1
|
Mazere J, Dilharreguy B, Catheline G, Vidailhet M, Deffains M, Vimont D, Ribot B, Barse E, Cif L, Mazoyer B, Langbour N, Pisani A, Allard M, Lamare F, Guehl D, Fernandez P, Burbaud P. Striatal and cerebellar vesicular acetylcholine transporter expression is disrupted in human DYT1 dystonia. Brain 2021; 144:909-923. [PMID: 33638639 DOI: 10.1093/brain/awaa465] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/03/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022] Open
Abstract
Early-onset torsion dystonia (TOR1A/DYT1) is a devastating hereditary motor disorder whose pathophysiology remains unclear. Studies in transgenic mice suggested abnormal cholinergic transmission in the putamen, but this has not yet been demonstrated in humans. The role of the cerebellum in the pathophysiology of the disease has also been highlighted but the involvement of the intrinsic cerebellar cholinergic system is unknown. In this study, cholinergic neurons were imaged using PET with 18F-fluoroethoxybenzovesamicol, a radioligand of the vesicular acetylcholine transporter (VAChT). Here, we found an age-related decrease in VAChT expression in the posterior putamen and caudate nucleus of DYT1 patients versus matched controls, with low expression in young but not in older patients. In the cerebellar vermis, VAChT expression was also significantly decreased in patients versus controls, but independently of age. Functional connectivity within the motor network studied in MRI and the interregional correlation of VAChT expression studied in PET were also altered in patients. These results show that the cholinergic system is disrupted in the brain of DYT1 patients and is modulated over time through plasticity or compensatory mechanisms.
Collapse
Affiliation(s)
- Joachim Mazere
- Department of Nuclear Medicine, CHU de Bordeaux, France.,Institute of Cognitive and Integrative Neurosciences, CNRS UMR 5287, Bordeaux University, F33000, Bordeaux, France
| | - Bixente Dilharreguy
- Institute of Cognitive and Integrative Neurosciences, CNRS UMR 5287, Bordeaux University, F33000, Bordeaux, France
| | - Gwenaëlle Catheline
- Institute of Cognitive and Integrative Neurosciences, CNRS UMR 5287, Bordeaux University, F33000, Bordeaux, France
| | - Marie Vidailhet
- Institut du Cerveau et de la Moelle épinière (ICM) UMR 1127, hôpital de la Pitié-Salpétrière, Department of Neurology, AP-HP, Sorbonne Université, 75013, Paris, France
| | - Marc Deffains
- Institut des Maladies Neurodégénératives (IMN, CNRS U5393), Université de Bordeaux, 33076, Bordeaux, France
| | - Delphine Vimont
- Department of Nuclear Medicine, CHU de Bordeaux, France.,Institute of Cognitive and Integrative Neurosciences, CNRS UMR 5287, Bordeaux University, F33000, Bordeaux, France
| | - Bastien Ribot
- Institut des Maladies Neurodégénératives (IMN, CNRS U5393), Université de Bordeaux, 33076, Bordeaux, France
| | - Elodie Barse
- Institute of Cognitive and Integrative Neurosciences, CNRS UMR 5287, Bordeaux University, F33000, Bordeaux, France
| | - Laura Cif
- Department of Neurosurgery, CHU de Montpellier, 34000, France
| | - Bernard Mazoyer
- Institut des Maladies Neurodégénératives (IMN, CNRS U5393), Université de Bordeaux, 33076, Bordeaux, France
| | - Nicolas Langbour
- Centre de Recherche en Psychiatrie, CH de la Milétrie, 86000, Poitiers, France
| | - Antonio Pisani
- Department of Brain and Behavioural Sciences, University of Pavia, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| | - Michèle Allard
- Department of Nuclear Medicine, CHU de Bordeaux, France.,Institute of Cognitive and Integrative Neurosciences, CNRS UMR 5287, Bordeaux University, F33000, Bordeaux, France
| | - Frédéric Lamare
- Department of Nuclear Medicine, CHU de Bordeaux, France.,Institute of Cognitive and Integrative Neurosciences, CNRS UMR 5287, Bordeaux University, F33000, Bordeaux, France
| | - Dominique Guehl
- Institut des Maladies Neurodégénératives (IMN, CNRS U5393), Université de Bordeaux, 33076, Bordeaux, France.,Service de Neurophysiologie Clinique, Pôle des Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France
| | - Philippe Fernandez
- Department of Nuclear Medicine, CHU de Bordeaux, France.,Institute of Cognitive and Integrative Neurosciences, CNRS UMR 5287, Bordeaux University, F33000, Bordeaux, France
| | - Pierre Burbaud
- Institut des Maladies Neurodégénératives (IMN, CNRS U5393), Université de Bordeaux, 33076, Bordeaux, France.,Service de Neurophysiologie Clinique, Pôle des Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France
