1
|
Díaz-García D, Díaz-Sánchez M, Álvarez-Conde J, Gómez-Ruiz S. Emergence of Quantum Dots as Innovative Tools for Early Diagnosis and Advanced Treatment of Breast Cancer. ChemMedChem 2024; 19:e202400172. [PMID: 38724442 DOI: 10.1002/cmdc.202400172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/09/2024] [Indexed: 06/20/2024]
Abstract
Quantum dots (QDs) semiconducting nanomaterials, have garnered attention due to their distinctive properties, including small size, high luminescence, and biocompatibility. In the context of triple-negative breast cancer (TNBC), notorious for its resistance to conventional treatments, QDs exhibit promising potential for enhancing diagnostic imaging and providing targeted therapies. This review underscores recent advancements in the utilization of QDs in imaging techniques, such as fluorescence tomography and magnetic resonance imaging, aiming at the early and precise detection of tumors. Emphasis is placed on the significance of QD design, synthesis and functionalization processes as well as their use in innovative strategies for targeted drug delivery, capitalizing on their ability to selectively deliver therapeutic agents to cancer cells. As the research in this field advances rapidly, this review covers a classification of QDs according to their composition, the characterization techniques than can be used to determine their properties and, subsequently, emphasizes recent findings in the field of TNBC-targeting, highlighting the imperative need to address challenges, like potential toxicity or methodologies standardization. Collectively, the findings explored thus far suggest that QDs could pave the way for early diagnosis and effective therapy of TNBC, representing a significant stride toward precise and personalized strategies in treating TNBC.
Collapse
Affiliation(s)
- Diana Díaz-García
- COMET-NANO Group. Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933, Móstoles, Madrid, Spain
| | - Miguel Díaz-Sánchez
- COMET-NANO Group. Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933, Móstoles, Madrid, Spain
| | - Javier Álvarez-Conde
- COMET-NANO Group. Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933, Móstoles, Madrid, Spain
| | - Santiago Gómez-Ruiz
- COMET-NANO Group. Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933, Móstoles, Madrid, Spain
| |
Collapse
|
2
|
Ouled Ltaief O, Ben Amor I, Hemmami H, Hamza W, Zeghoud S, Ben Amor A, Benzina M, Alnazza Alhamad A. Recent developments in cancer diagnosis and treatment using nanotechnology. Ann Med Surg (Lond) 2024; 86:4541-4554. [PMID: 39118776 PMCID: PMC11305775 DOI: 10.1097/ms9.0000000000002271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/05/2024] [Indexed: 08/10/2024] Open
Abstract
The article provides an insightful overview of the pivotal role of nanotechnology in revolutionizing cancer diagnosis and treatment. It discusses the critical importance of nanoparticles in enhancing the accuracy of cancer detection through improved imaging contrast agents and the synthesis of various nanomaterials designed for oncology applications. The review broadly classifies nanoparticles used in therapeutics, including metallic, magnetic, polymeric, and many other types, with an emphasis on their functions in drug delivery systems for targeted cancer therapy. It details targeting mechanisms, including passive and intentional targeting, to maximize treatment efficacy while minimizing side effects. Furthermore, the article addresses the clinical applications of nanomaterials in cancer treatment, highlights prospects, and addresses the challenges of integrating nanotechnology into cancer treatment.
