randburg, 2125, Gauteng Province, South Africa
| | - L M Sikhwivhilu
- Advanced Materials Division/MINTEK, Private Bag X3015, Randburg, 2125, Gauteng Province, South Africa; Department of Chemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa.
| | - M A Mahladisa
- University of Limpopo, Department of Physics, Private Bag x1106, Sovenga, 0727, South Africa
| |
Collapse
|
3
|
Hossam Abdelmonem B, Abdelaal NM, Anwer EKE, Rashwan AA, Hussein MA, Ahmed YF, Khashana R, Hanna MM, Abdelnaser A. Decoding the Role of CYP450 Enzymes in Metabolism and Disease: A Comprehensive Review. Biomedicines 2024; 12:1467. [PMID: 39062040 PMCID: PMC11275228 DOI: 10.3390/biomedicines12071467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Cytochrome P450 (CYP450) is a group of enzymes that play an essential role in Phase I metabolism, with 57 functional genes classified into 18 families in the human genome, of which the CYP1, CYP2, and CYP3 families are prominent. Beyond drug metabolism, CYP enzymes metabolize endogenous compounds such as lipids, proteins, and hormones to maintain physiological homeostasis. Thus, dysregulation of CYP450 enzymes can lead to different endocrine disorders. Moreover, CYP450 enzymes significantly contribute to fatty acid metabolism, cholesterol synthesis, and bile acid biosynthesis, impacting cellular physiology and disease pathogenesis. Their diverse functions emphasize their therapeutic potential in managing hypercholesterolemia and neurodegenerative diseases. Additionally, CYP450 enzymes are implicated in the onset and development of illnesses such as cancer, influencing chemotherapy outcomes. Assessment of CYP450 enzyme expression and activity aids in evaluating liver health state and differentiating between liver diseases, guiding therapeutic decisions, and optimizing drug efficacy. Understanding the roles of CYP450 enzymes and the clinical effect of their genetic polymorphisms is crucial for developing personalized therapeutic strategies and enhancing drug responses in diverse patient populations.
Collapse
Affiliation(s)
- Basma Hossam Abdelmonem
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences & Arts (MSA), Giza 12451, Egypt
| | - Noha M. Abdelaal
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
| | - Eman K. E. Anwer
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 4411601, Egypt
| | - Alaa A. Rashwan
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
| | - Mohamed Ali Hussein
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Yasmin F. Ahmed
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Rana Khashana
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Mireille M. Hanna
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| |
Collapse
|
4
|
Allangawi A, Alsayed Jalal K, ayub K, Amjad Gilani M, Mahmood T. Chemical sensing ability of aminated graphdiyne (GDY-NH2) toward highly toxic organic volatile pollutants. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
5
|
Abdelaziz RR, Abdelrahman RS, Abdelmageed ME. SB332235, a CXCR2 antagonist, ameliorates thioacetamide-induced hepatic encephalopathy through modulation of the PI3K/AKT pathways in rats. Neurotoxicology 2022; 92:110-121. [PMID: 35961375 DOI: 10.1016/j.neuro.2022.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/27/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
Abstract
RATIONALE Hepatic encephalopathy (HE) is a neuropsychiatric disorder that results from either acute or chronic liver failure. CXCR2 plays an essential role in the pathophysiology of liver and brain diseases. In the present study, the potential beneficial effects of SB332235, a selective inhibitor of CXCR2, against HE were evaluated. METHODS HE was induced in male rats by thioacetamide injection (200 mg/kg, i.p.) at three alternative days. SB332235 was injected in rats 1 h before TAA at a dose of 1 and 3 mg/kg i.p. RESULTS SB332235 alleviated oxidative stress as shown by the decreased serum NO and reduced MDA, elevated GSH and SOD levels, and reduced TNF-α and NF-κB levels in both brain and liver tissues of rats. Additionally, SB332235 suppressed brain ASK-1, JNK, IL-8, and caspase-3 expression, and activated PI3K/AKT expression in brain tissues. Markers of brain dysfunction, such as ammonia, and markers of hepatic injury, such as LDH, albumin, bilirubin, γGT, AST, ALT, and ALP, were significantly ameliorated. Also, the protective effect of SB332235 was confirmed by histological examination of both brain and liver tissues. CONCLUSIONS Both doses (1 and 3 mg/kg) of SB332235 revealed significant hepatic/neuroprotective effects due to their anti-inflammatory, antioxidant, and antiapoptotic activities via activation of the PI3K/AKT pathway. Between the two, the 1 mg/kg dose provided significantly improved outcomes.
Collapse
Affiliation(s)
- Rania R Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Rehab S Abdelrahman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Taibah University, Al-Madina Al-Munawwarah, 30001, Saudi Arabia
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| |
Collapse
|
6
|
Shaban NZ, Zaki MM, Koutb F, Abdul-Aziz AA, Elshehawy AAH, Mehany H. Protective and therapeutic role of mango pulp and eprosartan drug and their anti-synergistic effects against thioacetamide-induced hepatotoxicity in male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51427-51441. [PMID: 35244847 PMCID: PMC9288381 DOI: 10.1007/s11356-022-19383-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/20/2022] [Indexed: 04/15/2023]
Abstract
The present study was done to evaluate the protective and therapeutic role of mango pulp (M), eprosartan drug (E), and their co-administration (EM) against hepatotoxicity induced by thioacetamide (T). Seven groups of rats were prepared as follows: the control (C) group (normal rats), T group (the rats were injected with T), T-M group (the rats were injected with T, and then treated with M), T-E group (the rats were injected with T, and then treated with E), T-EM group (the rats were injected with T, and then treated with E and M), M-TM-M group (the rats were administered with M before, during, and after T injection), and M group (the healthy rats were administered with M only). Firstly, the characterizations of M were determined. Also, the markers of hepatic oxidative stress [malondialdehyde (MDA) and glutathione (GSH) levels and the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GSR)], inflammation and fibrosis [(tumor necrosis factor-α (TNF-α) and platelet-derived growth factor-BB (PDGF-BB) levels and gene expression of transforming growth factor-beta1(TGF-β1)], and liver functions and microscopic examination were evaluated. The present results revealed that M contains 419 ± 1.04 μg total phenolics as gallic acid equivalent and 6.8 ± 0.05 μg total flavonoids as quercetin equivalent. The analysis of phenolics and flavonoids showed the presence of chlorogenic, caffeic, 2,5-dihydroxy benzoic, 3,5-dicaffeoylquinic, 4,5-dicaffeoylquinic, tannic, cinnamic acidS, and catechin, phloridzin, and quercetin with different concentrations. Also, M contains various minerals with different concentrations involving potassium, calcium, magnesium, sodium, iron, copper, zinc, and manganese. The current results showed that the total antioxidant capacity of 1 g of M was 117.2 ± 1.16 as μg ascorbic acid equivalent. Our biochemical studies showed that all treatments significantly reduced T-induced hepatotoxicity and liver injuries, as the oxidative stress and inflammatory and fibrotic markers were diminished where MDA level and the activities of GST, GSSG, and GR were decreased when compared with T group. In contrast, GSH level and the activities of SOD and GPx and GSH/GSSG ratio were increased. In addition, TNF-α and PDGF-BB levels were reduced, and the gene expression of TGF-β1 was down-regulated. Consequently, the liver functions were significantly improved. In conclusion, each E, M, and EM has a therapeutic effect against T-induced hepatotoxicity via the reduction of the OS, inflammation, and fibrosis. Unfortunately, treatment with M and E simultaneously revealed the less effectiveness than the treatment with M or E demonstrates the presence of anti-synergistic effect between them. Additionally, M-TM-M treatment showed a better effect than T-M treatment against T-induced hepatotoxicity revealing the prophylactic role of M. The administration of healthy rats with M for 12 weeks has no side effect.