| |
Collapse
|
2
|
Lawrence E, Vegvari C, Ower A, Hadjichrysanthou C, De Wolf F, Anderson RM. A Systematic Review of Longitudinal Studies Which Measure Alzheimer's Disease Biomarkers. J Alzheimers Dis 2018; 59:1359-1379. [PMID: 28759968 PMCID: PMC5611893 DOI: 10.3233/jad-170261] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Alzheimer’s disease (AD) is a progressive and fatal neurodegenerative disease, with no effective treatment or cure. A gold standard therapy would be treatment to slow or halt disease progression; however, knowledge of causation in the early stages of AD is very limited. In order to determine effective endpoints for possible therapies, a number of quantitative surrogate markers of disease progression have been suggested, including biochemical and imaging biomarkers. The dynamics of these various surrogate markers over time, particularly in relation to disease development, are, however, not well characterized. We reviewed the literature for studies that measured cerebrospinal fluid or plasma amyloid-β and tau, or took magnetic resonance image or fluorodeoxyglucose/Pittsburgh compound B-positron electron tomography scans, in longitudinal cohort studies. We summarized the properties of the major cohort studies in various countries, commonly used diagnosis methods and study designs. We have concluded that additional studies with repeat measures over time in a representative population cohort are needed to address the gap in knowledge of AD progression. Based on our analysis, we suggest directions in which research could move in order to advance our understanding of this complex disease, including repeat biomarker measurements, standardization and increased sample sizes.
Collapse
Affiliation(s)
- Emma Lawrence
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Carolin Vegvari
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Alison Ower
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | | | - Frank De Wolf
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK.,Janssen Prevention Center, Leiden, The Netherlands
| | - Roy M Anderson
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
3
|
Schuster C, Elamin M, Hardiman O, Bede P. Presymptomatic and longitudinal neuroimaging in neurodegeneration--from snapshots to motion picture: a systematic review. J Neurol Neurosurg Psychiatry 2015; 86:1089-96. [PMID: 25632156 DOI: 10.1136/jnnp-2014-309888] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 01/07/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Recent quantitative neuroimaging studies have been successful in capturing phenotype and genotype-specific changes in dementia syndromes, amyotrophic lateral sclerosis, Parkinson's disease and other neurodegenerative conditions. However, the majority of imaging studies are cross-sectional, despite the obvious superiority of longitudinal study designs in characterising disease trajectories, response to therapy, progression rates and evaluating the presymptomatic phase of neurodegenerative conditions. OBJECTIVES The aim of this work is to perform a systematic review of longitudinal imaging initiatives in neurodegeneration focusing on methodology, optimal statistical models, follow-up intervals, attrition rates, primary study outcomes and presymptomatic studies. METHODS Longitudinal imaging studies were identified from 'PubMed' and reviewed from 1990 to 2014. The search terms 'longitudinal', 'MRI', 'presymptomatic' and 'imaging' were utilised in combination with one of the following degenerative conditions; Alzheimer's disease, amyotrophic lateral sclerosis/motor neuron disease, frontotemporal dementia, Huntington's disease, multiple sclerosis, Parkinson's disease, ataxia, HIV, alcohol abuse/dependence. RESULTS A total of 423 longitudinal imaging papers and 103 genotype-based presymptomatic studies were identified and systematically reviewed. Imaging techniques, follow-up intervals and attrition rates showed significant variation depending on the primary diagnosis. Commonly used statistical models included analysis of annualised percentage change, mixed and random effect models, and non-linear cumulative models with acceleration-deceleration components. DISCUSSION AND CONCLUSIONS Although longitudinal imaging studies have the potential to provide crucial insights into the presymptomatic phase and natural trajectory of neurodegenerative processes a standardised design is required to enable meaningful data interpretation.