Collapse
Affiliation(s)
- Olfa Ouled Ltaief
- Water, Energy and Environment Laboratory, National School of Engineers of Sfax, University of Safx, Safx, Tunisia
| | - Ilham Ben Amor
- Department of Process Engineering and Petrochemical, Faculty of Technology
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Hadia Hemmami
- Department of Process Engineering and Petrochemical, Faculty of Technology
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Wiem Hamza
- Water, Energy and Environment Laboratory, National School of Engineers of Sfax, University of Safx, Safx, Tunisia
| | - Soumeia Zeghoud
- Department of Process Engineering and Petrochemical, Faculty of Technology
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Asma Ben Amor
- Department of Process Engineering and Petrochemical, Faculty of Technology
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Mourad Benzina
- Water, Energy and Environment Laboratory, National School of Engineers of Sfax, University of Safx, Safx, Tunisia
| | - Ali Alnazza Alhamad
- Department of Chemistry, Faculty of Science, University of Aleppo, Aleppo, Syria
- Department of Technology of organic synthesis, Ural Federal University, Yekaterinburg, Russia
| |
Collapse
|
3
|
Cabral RLB, Galvão ERVP, Fechine PBA, Galvão FMF, do Nascimento JHO. A minireview on the utilization of petroleum coke as a precursor for carbon-based nanomaterials (CNMs): perspectives and potential applications. RSC Adv 2024; 14:19953-19968. [PMID: 38903671 PMCID: PMC11189030 DOI: 10.1039/d4ra01196a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024] Open
Abstract
The remarkable properties of carbon-based nanomaterials (CNMs) have stimulated a significant increase in studies on different 0D, 1D and 2D nanostructures, which have promising applications in various fields of science and technology. However, the use of graphite as a raw material, which is essential for their production, limits the scalability of these nanostructures. In this context, petroleum coke (PC), a by-product of the coking process in petrochemical industry with a high carbon content (>80 wt%), is emerging as an attractive and low-cost option for the synthesis of carbonaceous nanostructures. This brief review presents recent research related to the use of PC as a precursor for CNMs, such as graphene and its oxidized (GO) and reduced (RGO) variants, among other carbon-based nanostructures. The work highlights the performance of these materials in specific areas of application. In addition, this review describes and analyzes strategies for transforming low-cost, environmentally friendly waste into advanced technological innovations with greater added value, in line with the UN's 2030 Agenda.
Collapse
Affiliation(s)
- Rivaldo Leonn Bezerra Cabral
- Postgraduate Program in Chemical Engineering, Center of Technology, Federal University of Rio Grande do Norte CEP 59072970 Natal RN Brazil
| | | | - Pierre Basílio Almeida Fechine
- Advanced Materials Chemistry Group (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará - UFC Campus do Pici, CP 12100 CEP 60451-970 Fortaleza CE Brazil
| | - Felipe Mendonça Fontes Galvão
- Postgraduate Program in Chemical Engineering, Center of Technology, Federal University of Rio Grande do Norte CEP 59072970 Natal RN Brazil
| | - José Heriberto Oliveira do Nascimento
- Postgraduate Program in Chemical Engineering, Center of Technology, Federal University of Rio Grande do Norte CEP 59072970 Natal RN Brazil
- Postgraduate Program in Textile Engineering, Center of Technology, Federal University of Rio Grande do Norte Natal RN Brazil
| |
Collapse
|
4
|
Daniluk K, Lange A, Wójcik B, Zawadzka K, Bałaban J, Kutwin M, Jaworski S. Effect of Melittin Complexes with Graphene and Graphene Oxide on Triple-Negative Breast Cancer Tumors Grown on Chicken Embryo Chorioallantoic Membrane. Int J Mol Sci 2023; 24:ijms24098388. [PMID: 37176095 PMCID: PMC10179033 DOI: 10.3390/ijms24098388] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
One of the components of bee venom is melittin (M), which has strong lysing properties on membranes. M has high toxicity to cancer cells, but it also affects healthy cells, making it necessary to use methods for targeted delivery to ensure treatment. This research is a continuation of previous studies using graphene nanomaterials as M carriers to breast cancer cells. The studies described below are conducted on a more organized biological structure than what is found in vitro cells, namely, cancerous tumors grown on a chicken embryo chorioallantoic membrane. Caspase 3 and 8 levels are analyzed, and the level of oxidative stress markers and changes in protein expression for cytokines are examined. The results show that M complexes with nanomaterials reduce the level of oxidative stress more than M alone does, but the use of graphene (GN) as a carrier increases the level of DNA damage to a greater extent than the increase caused by M alone. An analysis of cytokine levels shows that the use of the M and GN complex increases the level of proteins responsible for inhibiting tumor progression to a greater extent than the increase occasioned by a complex with graphene oxide (GO). The results suggest that the use of GN as an M carrier may increase the toxic effect of M on structures located inside a cell.