Collapse
Affiliation(s)
- Nadia Zaki Shaban
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Mohammad Mohammad Zaki
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Fayed Koutb
- Nucleic Acid Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Ahmed Alaa Abdul-Aziz
- Endocrinology Unit, Department of Internal Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | - Hany Mehany
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| |
Collapse
|
7
|
Rashidi R, Rezaee R, Shakeri A, Hayes AW, Karimi G. A review of the protective effects of chlorogenic acid against different chemicals. J Food Biochem 2022; 46:e14254. [PMID: 35609009 DOI: 10.1111/jfbc.14254] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/17/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022]
Abstract
Chlorogenic acid (CGA) is a naturally occurring non-flavonoid polyphenol found in green coffee beans, teas, certain fruits, and vegetables, that exerts antiviral, antitumor, antibacterial, and antioxidant effects. Several in vivo and in vitro studies have demonstrated that CGA can protect against toxicities induced by chemicals of different classes such as fungal/bacterial toxins, pharmaceuticals, metals, pesticides, etc., by preservation of cell survival via reducing overproduction of nitric oxide and reactive oxygen species and suppressed pro-apoptotic signaling. CGA antioxidant effects mediated through the Nrf2-heme oxygenase-1 signaling pathway were shown to enhance the levels of antioxidant enzymes such as superoxide dismutase, catalase, glutathione-S-transferases, glutathione peroxidase, and glutathione reductase as well as glutathione content. Also, CGA could suppress inflammation via inhibition of toll-like receptor 4 and MyD88, and the phosphorylation of inhibitor of kappa B and p65 subunit of NF-κB, resulting in diminished levels of downstream inflammatory factors including interleukin (IL)-1 β, IL-6, tumor necrosis factor-α, macrophage inflammatory protein 2, cyclooxygenase-2, and prostaglandin E2. Moreover, CGA inhibited apoptosis by reducing Bax, cytochrome C, and caspase 3 and 9 expression while increasing Bcl-2 levels. The present review discusses several mechanisms through which CGA may exert its protective role against such agents. Chemical and natural toxic agents affect human health. Phenolic antioxidant compounds can suppress free radical production and combat these toxins. Chlorogenic acid is a plant polyphenol present in the human diet and exerts strong antioxidant properties that can effectively help in the treatment of various toxicities.
Collapse
Affiliation(s)
- Roghayeh Rashidi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Florida, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Cheng L, Li Y, Yao Y, Jin X, Ying H, Xu B, Xu J. Toxic Effects of Thioacetamide-Induced Femoral Damage in New Zealand White Rabbits by Activating the p38/ERK Signaling Pathway. Physiol Res 2022; 71:285-295. [DOI: 10.33549/physiolres.934803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Thioacetamide (TAA) is widely used in the production of drugs, pesticides and dyeing auxiliaries. Moreover, it is a chemical that can cause liver damage and cancer. TAA has recently been identified to cause bone damage in animal models. However, the type of bone damage that TAA causes and its potential pathogenic mechanisms remain unclear. The toxic effects of TAA on the femurs of New Zealand white rabbits and the underlying toxicity mechanism were investigated in this study. Serum samples, the heart, liver, kidney and femurs were collected from rabbits after intraperitoneal injection of TAA for 5 months (100 and 200 mg/kg). The New Zealand white rabbits treated with TAA showed significant weight loss and femoral shortening. The activities of total bilirubin, total bile acid and gamma-glutamyl transpeptidase in the serum were increased following treatment with TAA. In addition, the cortical bone became thinner, and the trabecular thickness decreased significantly in TAA-treated rabbits, which was accompanied by significantly decreased mineral density of the cortical and trabecular bone. Moreover, there was a significant decrease in modulus of elasticity and maximum load on bone stress in TAA-treated rabbits. The western blotting results showed that the expression of phosphorylated (p)-p38 and p-ERK in femur tissues of rabbits were increased after TAA administration. Collectively, these results suggested that TAA may lead to femoral damage in rabbits by activating the p38/ERK signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - J Xu
- School of Medical Technology and Information Engineering, Zhejiang, Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China, e-mail:
| |
Collapse
|
9
|
Investigation of the protective and therapeutic effects of thiamine in thioacetamide-induced liver injury. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01062-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
El-Fadaly AA, Afifi NA, El-Eraky W, Salama A, Abdelhameed MF, El-Rahman SSA, Ramadan A. Fisetin alleviates thioacetamide-induced hepatic fibrosis in rats by inhibiting Wnt/β-catenin signaling pathway. Immunopharmacol Immunotoxicol 2022; 44:355-366. [PMID: 35255766 DOI: 10.1080/08923973.2022.2047198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Liver fibrosis is a chronic wound-healing response to liver injury of various origins and represents a major health problem. OBJECTIVE The current study endeavored to investigate the repressing effect of fisetin on hepatic fibrosis induced by thioacetamide (TAA) in rats. MATERIALS AND METHODS Rats were injected with TAA (200 mg/kg) intraperitoneally twice per week for 6 weeks to induce liver fibrosis. Fisetin (50 and 100 mg/kg/day) or silymarin (50 mg/kg/day) were given orally on a daily basis along with TAA. Liver function parameters, oxidative stress, inflammatory and fibrogenic biomarkers as well as wnt3a, β-catenin, glycogen synthase kinase 3 (GSK-3β) and cyclin D1 were estimated. Histoapthological and immunohistochemical examinations were performed. RESULTS Fisetin restored normal liver functions, increased reduced glutathione (GSH) level and decreased malondialdehyde (MDA), as well as inflammatory biomarkers including; tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6). Additionally, it lessened transforming growth factor β1 (TGF-β1), collagen I and tissue inhibitor of metalloproteinase-1 (TIMP-1) levels as well as elevated matrix metalloproteinase-9 (MMP-9) hepatic content. Furthermore, fisetin significantly suppressed wnt3a gene expression associated with decreased β-catenin and increased GSK-3β levels. Moreover, fisetin decreased the progress of histologic hepatic fibroplasia and diminished hepatic expression of α-SMA and cyclin D1. CONCLUSION Fisetin curbed liver fibrosis and exhibited superior activity over silymarin through inhibition of hepatic stellate cells (HSCs) activation and proliferation via suppressing the Wnt/β-catenin pathway, modulating MMP-9 and TIMP-1, and inhibiting multiple profibrogenic factors, besides its antioxidant and anti-inflammatory effects. Therefore, fisetin is a promising therapeutic candidate for hepatic fibrosis.