Collapse
Affiliation(s)
- Christina Schuster
- Quantitative Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Marwa Elamin
- Quantitative Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Orla Hardiman
- Quantitative Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Peter Bede
- Quantitative Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| |
Collapse
|
4
|
Gispert JD, Rami L, Sánchez-Benavides G, Falcon C, Tucholka A, Rojas S, Molinuevo JL. Nonlinear cerebral atrophy patterns across the Alzheimer's disease continuum: impact of APOE4 genotype. Neurobiol Aging 2015; 36:2687-701. [PMID: 26239178 DOI: 10.1016/j.neurobiolaging.2015.06.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 01/11/2023]
Abstract
The progression of Alzheimer's disease (AD) is characterized by complex trajectories of cerebral atrophy that are affected by interactions with age and apolipoprotein E allele ε4 (APOE4) status. In this article, we report the nonlinear volumetric changes in gray matter across the full biological spectrum of the disease, represented by the AD-cerebrospinal fluid (CSF) index. This index reflects the subject's level of pathology and position along the AD continuum. We also evaluated the associated impact of the APOE4 genotype. The atrophy pattern associated with the AD-CSF index was highly symmetrical and corresponded with the typical AD signature. Medial temporal structures showed different atrophy dynamics along the progression of the disease. The bilateral parahippocampal cortices and a parietotemporal region extending from the middle temporal to the supramarginal gyrus presented an initial increase in volume which later reverted. Similarly, a portion of the precuneus presented a rather linear inverse association with the AD-CSF index whereas some other clusters did not show significant atrophy until index values corresponded to positive CSF tau values. APOE4 carriers showed steeper hippocampal volume reductions with AD progression. Overall, the reported atrophy patterns are in close agreement with those mentioned in previous findings. However, the detected nonlinearities suggest that there may be different pathological processes taking place at specific moments during AD progression and reveal the impact of the APOE4 allele.
Collapse
Affiliation(s)
- J D Gispert
- Clinical and Neuroimaging Departments, Barcelonabeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - L Rami
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - C Falcon
- Clinical and Neuroimaging Departments, Barcelonabeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - A Tucholka
- Clinical and Neuroimaging Departments, Barcelonabeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - S Rojas
- Clinical and Neuroimaging Departments, Barcelonabeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Department of Morphological Sciences, Anatomy and Embriology Unit, Faculty of Medicine, Autonomous University of Barcelona
| | - J L Molinuevo
- Clinical and Neuroimaging Departments, Barcelonabeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
5
|
Klohs J, Politano IW, Deistung A, Grandjean J, Drewek A, Dominietto M, Keist R, Schweser F, Reichenbach JR, Nitsch RM, Knuesel I, Rudin M. Longitudinal Assessment of Amyloid Pathology in Transgenic ArcAβ Mice Using Multi-Parametric Magnetic Resonance Imaging. PLoS One 2013; 8:e66097. [PMID: 23840405 PMCID: PMC3686820 DOI: 10.1371/journal.pone.0066097] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 05/02/2013] [Indexed: 12/20/2022] Open
Abstract
Magnetic resonance imaging (MRI) can be used to monitor pathological changes in Alzheimer's disease (AD). The objective of this longitudinal study was to assess the effects of progressive amyloid-related pathology on multiple MRI parameters in transgenic arcAβ mice, a mouse model of cerebral amyloidosis. Diffusion-weighted imaging (DWI), T1-mapping and quantitative susceptibility mapping (QSM), a novel MRI based technique, were applied to monitor structural alterations and changes in tissue composition imposed by the pathology over time. Vascular function and integrity was studied by assessing blood-brain barrier integrity with dynamic contrast-enhanced MRI and cerebral microbleed (CMB) load with susceptibility weighted imaging and QSM. A linear mixed effects model was built for each MRI parameter to incorporate effects within and between groups (i.e. genotype) and to account for changes unrelated to the disease pathology. Linear mixed effects modelling revealed a strong association of all investigated MRI parameters with age. DWI and QSM in addition revealed differences between arcAβ and wt mice over time. CMBs became apparent in arcAβ mice with 9 month of age; and the CMB load reflected disease stage. This study demonstrates the benefits of linear mixed effects modelling of longitudinal imaging data. Moreover, the diagnostic utility of QSM and assessment of CMB load should be exploited further in studies of AD.
Collapse
Affiliation(s)
- Jan Klohs
- Institute for Biomedical Engineering, ETH and University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- * E-mail:
| | - Igna Wojtyna Politano
- Institute for Biomedical Engineering, ETH and University of Zurich, Zurich, Switzerland
| | - Andreas Deistung
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology I, Jena University Hospital – Friedrich Schiller University Jena, Jena, Germany
| | - Joanes Grandjean
- Institute for Biomedical Engineering, ETH and University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Anna Drewek
- Seminar für Statistik, ETH Zurich, Zurich, Switzerland
| | - Marco Dominietto
- Institute for Biomedical Engineering, ETH and University of Zurich, Zurich, Switzerland
| | - Ruth Keist
- Institute for Biomedical Engineering, ETH and University of Zurich, Zurich, Switzerland
| | - Ferdinand Schweser
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology I, Jena University Hospital – Friedrich Schiller University Jena, Jena, Germany
| | - Jürgen R. Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology I, Jena University Hospital – Friedrich Schiller University Jena, Jena, Germany
| | - Roger M. Nitsch
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Division of Psychiatry Research, University of Zurich, Zurich, Switzerland
| | - Irene Knuesel
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Markus Rudin
- Institute for Biomedical Engineering, ETH and University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|