Collapse
Affiliation(s)
- Karolina Daniluk
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Agata Lange
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Barbara Wójcik
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Katarzyna Zawadzka
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Jaśmina Bałaban
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Marta Kutwin
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| |
Collapse
|
5
|
Alrushaid N, Khan FA, Al-Suhaimi EA, Elaissari A. Nanotechnology in Cancer Diagnosis and Treatment. Pharmaceutics 2023; 15:pharmaceutics15031025. [PMID: 36986885 PMCID: PMC10052895 DOI: 10.3390/pharmaceutics15031025] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Traditional cancer diagnosis has been aided by the application of nanoparticles (NPs), which have made the process easier and faster. NPs possess exceptional properties such as a larger surface area, higher volume proportion, and better targeting capabilities. Additionally, their low toxic effect on healthy cells enhances their bioavailability and t-half by allowing them to functionally penetrate the fenestration of epithelium and tissues. These particles have attracted attention in multidisciplinary areas, making them the most promising materials in many biomedical applications, especially in the treatment and diagnosis of various diseases. Today, many drugs are presented or coated with nanoparticles for the direct targeting of tumors or diseased organs without harming normal tissues/cells. Many types of nanoparticles, such as metallic, magnetic, polymeric, metal oxide, quantum dots, graphene, fullerene, liposomes, carbon nanotubes, and dendrimers, have potential applications in cancer treatment and diagnosis. In many studies, nanoparticles have been reported to show intrinsic anticancer activity due to their antioxidant action and cause an inhibitory effect on the growth of tumors. Moreover, nanoparticles can facilitate the controlled release of drugs and increase drug release efficiency with fewer side effects. Nanomaterials such as microbubbles are used as molecular imaging agents for ultrasound imaging. This review discusses the various types of nanoparticles that are commonly used in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Noor Alrushaid
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Univ. Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622 Lyon, France
| | - Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ebtesam Abdullah Al-Suhaimi
- Biology Department, College of Science, Institute of Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Abdelhamid Elaissari
- Univ. Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622 Lyon, France
| |
Collapse
|
6
|
Boyapati PCS, Srinivas K, Akhil S, Bollikolla HB, Chandu B. A Comprehensive Review on Novel Graphene‐Hydroxyapatite Nanocomposites For Potential Bioimplant Applications. ChemistrySelect 2023. [DOI: 10.1002/slct.202204585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
| | - Kolla Srinivas
- Dept. of Mechanical Engineering RVR & JC College of Engineering Guntur, Andhra Pradesh 522019 India
| | - Syed Akhil
- Dept. of Nanotechnology Acharya Nagarjuna University Guntur, Andhra Pradesh 522510 India
| | - Hari Babu Bollikolla
- Dept. of Chemistry Acharya Nagarjuna University Guntur, Andhra Pradesh 522510 India
| | - Basavaiah Chandu
- Dept. of Nanotechnology Acharya Nagarjuna University Guntur, Andhra Pradesh 522510 India
| |
Collapse
|
7
|
Li J, Zeng H, Zeng Z, Zeng Y, Xie T. Promising Graphene-Based Nanomaterials and Their Biomedical Applications and Potential Risks: A Comprehensive Review. ACS Biomater Sci Eng 2021; 7:5363-5396. [PMID: 34747591 DOI: 10.1021/acsbiomaterials.1c00875] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Graphene-based nanomaterials (GBNs) have been the subject of research focus in the scientific community because of their excellent physical, chemical, electrical, mechanical, thermal, and optical properties. Several studies have been conducted on GBNs, and they have provided a detailed review and summary of various applications. However, comprehensive comments on biomedical applications and potential risks and strategies to reduce toxicity are limited. In this review, we systematically summarized the following aspects of GBNs in order to fill the gaps: (1) the history, synthesis methods, structural characteristics, and surface modification; (2) the latest advances in biomedical applications (including drug/gene delivery, biosensors, bioimaging, tissue engineering, phototherapy, and antibacterial activity); and (3) biocompatibility, potential risks (toxicity in vivo/vitro and effects on human health and the environment), and strategies to reduce toxicity. Moreover, we have analyzed the challenges to be overcome in order to enhance application of GBNs in the biomedical field.