Collapse
Affiliation(s)
| | - Nehal A Afifi
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Wafaa El-Eraky
- Department of Pharmacology, National Research Centre, Cairo, Egypt
| | - Abeer Salama
- Department of Pharmacology, National Research Centre, Cairo, Egypt
| | | | - Sahar S Abd El-Rahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - A Ramadan
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
11
|
Protocatechuic acid protects against thioacetamide-induced chronic liver injury and encephalopathy in mice via modulating mTOR, p53 and the IL-6/ IL-17/ IL-23 immunoinflammatory pathway. Toxicol Appl Pharmacol 2022; 440:115931. [PMID: 35202709 DOI: 10.1016/j.taap.2022.115931] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/28/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
Abstract
Protocatechuic acid (PCA), a natural phenolic acid, is known for antioxidant, anti-inflammatory, anti-apoptotic, and anti-fibrotic activities. However, the protective mechanisms of PCA on thioacetamide (TAA)-induced liver/brain injury are not well addressed. Chronic liver injury was induced in mice by intraperitoneal injection of TAA (200 mg/kg, 3 times/week) for 8 weeks. Simultaneously, PCA (100, 150 mg/kg/day, p.o.) was given daily from the 4th week. Protocatechuic acid ameliorated liver and brain damage indicated by the decrease in serum activities of aminotransferases, gamma-glutamyl transferase, alkaline phosphatase, lactate dehydrogenase, levels of bilirubin, and ammonia concomitant with restoration of normal albumin levels. Additionally, PCA treatment ameliorated oxidative stress in liver and brain, confirmed by the decrease in malondialdehyde and nitric oxide levels and the increase in antioxidant activities. Moreover, PCA showed anti-inflammatory actions through downregulation of TNF-α expression in the liver and IL-6/IL-17/IL-23 levels in the brain, which is confirmed by the decrease in CD4+ T brain cell numbers. Most importantly, PCA treatment showed a significant decrease in mTOR level and number of LC3 positive cells in both liver and brain tissues. Consequently, PCA could inhibit mTOR-induced apoptosis, as it showed anti-apoptotic actions through downregulation of caspase-3 expression in liver and p53 expression in liver and brain. Furthermore, liver and brain tissues of treated mice showed restoration of normal histology. It can be concluded that, several mechanisms, including: antioxidant, anti-inflammatory, anti-autophagic and anti-apoptotic activities can be implicated in the hepato- and neuroprotective potentials of PCA.
Collapse
|
12
|
Anaeigoudari A. Hepato- and reno-protective effects of thymoquinone, crocin, and carvacrol: A comprehensive review. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.343386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
13
|
Gu CY, Lee TKW. Preclinical mouse models of hepatocellular carcinoma: An overview and update. Exp Cell Res 2022; 412:113042. [DOI: 10.1016/j.yexcr.2022.113042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 11/29/2022]
|
14
|
Hefler J, Marfil-Garza BA, Pawlick RL, Freed DH, Karvellas CJ, Bigam DL, Shapiro AMJ. Preclinical models of acute liver failure: a comprehensive review. PeerJ 2021; 9:e12579. [PMID: 34966588 PMCID: PMC8667744 DOI: 10.7717/peerj.12579] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Acute liver failure is marked by the rapid deterioration of liver function in a previously well patient over period of days to weeks. Though relatively rare, it is associated with high morbidity and mortality. This makes it a challenging disease to study clinically, necessitating reliance on preclinical models as means to explore pathophysiology and novel therapies. Preclinical models of acute liver failure are artificial by nature, and generally fall into one of three categories: surgical, pharmacologic or immunogenic. This article reviews preclinical models of acute liver failure and considers their relevance in modeling clinical disease.
Collapse
Affiliation(s)
- Joshua Hefler
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Braulio A Marfil-Garza
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.,National Institutes of Medical Sciences & Nutrition Salvador Zubiran, Mexico City, Mexico.,CHRISTUS-LatAm Hub Excellence & Innovation Center, Monterrey, Mexico
| | - Rena L Pawlick
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Darren H Freed
- Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Constantine J Karvellas
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Department of Critical Care Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - David L Bigam
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - A M James Shapiro
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Migdał M, Tralle E, Nahia KA, Bugajski Ł, Kędzierska KZ, Garbicz F, Piwocka K, Winata CL, Pawlak M. Multi-omics analyses of early liver injury reveals cell-type-specific transcriptional and epigenomic shift. BMC Genomics 2021; 22:904. [PMID: 34920711 PMCID: PMC8684102 DOI: 10.1186/s12864-021-08173-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Background Liver fibrosis is a wound-healing response to tissue injury and inflammation hallmarked by the extracellular matrix (ECM) protein deposition in the liver parenchyma and tissue remodelling. Different cell types of the liver are known to play distinct roles in liver injury response. Hepatocytes and liver endothelial cells receive molecular signals indicating tissue injury and activate hepatic stellate cells which produce ECM proteins upon their activation. Despite the growing knowledge on the molecular mechanism underlying hepatic fibrosis in general, the cell-type-specific gene regulatory network associated with the initial response to hepatotoxic injury is still poorly characterized. Results In this study, we used thioacetamide (TAA) to induce hepatic injury in adult zebrafish. We isolated three major liver cell types - hepatocytes, endothelial cells and hepatic stellate cells - and identified cell-type-specific chromatin accessibility and transcriptional changes in an early stage of liver injury. We found that TAA induced transcriptional shifts in all three cell types hallmarked by significant alterations in the expression of genes related to fatty acid and carbohydrate metabolism, as well as immune response-associated and vascular-specific genes. Interestingly, liver endothelial cells exhibit the most pronounced response to liver injury at the transcriptome and chromatin level, hallmarked by the loss of their angiogenic phenotype. Conclusion Our results uncovered cell-type-specific transcriptome and epigenome responses to early stage liver injury, which provide valuable insights into understanding the molecular mechanism implicated in the early response of the liver to pro-fibrotic signals. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08173-1.
