1
|
Ng Kee Kwong KC, Harbham PK, Selvaraj BT, Gregory JM, Pal S, Hardingham GE, Chandran S, Mehta AR. 40 Years of CSF Toxicity Studies in ALS: What Have We Learnt About ALS Pathophysiology? Front Mol Neurosci 2021; 14:647895. [PMID: 33815058 PMCID: PMC8012723 DOI: 10.3389/fnmol.2021.647895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
Based on early evidence of in vitro neurotoxicity following exposure to serum derived from patients with amyotrophic lateral sclerosis (ALS), several studies have attempted to explore whether cerebrospinal fluid (CSF) obtained from people with ALS could possess similar properties. Although initial findings proved inconclusive, it is now increasingly recognized that ALS-CSF may exert toxicity both in vitro and in vivo. Nevertheless, the mechanism underlying CSF-induced neurodegeneration remains unclear. This review aims to summarize the 40-year long history of CSF toxicity studies in ALS, while discussing the various mechanisms that have been proposed, including glutamate excitotoxicity, proteotoxicity and oxidative stress. Furthermore, we consider the potential implications of a toxic CSF circulatory system in the pathophysiology of ALS, and also assess its significance in the context of current ALS research.
Collapse
Affiliation(s)
| | - Pratap K. Harbham
- West Midlands Academic Foundation Programme, University of Birmingham, Birmingham, United Kingdom
| | - Bhuvaneish T. Selvaraj
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, United Kingdom
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Jenna M. Gregory
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, United Kingdom
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, United Kingdom
- MRC Edinburgh Brain Bank, Academic Department of Neuropathology, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Pathology, University of Edinburgh, Edinburgh, United Kingdom
| | - Suvankar Pal
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, United Kingdom
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom
| | - Giles E. Hardingham
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, United Kingdom
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, United Kingdom
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, United Kingdom
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Brain Development and Repair, InStem, Bengaluru, India
| | - Arpan R. Mehta
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, United Kingdom
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, United Kingdom
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Ng Kee Kwong KC, Mehta AR, Nedergaard M, Chandran S. Defining novel functions for cerebrospinal fluid in ALS pathophysiology. Acta Neuropathol Commun 2020; 8:140. [PMID: 32819425 PMCID: PMC7439665 DOI: 10.1186/s40478-020-01018-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Despite the considerable progress made towards understanding ALS pathophysiology, several key features of ALS remain unexplained, from its aetiology to its epidemiological aspects. The glymphatic system, which has recently been recognised as a major clearance pathway for the brain, has received considerable attention in several neurological conditions, particularly Alzheimer's disease. Its significance in ALS has, however, been little addressed. This perspective article therefore aims to assess the possibility of CSF contribution in ALS by considering various lines of evidence, including the abnormal composition of ALS-CSF, its toxicity and the evidence for impaired CSF dynamics in ALS patients. We also describe a potential role for CSF circulation in determining disease spread as well as the importance of CSF dynamics in ALS neurotherapeutics. We propose that a CSF model could potentially offer additional avenues to explore currently unexplained features of ALS, ultimately leading to new treatment options for people with ALS.
Collapse
Affiliation(s)
- Koy Chong Ng Kee Kwong
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - Arpan R Mehta
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Siddharthan Chandran
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK.
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK.
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK.
- Centre for Brain Development and Repair, inStem, Bangalore, India.
| |
Collapse
|
3
|
Ng Kee Kwong KC, Gregory JM, Pal S, Chandran S, Mehta AR. Cerebrospinal fluid cytotoxicity in amyotrophic lateral sclerosis: a systematic review of in vitro studies. Brain Commun 2020; 2:fcaa121. [PMID: 33094283 PMCID: PMC7566327 DOI: 10.1093/braincomms/fcaa121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Various studies have suggested that a neurotoxic cerebrospinal fluid profile could be implicated in amyotrophic lateral sclerosis. Here, we systematically review the evidence for cerebrospinal fluid cytotoxicity in amyotrophic lateral sclerosis and explore its clinical correlates. We searched the following databases with no restrictions on publication date: PubMed, Embase and Web of Science. All studies that investigated cytotoxicity in vitro following exposure to cerebrospinal fluid from amyotrophic lateral sclerosis patients were considered for inclusion. Meta-analysis could not be performed, and findings were instead narratively summarized. Twenty-eight studies were included in our analysis. Both participant characteristics and study conditions including cerebrospinal fluid concentration, exposure time and culture model varied considerably across studies. Of 22 studies assessing cell viability relative to controls, 19 studies reported a significant decrease following exposure to cerebrospinal fluid from patients with amyotrophic lateral sclerosis, while three early studies failed to observe any difference. Seven of eight studies evaluating apoptosis observed significant increases in the levels of apoptotic markers following exposure to cerebrospinal fluid from patients with amyotrophic lateral sclerosis, with the remaining study reporting a qualitative difference. Although five studies investigated the possible relationship between cerebrospinal fluid cytotoxicity and patient characteristics, such as age, gender and disease duration, none demonstrated an association with any of the factors. In conclusion, our analysis suggests that cerebrospinal fluid cytotoxicity is a feature of sporadic and possibly also of familial forms of amyotrophic lateral sclerosis. Further research is, however, required to better characterize its underlying mechanisms and to establish its possible contribution to amyotrophic lateral sclerosis pathophysiology.
Collapse
Affiliation(s)
| | - Jenna M Gregory
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- MRC Edinburgh Brain Bank, Academic Department of Neuropathology, University of Edinburgh, Edinburgh, UK
- Edinburgh Pathology, University of Edinburgh, Edinburgh, UK
| | - Suvankar Pal
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
- Centre for Brain Development and Repair, inStem, Bangalore, India
| | - Arpan R Mehta
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Ferraiuolo L, Kirby J, Grierson AJ, Sendtner M, Shaw PJ. Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nat Rev Neurol 2012; 7:616-30. [PMID: 22051914 DOI: 10.1038/nrneurol.2011.152] [Citation(s) in RCA: 449] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a genetically diverse disease. At least 15 ALS-associated gene loci have so far been identified, and the causative gene is known in approximately 30% of familial ALS cases. Less is known about the factors underlying the sporadic form of the disease. The molecular mechanisms of motor neuron degeneration are best understood in the subtype of disease caused by mutations in superoxide dismutase 1, with a current consensus that motor neuron injury is caused by a complex interplay between multiple pathogenic processes. A key recent finding is that mutated TAR DNA-binding protein 43 is a major constituent of the ubiquitinated protein inclusions in ALS, providing a possible link between the genetic mutation and the cellular pathology. New insights have also indicated the importance of dysregulated glial cell-motor neuron crosstalk, and have highlighted the vulnerability of the distal axonal compartment early in the disease course. In addition, recent studies have suggested that disordered RNA processing is likely to represent a major contributing factor to motor neuron disease. Ongoing research on the cellular pathways highlighted in this Review is predicted to open the door to new therapeutic interventions to slow disease progression in ALS.
Collapse
Affiliation(s)
- Laura Ferraiuolo
- Academic Neurology Unit, Sheffield Institute for Translational Neuroscience, Department of Neuroscience, School of Medicine and Biomedical Sciences, University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | | | | | | | | |
Collapse
|