Collapse
Affiliation(s)
- Jie Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.,School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| | - Huamin Zeng
- Chengdu Ping An Healthcare Medical Examination Laboratory, Chengdu, Sichuan 611130, China
| | - Zhaowu Zeng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| | - Yiying Zeng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| | - Tian Xie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.,School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
8
|
Gour A, Ramteke S, Jain NK. Pharmaceutical Applications of Quantum Dots. AAPS PharmSciTech 2021; 22:233. [PMID: 34476619 DOI: 10.1208/s12249-021-02103-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Nanotechnology has been utilized in developing novel drug formulations with minimal adverse effects. Nanoparticles in a lower size range with great surface area, increased potency, and easy permeability could be an approach for the treatment of cancer and other diseases. Unlike other nanoparticles, quantum dots have specific functional groups, have charges over their surface, and are extremely small in size (2-10nm), which makes them more permeable through tight junctions. Quantum dots are interesting materials that offer diagnosis and treatment concurrently. Quantum dots are reported to have several applications in pharmaceuticals as well as drug delivery, diagnosis, immunolabeling, and cell labeling tools. However, the existence of heavy metals in quantum dots such as cadmium poses a potential challenge for future medical applications, where quantum dots may be deliberately injected into the body. In this review, we are focusing on various pharmaceutical applications of quantum dots. Graphical Abstract.
Collapse
|
9
|
Cui G, Wu J, Lin J, Liu W, Chen P, Yu M, Zhou D, Yao G. Graphene-based nanomaterials for breast cancer treatment: promising therapeutic strategies. J Nanobiotechnology 2021; 19:211. [PMID: 34266419 PMCID: PMC8281664 DOI: 10.1186/s12951-021-00902-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common malignancy in women, and its incidence increases annually. Traditional therapies have several side effects, leading to the urgent need to explore new smart drug-delivery systems and find new therapeutic strategies. Graphene-based nanomaterials (GBNs) are potential drug carriers due to their target selectivity, easy functionalization, chemosensitization and high drug-loading capacity. Previous studies have revealed that GBNs play an important role in fighting breast cancer. Here, we have summarized the superior properties of GBNs and modifications to shape GBNs for improved function. Then, we focus on the applications of GBNs in breast cancer treatment, including drug delivery, gene therapy, phototherapy, and magnetothermal therapy (MTT), and as a platform to combine multiple therapies. Their advantages in enhancing therapeutic effects, reducing the toxicity of chemotherapeutic drugs, overcoming multidrug resistance (MDR) and inhibiting tumor metastasis are highlighted. This review aims to help evaluate GBNs as therapeutic strategies and provide additional novel ideas for their application in breast cancer therapy.
Collapse
Affiliation(s)
- Guangman Cui
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jiaying Lin
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenjing Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Peixian Chen
- Department of Breast Surgery, The First People's Hospital of Foshan, Sun Yat-Sen University, Guangdong, China
| | - Meng Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Dan Zhou
- Department of Breast Surgery, The First People's Hospital of Foshan, Sun Yat-Sen University, Guangdong, China.
| | - Guangyu Yao
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Bruschi A, Donati DM, Choong P, Lucarelli E, Wallace G. Dielectric Elastomer Actuators, Neuromuscular Interfaces, and Foreign Body Response in Artificial Neuromuscular Prostheses: A Review of the Literature for an In Vivo Application. Adv Healthc Mater 2021; 10:e2100041. [PMID: 34085772 PMCID: PMC11481036 DOI: 10.1002/adhm.202100041] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/06/2021] [Indexed: 12/14/2022]
Abstract
The inability to replace human muscle in surgical practice is a significant challenge. An artificial muscle controlled by the nervous system is considered a potential solution for this. Here, this is defined as a neuromuscular prosthesis. Muscle loss and dysfunction related to musculoskeletal oncological impairments, neuromuscular diseases, trauma or spinal cord injuries can be treated through artificial muscle implantation. At present, the use of dielectric elastomer actuators working as capacitors appears a promising option. Acrylic or silicone elastomers with carbon nanotubes functioning as the electrode achieve mechanical performances similar to human muscle in vitro. However, mechanical, electrical, and biological issues have prevented clinical application to date. Here materials and mechatronic solutions are presented which can tackle current clinical problems associated with implanting an artificial muscle controlled by the nervous system. Progress depends on the improvement of the actuation properties of the elastomer, seamless or wireless integration between the nervous system and the artificial muscle, and on reducing the foreign body response. It is believed that by combining the mechanical, electrical, and biological solutions proposed here, an artificial neuromuscular prosthesis may be a reality in surgical practice in the near future.