Collapse
|
16
|
Kitte SA, Bushira FA, Li H, Jin Y. Electrochemiluminescence of Ru(bpy) 32+/thioacetamide and its application for the sensitive determination of hepatotoxic thioacetamide. Analyst 2021; 146:5198-5203. [PMID: 34308456 DOI: 10.1039/d1an00862e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Thioacetamide (TAA) is a well-known hepatotoxic substance, so it is important to determine its presence and content in food and environmental samples. Herein, we report a highly sensitive determination method for TAA based on the electrochemiluminescence (ECL) of tris(2,2'-bipyridyl)ruthenium(ii) (Ru(bpy)32+) for the first time by using TAA as a new coreactant for Ru(bpy)32+ ECL via an anodic route. The developed Ru(bpy)32+-TAA ECL system allows the determination of TAA with a good dynamic linear range and low limit of detection (LOD) of 0.1 μM to 1000 μM and 0.035 μM (3σ/m), respectively. In addition, the established ECL system can be applied to detect TAA in fruit juice and waste water samples with outstanding recoveries.
Collapse
Affiliation(s)
- Shimeles Addisu Kitte
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and Department of Chemistry, College of Natural Sciences, Jimma University, P. O. Box 378, Jimma, Ethiopia
| | - Fuad Abduro Bushira
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and Department of Chemistry, College of Natural Sciences, Jimma University, P. O. Box 378, Jimma, Ethiopia and University of Science and Technology of China, Hefei 230026, P. R. China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
17
|
Elnfarawy AA, Nashy AE, Abozaid AM, Komber IF, Elweshahy RH, Abdelrahman RS. Vinpocetine attenuates thioacetamide-induced liver fibrosis in rats. Hum Exp Toxicol 2021; 40:355-368. [PMID: 32840391 DOI: 10.1177/0960327120947453] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Liver fibrosis is associated with increased mortality and morbidity. However, there is not effective treatment so far. Vinpocetine (Vinpo) is a synthetic derivative of vinca alkaloid vincamine. Limited previous reports have shown some beneficial effects of Vinpo in different organ fibrosis, but the ability of Vinpo to inhibit liver fibrosis induced by thioacetamide (TAA) has not been reported, that is why we investigate the potential ability of this vinca alkaloid derivative to attenuate liver fibrosis. Hepatic fibrosis was induced in male Sprague Dawley rats by TAA (200 mg/kg; ip; 3 times/week) for 6 weeks. Daily treatments with Vinpo (10-20 mg/kg/day; orally) ameliorated TAA-induced hepatic oxidative stress and histopathological damage as indicated by a decrease in liver injury markers, LDH, hepatic MDA, and NOx levels, as well as increase anti-oxidative parameters. Besides, the anti-fibrotic efficacy of Vinpo was confirmed by decreasing hydroxyproline, and α-SMA. Also, the anti-inflammatory effect of Vinpo was explored by decreasing IL-6 and TNF-α levels. Our novel findings were that Vinpo decreased VEGF/Ki-67 expression in the liver confirming its effect on angiogenesis and proliferation. These findings reveal the anti-fibrotic effect of Vinpo against TAA-induced liver fibrosis in rats, and suggest the modulation of oxidative stress, inflammation, angiogenesis and proliferation as mechanistic cassette underlines this effect.
Collapse
Affiliation(s)
| | - Asmaa E Nashy
- 158395Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Alaa M Abozaid
- 158395Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | | | | | - Rehab S Abdelrahman
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madina Al-Munawwarah, Saudi Arabia
- Department of Pharmacology and Toxicology, 158395Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt
| |
Collapse
|
18
|
Martin DF, Bisht KS. Lead removal by ThioOctolig. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 56:157-160. [PMID: 33284726 DOI: 10.1080/10934529.2020.1854567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Octolig, a commercially available (a polyethylene diamine covalently attached to silica gel), was subjected to modifications to incorporate sulfur for enhanced removal of lead ion from aqueous solutions. The basic approach was attempted formation of "ThioOctolig" by the reaction of Octolig with thioacetamide in toluene using a shaker bath for 24 or 48 h or in the presence of 10% HCl (1 h). Our experience was that conversion was limited to about 20% based on sulfur analysis for 24 or 48 h reaction time, or in the presence of 10% HCl. In fact, with acidification, the results were poorer. Duplicate runs indicated consistent results. Literature reported that SbCl3 was an effective catalyst with a reaction time of 1 h. Use of this reagent (1-h reaction time) produced a bright orange red product, in contrast with previous yellow-colored products. A control run indicated that this reagent reacted with Octolig in toluene (in the dark) to produce a red-colored sample; thioacetamide reacted to produce a yellow sample. Use of SbCl3 (∼5 mole %) did not enhance the sulfur content of Octolig. A sample of Octolig removed 68% lead ion from a 120 ppm aqueous lead while a sample of ThioOctolig (10% S) removed 99.4% lead ions. We also investigated enhancing the sulfur incorporation upon raising the reaction temperature with thioacetamide.
Collapse
Affiliation(s)
- Dean F Martin
- Department of Chemistry, University of South Florida, Tampa, Florida, USA
| | - Kirpal S Bisht
- Department of Chemistry, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
19
|
Koblihová E, Mrázová I, Vaňourková Z, Maxová H, Ryska M, Froněk J. Sex-linked differences in the course of thioacetamide-induced acute liver failure in Lewis rats. Physiol Res 2020; 69:835-845. [PMID: 32901492 DOI: 10.33549/physiolres.934499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Acute liver failure (ALF) is a clinical syndrome with high mortality rate, resulting from widespread hepatocyte damage. Its pathophysiological background is still poorly understood and preclinical studies evaluating pathophysiology and new potential therapeutic measures are needed. The model of ALF induced by administration of thioacetamide (TAA) in Lewis rats is recommended as optimal; however, the limitation of previous studies was that they were performed predominantly in male rats. In view of the growing recognition that sex as a biological variable should be taken into consideration in preclinical research, we examined its role in the development of TAA-induced ALF in Lewis rats. We found that, first, intact male Lewis rats showed lower survival rate than their female counterparts, due to augmented liver injury documented by higher plasma ammonia, and bilirubin levels and alanine aminotransferase activity. Second, in female rats castration did not alter the course of TAA-induced ALF whereas in the male gonadectomy improved the survival rate and attenuated liver injury, reducing it to levels observed in their female counterparts. In conclusion, we found that Lewis rats show a remarkable sexual dimorphism with respect to TAA-induced ALF, and male rats display dramatically poorer prognosis as compared with the females. We showed that testosterone is responsible for the deterioration of the course of TAA-induced ALF in male rats. In most general terms, our findings indicate that in the preclinical studies of the pathophysiology and treatment of ALF (at least of the TAA-induced form) the sex-linked differences should be seriously considered.
Collapse
Affiliation(s)
- E Koblihová
- Department of Surgery, Second Faculty of Medicine, Charles University and Central Military Hospital, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
20
|
Design and evaluation of bioenhanced oral tablets of Dunaliella salina microalgae for treatment of liver fibrosis. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Nevzorova YA, Boyer-Diaz Z, Cubero FJ, Gracia-Sancho J. Animal models for liver disease - A practical approach for translational research. J Hepatol 2020; 73:423-440. [PMID: 32330604 DOI: 10.1016/j.jhep.2020.04.011] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
Animal models are crucial for improving our understanding of human pathogenesis, enabling researchers to identify therapeutic targets and test novel drugs. In the current review, we provide a comprehensive summary of the most widely used experimental models of chronic liver disease, starting from early stages of fatty liver disease (non-alcoholic and alcoholic) to steatohepatitis, advanced cirrhosis and end-stage primary liver cancer. We focus on aspects such as reproducibility and practicality, discussing the advantages and weaknesses of available models for researchers who are planning to perform animal studies in the near future. Additionally, we summarise current and prospective models based on human tissue bioengineering.
Collapse
Affiliation(s)
- Yulia A Nevzorova
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University, Madrid, Spain; 12 de Octubre Health Research Institute (imas12), Madrid, Spain; Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Zoe Boyer-Diaz
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Unit, IDIBAPS Biomedical Research Institute, Barcelona, Spain; Barcelona Liver Bioservices, Barcelona, Spain
| | - Francisco Javier Cubero
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain; Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain.
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Unit, IDIBAPS Biomedical Research Institute, Barcelona, Spain; Barcelona Liver Bioservices, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; Hepatology, Department of Biomedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
22
|
Memon A, Pyao Y, Jung Y, Lee JI, Lee WK. A Modified Protocol of Diethylnitrosamine Administration in Mice to Model Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:ijms21155461. [PMID: 32751728 PMCID: PMC7432842 DOI: 10.3390/ijms21155461] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022] Open
Abstract
We aimed to create an animal model for hepatocellular carcinoma (HCC) with a short time, a high survival rate, as well as a high incidence of HCC in both males and females than previously reported. The Diethylnitrosamine (DEN) model has an age-related effect. A single dose of DEN treatment is not enough in young mice up to 50 weeks. The same pattern is shown in an adult with multiple-dose trials whether or not there is some promotion agent. In this study, two-week old C57BL6 mice were given a total of eight doses of DEN, initially 20mg/kg body weight, and then 30mg/kg in the third week, followed by 50mg/kg for the last six weeks. The first group is DEN treatment only and the other two groups received thioacetamide (TAA) treatment for four or eight weeks after one week of rest from the last DEN treatment. An autopsy was performed after 24 weeks of the initial dose of DEN in each group. The cellular arrangement of HCC in the entire group was well-differentiated carcinoma and tumor presence with no significant impact on the survival of mice. Increased levels of the biochemical markers in serum, loss of tissue architecture, hepatocyte death, and proliferation were highly activated in all tumor-induced groups. This finding demonstrates an improved strategy to generate an animal model with a high occurrence of tumors combined with cirrhosis in a short time regardless of sex for researchers who want to investigate liver cancer-related.
Collapse
Affiliation(s)
- Azra Memon
- Department of Biomedical Sciences, School of Medicine, Inha University, Incheon 22212, Korea; (A.M.); (Y.P.); (Y.J.)
| | - Yuliya Pyao
- Department of Biomedical Sciences, School of Medicine, Inha University, Incheon 22212, Korea; (A.M.); (Y.P.); (Y.J.)
| | - Yerin Jung
- Department of Biomedical Sciences, School of Medicine, Inha University, Incheon 22212, Korea; (A.M.); (Y.P.); (Y.J.)
| | - Jung Il Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Woon Kyu Lee
- Department of Biomedical Sciences, School of Medicine, Inha University, Incheon 22212, Korea; (A.M.); (Y.P.); (Y.J.)
- Correspondence: ; Tel.:+82-32-860-9882; Fax: +82-32-885-8302
| |
Collapse
|
23
|
Kamimoto K, Nakano Y, Kaneko K, Miyajima A, Itoh T. Multidimensional imaging of liver injury repair in mice reveals fundamental role of the ductular reaction. Commun Biol 2020; 3:289. [PMID: 32503996 PMCID: PMC7275065 DOI: 10.1038/s42003-020-1006-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
Upon severe and/or chronic liver injury, ectopic emergence and expansion of atypical biliary epithelial-like cells in the liver parenchyma, known as the ductular reaction, is typically induced and implicated in organ regeneration. Although this phenomenon has long been postulated to represent activation of facultative liver stem/progenitor cells that give rise to new hepatocytes, recent lineage-tracing analyses have challenged this notion, thereby leaving the pro-regenerative role of the ductular reaction enigmatic. Here, we show that the expanded and remodelled intrahepatic biliary epithelia in the ductular reaction constituted functional and complementary bile-excreting conduit systems in injured parenchyma where hepatocyte bile canalicular networks were lost. The canalicular collapse was an incipient defect commonly associated with hepatocyte injury irrespective of cholestatic statuses, and could sufficiently provoke the ductular reaction when artificially induced. We propose a unifying model for the induction of the ductular reaction, where compensatory biliary epithelial tissue remodeling ensures bile-excreting network homeostasis. Kenji Kamimoto et al. use multidimensional imaging technologies to study changes in the mouse biliary system following liver injury. They find an unexpected role of the ductular reaction – the process of ectopic expansion of biliary-like cells following liver injury – in restoring functional biliary structures in injured livers.