Collapse
Affiliation(s)
- Alessandro Bruschi
- 3rd Orthopaedic and Traumatologic Clinic prevalently OncologicIRCCS Istituto Ortopedico RizzoliVia Pupilli 1Bologna40136Italy
| | - Davide Maria Donati
- 3rd Orthopaedic and Traumatologic Clinic prevalently OncologicIRCCS Istituto Ortopedico RizzoliVia Pupilli 1Bologna40136Italy
| | - Peter Choong
- University of Melbourne–Department of SurgerySt. Vincent's HospitalFitzroyMelbourneVictoria3065Australia
| | - Enrico Lucarelli
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration3rdOrthopaedic and Traumatologic Clinic Prevalently OncologicIRCCS Istituto Ortopedico RizzoliVia di Barbiano 1/10Bologna40136Italy
| | - Gordon Wallace
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityUniversity of WollongongWollongongNSW2522Australia
| |
Collapse
|
11
|
Sainz-Urruela C, Vera-López S, San Andrés MP, Díez-Pascual AM. Graphene-Based Sensors for the Detection of Bioactive Compounds: A Review. Int J Mol Sci 2021; 22:3316. [PMID: 33804997 PMCID: PMC8037795 DOI: 10.3390/ijms22073316] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Over the last years, different nanomaterials have been investigated to design highly selective and sensitive sensors, reaching nano/picomolar concentrations of biomolecules, which is crucial for medical sciences and the healthcare industry in order to assess physiological and metabolic parameters. The discovery of graphene (G) has unexpectedly impulsed research on developing cost-effective electrode materials owed to its unique physical and chemical properties, including high specific surface area, elevated carrier mobility, exceptional electrical and thermal conductivity, strong stiffness and strength combined with flexibility and optical transparency. G and its derivatives, including graphene oxide (GO) and reduced graphene oxide (rGO), are becoming an important class of nanomaterials in the area of optical and electrochemical sensors. The presence of oxygenated functional groups makes GO nanosheets amphiphilic, facilitating chemical functionalization. G-based nanomaterials can be easily combined with different types of inorganic nanoparticles, including metals and metal oxides, quantum dots, organic polymers, and biomolecules, to yield a wide range of nanocomposites with enhanced sensitivity for sensor applications. This review provides an overview of recent research on G-based nanocomposites for the detection of bioactive compounds, providing insights on the unique advantages offered by G and its derivatives. Their synthesis process, functionalization routes, and main properties are summarized, and the main challenges are also discussed. The antioxidants selected for this review are melatonin, gallic acid, tannic acid, resveratrol, oleuropein, hydroxytyrosol, tocopherol, ascorbic acid, and curcumin. They were chosen owed to their beneficial properties for human health, including antibiotic, antiviral, cardiovascular protector, anticancer, anti-inflammatory, cytoprotective, neuroprotective, antiageing, antidegenerative, and antiallergic capacity. The sensitivity and selectivity of G-based electrochemical and fluorescent sensors are also examined. Finally, the future outlook for the development of G-based sensors for this type of biocompounds is outlined.
Collapse
Affiliation(s)
- Carlos Sainz-Urruela
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid‐Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, España (Spain); (C.S.-U.); (S.V.-L.); (M.P.S.)
| | - Soledad Vera-López
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid‐Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, España (Spain); (C.S.-U.); (S.V.-L.); (M.P.S.)
- Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río (IQAR), Ctra. Madrid‐Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, España (Spain)
| | - María Paz San Andrés
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid‐Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, España (Spain); (C.S.-U.); (S.V.-L.); (M.P.S.)
- Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río (IQAR), Ctra. Madrid‐Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, España (Spain)
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid‐Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, España (Spain); (C.S.-U.); (S.V.-L.); (M.P.S.)
- Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río (IQAR), Ctra. Madrid‐Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, España (Spain)
| |
Collapse
|
12
|
Balestri S, Del Giovane A, Sposato C, Ferrarelli M, Ragnini-Wilson A. The Current Challenges for Drug Discovery in CNS Remyelination. Int J Mol Sci 2021; 22:ijms22062891. [PMID: 33809224 PMCID: PMC8001072 DOI: 10.3390/ijms22062891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
The myelin sheath wraps around axons, allowing saltatory currents to be transmitted along neurons. Several genetic, viral, or environmental factors can damage the central nervous system (CNS) myelin sheath during life. Unless the myelin sheath is repaired, these insults will lead to neurodegeneration. Remyelination occurs spontaneously upon myelin injury in healthy individuals but can fail in several demyelination pathologies or as a consequence of aging. Thus, pharmacological intervention that promotes CNS remyelination could have a major impact on patient’s lives by delaying or even preventing neurodegeneration. Drugs promoting CNS remyelination in animal models have been identified recently, mostly as a result of repurposing phenotypical screening campaigns that used novel oligodendrocyte cellular models. Although none of these have as yet arrived in the clinic, promising candidates are on the way. Many questions remain. Among the most relevant is the question if there is a time window when remyelination drugs should be administrated and why adult remyelination fails in many neurodegenerative pathologies. Moreover, a significant challenge in the field is how to reconstitute the oligodendrocyte/axon interaction environment representative of healthy as well as disease microenvironments in drug screening campaigns, so that drugs can be screened in the most appropriate disease-relevant conditions. Here we will provide an overview of how the field of in vitro models developed over recent years and recent biological findings about how oligodendrocytes mature after reactivation of their staminal niche. These data have posed novel questions and opened new views about how the adult brain is repaired after myelin injury and we will discuss how these new findings might change future drug screening campaigns for CNS regenerative drugs.
Collapse
|
13
|
Comparison Between β-Cyclodextrin-Amygdalin Nanoparticle and Amygdalin Effects on Migration and Apoptosis of MCF-7 Breast Cancer Cell Line. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Edis Z, Wang J, Waqas MK, Ijaz M, Ijaz M. Nanocarriers-Mediated Drug Delivery Systems for Anticancer Agents: An Overview and Perspectives. Int J Nanomedicine 2021; 16:1313-1330. [PMID: 33628022 PMCID: PMC7898224 DOI: 10.2147/ijn.s289443] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Nanotechnology has been actively integrated as drug carriers over the last few years to treat various cancers. The main hurdle in the clinical management of cancer is the development of multidrug resistance against chemotherapeutic agents. To overcome the limitations of chemotherapy, the researchers have been developing technological advances for significant progress in the oncotherapy by enabling the delivery of chemotherapeutic agents at increased drug content levels to the targeted spots. Several nano-drug delivery systems designed for tumor-targeting are evaluated in preclinical and clinical trials and showed promising outcomes in cancerous tumors' clinical management. This review describes nanocarrier's importance in managing different types of cancers and emphasizing nanocarriers for drug delivery and cancer nanotherapeutics. It also highlights the recent advances in nanocarriers-based delivery systems, including polymeric nanocarriers, micelles, nanotubes, dendrimers, magnetic nanoparticles, solid lipid nanoparticles, and quantum dots (QDs). The nanocarrier-based composites are discussed in terms of their structure, characteristics, and therapeutic applications in oncology. To conclude, the challenges and future exploration opportunities of nanocarriers in chemotherapeutics are also presented.