Collapse
Affiliation(s)
- Kenji Kamimoto
- Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.,Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Yasuhiro Nakano
- Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Kota Kaneko
- Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.,Department of Pathology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Atsushi Miyajima
- Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Tohru Itoh
- Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
24
|
Mousa AA, El-Gansh HAI, Eldaim MAA, Mohamed MAEG, Morsi AH, El Sabagh HS. Protective effect of Moringa oleifera leaves ethanolic extract against thioacetamide-induced hepatotoxicity in rats via modulation of cellular antioxidant, apoptotic and inflammatory markers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:32488-32504. [PMID: 31617137 DOI: 10.1007/s11356-019-06368-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 08/29/2019] [Indexed: 05/16/2023]
Abstract
The current study was conducted to evaluate the ameliorative and protective potentials of Moringea oleifera leaves ethanolic extract (MOLE) against thioacetamide (TAA) toxicity. A total of 58 male albino rats were randomly assigned into six experimental groups. G1, rats received distilled water. G2, rats were injected with a single dose of TAA (200 mg/kg BW) i.p. G3, rats were given MOLE (300 mg/kg BW) orally for 26 days. G4, rats were injected TAA as in G2 and treated with MOLE as G3. G5, rats were kept for 26 days without treatment then on day 27 injected with TAA as in G2. G6, rats were given MOLE for 26 days then on day 27 injected with TAA. Phytochemical analysis of MOLE indicated the presence of kaempferol, kaempferol malonylglucoside, kaempferol hexoside, kaempferol -3-O-glucoside, kaempferol-3-O-acetyl-glucoside, cyanidin -3-O-hexoside, ellagic acid, quercetin, quercetin-3-O-glucoside, and apigenin glucoside. Intoxication of rats with TAA significantly elevated activities of serum AST, ALT, and ALP; concentrations of malondialdehyde, nitric oxide, and hepatic tissue protein expression of caspase 3 and COX2 with alteration of the histological structures of hepatic tissues, while it decreased serum levels of total protein, albumin, and hepatic tissue contents of reduced glutathione. Also, TAA intoxication resulted in 62.5% mortality in rats of G5. Treatment of TAA intoxicated rats (G4) with MOLE ameliorated the toxic effects of TAA on hepatic tissue structure and function. It decreased serum activities of AST, ALT, and ALP; enhanced hepatic GSH concentration; reduced pathological alterations and lipid peroxidation; and downregulated caspase 3 and COX2 proteins expression in hepatic tissue. In addition, MOLE protected rats of G6 from TAA-induced hepatic tissues injury and dysfunction, and increased survival rate of rats. In conclusion, MOLE had both ameliorating and protecting potentials against TAA-induced rats liver damage through regulation of antioxidant, anti-apoptotic, and inflammatory biomarkers. Graphical abstract.
Collapse
Affiliation(s)
- Ahmed Abdelmoniem Mousa
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia, 32897, Egypt
| | - Hala Ali Ibrahim El-Gansh
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia, 32897, Egypt
| | - Mabrouk Attia Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menoufia University, Shebin Elkom, Menoufia, Egypt.
| | | | - Azza Hassan Morsi
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Hesham Saad El Sabagh
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia, 32897, Egypt
| |
Collapse
|
25
|
Estrogen Deficiency Potentiates Thioacetamide-Induced Hepatic Fibrosis in Sprague-Dawley Rats. Int J Mol Sci 2019; 20:ijms20153709. [PMID: 31362375 PMCID: PMC6696236 DOI: 10.3390/ijms20153709] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/28/2019] [Accepted: 07/28/2019] [Indexed: 12/15/2022] Open
Abstract
Hepatic fibrosis is characterized by persistent deposition of extracellular matrix proteins and occurs in chronic liver diseases. The aim of the present study is to investigate whether estrogen deficiency (ED) potentiates hepatic fibrosis in a thioacetamide (TAA)-treated rat model. Fibrosis was induced via intraperitoneal injection (i.p.) of TAA (150 mg/kg/day) for four weeks in ovariectomized (OVX) female, sham-operated female, or male rats. In TAA-treated OVX rats, the activities of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and γ-glutamyl transferase (GGT) were significantly increased compared to those in TAA-treated sham-operated OVX rats or TAA-treated male rats. Furthermore, α-smooth muscle actin (α-SMA) expression was significantly increased compared to that in TAA-treated sham-operated rats. This was accompanied by the appearance of fibrosis biomarkers including vimentin, collagen-I, and hydroxyproline, in the liver of TAA-treated OVX rats. In addition, ED markedly reduced total glutathione (GSH) levels, as well as catalase (CAT) and superoxide dismutase (SOD) activity in TAA-treated OVX rats. In contrast, hepatic malondialdehyde (MDA) levels were elevated in TAA-treated OVX rats. Apoptosis significantly increased in TAA-treated OVX rats, as reflected by elevated p53, Bcl-2, and cleaved caspase 3 levels. Significant increases in interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) concentrations were exhibited in TAA-treated OVX rats, and this further aggravated fibrosis through the transforming growth factor-β (TGF-β)/Smad pathway. Our data suggest that ED potentiates TAA-induced oxidative damage in the liver, suggesting that ED may enhance the severity of hepatic fibrosis in menopausal women.
Collapse
|
26
|
Urrutia-Hernández TA, Santos-López JA, Benedí J, Sánchez-Muniz FJ, Velázquez-González C, De la O-Arciniega M, Jaramillo-Morales OA, Bautista M. Antioxidant and Hepatoprotective Effects of Croton hypoleucus Extract in an Induced-Necrosis Model in Rats. Molecules 2019; 24:molecules24142533. [PMID: 31373296 PMCID: PMC6680924 DOI: 10.3390/molecules24142533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to evaluate the antioxidant and hepatoprotective activity of Croton hypoleucus (EC). The present work reports the first pharmacological, toxicological, and antioxidant studies of EC extract on liver injury. Liver necrosis was induced by thioacetamide (TAA). Five groups were established: Croton Extract (EC), thioacetamide (TAA), Croton extract with thioacetamide (EC + TAA), vitamin E with thioacetamide (VE + TAA) and the positive control and vehicle (CT). For EC and EC + TAA, Wistar rats (n = 8) were intragastrically pre-administered for 4 days with EC (300 mg/kg.day) and on the last day, EC + TAA received a single dose of TAA (400 mg/kg). At 24 h after damage induction, animals were sacrificed. In vitro activity and gene expression of superoxide dismutase (SOD), catalase (Cat), and Nrf2 nuclear factor were measured. The results show that EC has medium antioxidant properties, with an IC50 of 0.63 mg/mL and a ferric-reducing power of 279.8 µM/mg. Additionally, EC reduced hepatic damage markers at 24 h after TAA intoxication; also, it increased SOD and Cat gene expression against TAA by controlling antioxidant defense levels. Our findings demonstrated the hepatoprotective effect of EC by reducing hepatic damage markers and controlling antioxidant defense levels. Further studies are necessary to identify the mechanism of this protection.
Collapse
Affiliation(s)
- Thania Alejandra Urrutia-Hernández
- Área Académica de Farmacia, Universidad Autónoma del Estado de Hidalgo, Mariano Abasolo 600, Colonia Centro, Pachuca, Hidalgo CP 42000, Mexico
| | - Jorge Arturo Santos-López
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal S/N, 28040 Madrid, Espana
| | - Juana Benedí
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal S/N, 28040 Madrid, Espana
| | - Francisco Jose Sánchez-Muniz
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal S/N, 28040 Madrid, Espana
| | - Claudia Velázquez-González
- Área Académica de Farmacia, Universidad Autónoma del Estado de Hidalgo, Mariano Abasolo 600, Colonia Centro, Pachuca, Hidalgo CP 42000, Mexico
| | - Minarda De la O-Arciniega
- Área Académica de Farmacia, Universidad Autónoma del Estado de Hidalgo, Mariano Abasolo 600, Colonia Centro, Pachuca, Hidalgo CP 42000, Mexico
| | - Osmar Antonio Jaramillo-Morales
- Área Académica de Farmacia, Universidad Autónoma del Estado de Hidalgo, Mariano Abasolo 600, Colonia Centro, Pachuca, Hidalgo CP 42000, Mexico
| | - Mirandeli Bautista
- Área Académica de Farmacia, Universidad Autónoma del Estado de Hidalgo, Mariano Abasolo 600, Colonia Centro, Pachuca, Hidalgo CP 42000, Mexico
| |
Collapse
|
27
|
Qinna NA, Ghanim BY. Chemical induction of hepatic apoptosis in rodents. J Appl Toxicol 2018; 39:178-190. [PMID: 30350376 DOI: 10.1002/jat.3740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022]
Abstract
The urge of identifying new pharmacological interventions to prevent or attenuate liver injury is of critical importance and needs an expanded experimental toolbox. Hepatocyte injury and cellular death is a prominent feature behind the pathology of liver diseases. Several research activities focused on identifying chemicals and hepatotoxicants that induce cell death by apoptosis, in addition to presenting its corresponding signaling pathway. Although such efforts provided further understanding of the mechanisms of cell death, it has also raised confusion concerning identifying the involvement of several modes of cell death including apoptosis, necrosis and fibrosis. The current review highlights the ability of several chemicals and potential hepatotoxicants to induce liver damage in rodents by means of apoptosis while the probable involvement of other modes of cell death is also exposed. Thus, several chemical substances including hepatotoxins, mycotoxins, hyperglycemia inducers, metallic nanoparticles and immunosuppressant drugs are reviewed to explore the hepatic cytotoxic spectrum they could exert on hepatocytes of rodents. In addition, the current review address the mechanism by which hepatotoxicity is initiated in hepatocytes in different rodents aiding the researcher in choosing the right animal model for a better research outcome.
Collapse
Affiliation(s)
- Nidal A Qinna
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Bayan Y Ghanim
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| |
Collapse
|
28
|
Nematallah KA, Ayoub NA, Abdelsattar E, Meselhy MR, Elmazar MM, El-Khatib AH, Linscheid MW, Hathout RM, Godugu K, Adel A, Mousa SA. Polyphenols LC-MS2 profile of Ajwa date fruit (Phoenix dactylifera L.) and their microemulsion: Potential impact on hepatic fibrosis. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
29
|
Eissa LA, Kenawy HI, El-Karef A, Elsherbiny NM, El-Mihi KA. Antioxidant and anti-inflammatory activities of berberine attenuate hepatic fibrosis induced by thioacetamide injection in rats. Chem Biol Interact 2018; 294:91-100. [PMID: 30138605 DOI: 10.1016/j.cbi.2018.08.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/26/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022]
Abstract
Berberine (BBR) is an isoquinoline alkaloid extracted from the roots, rhizomes and stems of coptis. Liver fibrosis is a worldwide health problem with no established therapy until now. The aim of our study is to investigate the efficacy of BBR on hepatic fibrosis induced in rats and to uncover other mechanisms. Rats were injected with thioacetamide (TAA) (200 mg/kg, i.p) twice per week for 6 weeks to induce fibrosis. Treated groups were gavaged with BBR (50 mg/kg/day, p.o) simultaneously with TAA injection. Hepatic antioxidant enzymes (catalase, SOD, GPx) were assessed in hepatic homogenate. Their activities were attenuated by TAA injection and elevated by BBR administration. Additionally, serum IL-6 and mRNA levels of IL-1β, IL-6, IL-10 and IFN-γ were evaluated as inflammatory markers. Our results showed that BBR suppressed the inflammation induced by TAA injection. Tissue expression of α-SMA (marker of activated HSCs), TGF-β1 and fibronectin were measured by immunohistochemistry as well as mRNA expressions of TGF-β1 and fibronectin were quantified as fibrotic markers. The collagen deposition in hepatic tissues was assessed by Masson's trichome staining. BBR significantly alleviated TGF-β1 production, decreased collagen and fibronectin deposition and consequently attenuated hepatic fibrogenesis. Akt pathway controls cell survival, proliferation, migration and adhesion. The relative phosphorylation of Akt was determined in hepatic homogenates that was increased with TAA injection and decreased by BBR treatment. Inhibition of Akt pathway has been linked to the intrinsic pathway of apoptosis. Caspase-3, caspase-9, Bcl-2 and Bax were quantified as apoptotic markers using qPCR and also caspase-3 by immunohistochemistry. BBR-treated rats showed an increase in the expression of apoptotic markers. Moreover, BBR-treated rats showed restoration of normal liver lobular architecture as shown by H&E staining. In conclusion, BBR is a potential therapeutic candidate for liver fibrosis owing to its antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Laila Ahmed Eissa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Hany Ibrahim Kenawy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Amro El-Karef
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Nehal Mohsen Elsherbiny
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Kholoud Alaa El-Mihi
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
30
|
Marchyshak T, Yakovenko T, Shmarakov I, Tkachuk Z. The Potential Protective Effect of Oligoribonucleotides-d-Mannitol Complexes against Thioacetamide-Induced Hepatotoxicity in Mice. Pharmaceuticals (Basel) 2018; 11:ph11030077. [PMID: 30082619 PMCID: PMC6161262 DOI: 10.3390/ph11030077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022] Open
Abstract
This study investigated the potential hepatoprotective effect of oligoribonucleotides-d-mannitol complexes (ORNs-d-M) against thioacetamide (TAA)-induced hepatotoxicity in mice. The hepatoprotective activity of ORNs-d-M was evaluated in thioacetamide (TAA)-treated C57BL/6J. Results indicate that treatment with ORNs-d-M displayed a protective effect at the TAA-induced liver injury. Treatment with ORNs-d-M, starting at 0 h after the administration of TAA, decreased TAA-elevated serum alanine aminotransferase (ALT) and γ-glutamyl transpeptidase (GGT). Activities of glutathione S-transferase (GST) and glutathione peroxidase (GPx), and levels of glutathione (GSH), were enhanced with ORNs-d-M administration, while the hepatic oxidative biomarkers (TBA-reactive substances, protein carbonyl derivatives, protein-SH group) and myeloperoxidase (MPO) activity were reduced. Furthermore, genetic analysis has shown that the ORNs-d-M decreases the expression of mRNA pro-inflammatory cytokines, such as tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6), profibrogenic cytokine-transforming growth factor β1 (TGF-β1), as well as the principal protein of the extracellular matrix—collagen I. The present study demonstrates that ORNs-d-M exerts a protective effect against TAA-induced liver injury, which may be associated with its anti-inflammatory effects, inhibition of overexpression of mRNA cytokines, and direct effects on the metabolism of the toxin.
Collapse
Affiliation(s)
- Tetiana Marchyshak
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine.
| | - Tetiana Yakovenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine.
| | - Igor Shmarakov
- Department of Biochemistry and Biotechnology, Yurii Fedkovych Chernivtsi National University, 58012 Chernivtsi, Ukraine.
| | - Zenoviy Tkachuk
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine.
| |
Collapse
|
31
|
Naringin attenuates thioacetamide-induced liver fibrosis in rats through modulation of the PI3K/Akt pathway. Life Sci 2017; 187:50-57. [PMID: 28830755 DOI: 10.1016/j.lfs.2017.08.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/10/2017] [Accepted: 08/18/2017] [Indexed: 12/12/2022]
Abstract
AIMS Naringin (NR) is a flavanone glycoside extracted from grapefruits and citrus fruits. The aim of this study is to investigate the antifibrotic efficacy of NR in thioacetamide (TAA)-induced hepatic fibrosis in rats through evaluating NR effect on the PI3K/Akt pathway. MAIN METHODS Hepatic fibrosis was induced in rats by intraperitoneal injection of TAA (200mg/kg) twice per week for 6weeks. Simultaneously, NR (40mg/kg/day, p.o.) was given along with TAA injection. The ratio of P-Akt/Akt was assessed in hepatic homogenate as well as antioxidant enzymes (catalase, superoxide dismutase (SOD), glutathione peroxidase (GPx)) and lipid peroxidation marker, malondialdehyde (MDA). Serum level of interleukin (IL)-6 were measured using ELISA. Hepatic tissues were examined histopathologically using hematoxylin and eosin (H&E) and Masson trichome staining. Tissue expression of alpha smooth muscle actin (α-SMA), transforming growth factor β1 (TGF-β1), caspase-3 and fibronectin were scored immunohistochemically. Finally, the mRNA level of cytokine genes (IL-1β, IL-6, IL-10, interferon gamma (IFN-γ)), caspase-3, TGF-β1 and fibronectin were quantified using qPCR. KEY FINDINGS NR significantly suppressed Akt phosphorylation associated with increased number of caspase-3 positive cells especially in the fibrotic areas. Liver tissues of treated rats showed restoration of normal liver histology and decrease in collagen and fibronectin deposition. Furthermore, NR treatment ameliorated oxidative stress and inflammatory cytokine production. SIGNIFICANCE NR alleviated experimental liver fibrosis through inhibition of PI3K/Akt pathway beside its anti-inflammatory and antioxidant effects. Therefore, NR is a promising therapeutic candidate for hepatic fibrosis.
Collapse
|
32
|
Mechanistic roles of microRNAs in hepatocarcinogenesis: A study of thioacetamide with multiple doses and time-points of rats. Sci Rep 2017; 7:3054. [PMID: 28596526 PMCID: PMC5465221 DOI: 10.1038/s41598-017-02798-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/19/2017] [Indexed: 02/06/2023] Open
Abstract
Environmental chemicals exposure is one of the primary factors for liver toxicity and hepatocarcinoma. Thioacetamide (TAA) is a well-known hepatotoxicant and could be a liver carcinogen in humans. The discovery of early and sensitive microRNA (miRNA) biomarkers in liver injury and tumor progression could improve cancer diagnosis, prognosis, and management. To study this, we performed next generation sequencing of the livers of Sprague-Dawley rats treated with TAA at three doses (4.5, 15 and 45 mg/kg) and four time points (3-, 7-, 14- and 28-days). Overall, 330 unique differentially expressed miRNAs (DEMs) were identified in the entire TAA-treatment course. Of these, 129 DEMs were found significantly enriched for the “liver cancer” annotation. These results were further complemented by pathway analysis (Molecular Mechanisms of Cancer, p53-, TGF-β-, MAPK- and Wnt-signaling). Two miRNAs (rno-miR-34a-5p and rno-miR-455-3p) out of 48 overlapping DEMs were identified to be early and sensitive biomarkers for TAA-induced hepatocarcinogenicity. We have shown significant regulatory associations between DEMs and TAA-induced liver carcinogenesis at an earlier stage than histopathological features. Most importantly, miR-34a-5p is the most suitable early and sensitive biomarker for TAA-induced hepatocarcinogenesis due to its consistent elevation during the entire treatment course.
Collapse
|
33
|
Santos NP, Colaço AA, Oliveira PA. Animal models as a tool in hepatocellular carcinoma research: A Review. Tumour Biol 2017; 39:1010428317695923. [PMID: 28347231 DOI: 10.1177/1010428317695923] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cancer is the first cause of death in developed countries and the second in developing countries. Concerning the most frequent worldwide-diagnosed cancer, primary liver cancer represents approximately 4% of all new cancer cases diagnosed globally. However, among primary liver cancer, hepatocellular carcinoma is by far the most common histological subtype. Notwithstanding the health promotion and disease prevention campaigns, more than half a million new hepatocellular carcinoma cases are reported yearly, being estimated to growth continuously until 2020. Taking this scenario under consideration and the fact that some aspects concerning hepatocellular carcinoma evolution and metastasize process are still unknown, animal models assume a crucial role to understand this disease. The animal models have also provided the opportunity to screen new therapeutic strategies. The present review was supported on research and review papers aiming the complexity and often neglected chemically induced animal models in hepatocarcinogenesis research. Despite the ongoing debate, chemically induced animal models, namely, mice and rat, can provide unique valuable information on the biotransformation mechanisms against xenobiotics and apprehend the deleterious effects on DNA and cell proteins leading to carcinogenic development. In addition, taking under consideration that no model achieves all hepatocellular carcinoma research purposes, criteria to define the " ideal" animal model, depending on the researchers' approach, are also discussed in this review.
Collapse
Affiliation(s)
- Nuno Paula Santos
- 1 Department of Veterinary Sciences, Veterinary and Animal Science Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,2 Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Aura Antunes Colaço
- 1 Department of Veterinary Sciences, Veterinary and Animal Science Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Paula Alexandra Oliveira
- 1 Department of Veterinary Sciences, Veterinary and Animal Science Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,2 Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
34
|
Emblica officinalis (Amla): A review for its phytochemistry, ethnomedicinal uses and medicinal potentials with respect to molecular mechanisms. Pharmacol Res 2016; 111:180-200. [DOI: 10.1016/j.phrs.2016.06.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/07/2016] [Accepted: 06/12/2016] [Indexed: 02/06/2023]
|
35
|
Delgado-Montemayor C, Cordero-Pérez P, Salazar-Aranda R, Waksman-Minsky N. Models of hepatoprotective activity assessment. MEDICINA UNIVERSITARIA 2015. [DOI: 10.1016/j.rmu.2015.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|