Collapse
Affiliation(s)
- Zehra Edis
- Department of Pharmaceutical Sciences,College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Junli Wang
- Laboratory of Reproduction and Genetics, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Muhammad Khurram Waqas
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Ijaz
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Munazza Ijaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Defense Road Campus, Lahore, Pakistan
| |
Collapse
|
15
|
He M, Zhu C, Xu H, Sun D, Chen C, Feng G, Liu L, Li Y, Zhang L. Conducting Polyetheretherketone Nanocomposites with an Electrophoretically Deposited Bioactive Coating for Bone Tissue Regeneration and Multimodal Therapeutic Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56924-56934. [PMID: 33317266 DOI: 10.1021/acsami.0c20145] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of polyetheretherketone (PEEK) has grown exponentially in the biomedical field in recent decades because of its outstanding biomechanical properties. However, its lack of bioactivity/osteointegration remains an unresolved issue toward its wide use in orthopedic applications. In this work, graphene nanosheets have been incorporated into PEEK to obtain multifunctional nanocomposites. Because of the formation of an electrical percolation network and the π-π* conjugation between graphene and PEEK, the resulting composites have achieved 12 orders of magnitude enhancement in their electrical conductivity and thereby enabled electrophoretic deposition of a bioactive/antibacterial coating consisting of stearyltrimethylammonium chloride-modified hydroxyapatite. The coated composite implant shows significant boosting of bone marrow mesenchymal stem cell proliferation in vitro. In addition, the strong photothermal conversion effect of the graphene nanofillers has enabled laser-induced heating of our nanocomposite implants, where the temperature of the implant can reach 45 °C in 150 s. The unique multifunctionality of the implant has also been demonstrated for photothermal applications such as enhancing bacterial eradication and tumor cell inhibition, as well as bone tissue regeneration in vivo. The results suggest the strong potential of our multifunctional implant in bone repair applications as well as multimodal therapy of challenging bone diseases such as osteosarcoma and osteomyelitis.
Collapse
Affiliation(s)
- Miaomiao He
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Ce Zhu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Huan Xu
- School of Materials and Physics, China University of Mining and Technology, Daxue Road, No. 1, Xuzhou, Jiangsu, 221116, China
| | - Dan Sun
- Advanced Composite Research Group (ACRG), School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast, BT9 5AH, UK
| | - Chen Chen
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Ganjun Feng
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Limin Liu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Yubao Li
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Li Zhang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| |
Collapse
|
16
|
Kargozar S, Hoseini SJ, Milan PB, Hooshmand S, Kim H, Mozafari M. Quantum Dots: A Review from Concept to Clinic. Biotechnol J 2020; 15:e2000117. [DOI: 10.1002/biot.202000117] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Indexed: 01/30/2023]
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Javad Hoseini
- Department of Medical Biotechnology and Nanotechnology, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre Iran University of Medical Sciences Tehran Iran
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Sara Hooshmand
- Pharmacological Research Center of Medicinal Plants Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Hae‐Won Kim
- Institute of Tissue Regeneration Engineering (ITREN) Dankook University Cheonan Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Dankook University Cheonan Republic of Korea
- Department of Biomaterials Science, School of Dentistry Dankook University Cheonan Republic of Korea
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
17
|
Deformation Properties of Rubberized ECC Incorporating Nano Graphene Using Response Surface Methodology. MATERIALS 2020; 13:ma13122831. [PMID: 32599798 PMCID: PMC7344396 DOI: 10.3390/ma13122831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 11/17/2022]
Abstract
Engineered cementitious composite (ECC) was discovered as a new substitute of conventional concrete as it provides better results in terms of tensile strain, reaching beyond 3%. From then, more studies were done to partially replace crumb rubber with sand to achieve a more sustainable and eco-friendlier composite from the original ECC. However, the elastic modulus of ECC was noticeably degraded. This could bring potential unseen dangerous consequences as the fatigue might happen at any time without any sign. The replacement of crumb rubber was then found to not only bring a more sustainable and eco-friendlier result but also increase the ductility and the durability of the composite, with lighter specific gravity compared to conventional concrete. This study investigated the effects of crumb rubber (CR) and graphene oxide (GO) toward the deformable properties of rubberized ECC, including the compressive strength, elastic modulus, Poisson’s ratio, and drying shrinkage. Central composite design (CCD) was utilized to provide 13 reasonable trial mixtures with the ranging level of CR replacement from 0–30% and that of GO from 0.01–0.08%. The results show that GO increased the strength of the developed GO-RECC. It was also found that the addition of CR and GO to ECC brought a notable improvement in mechanical and deformable properties. The predicted model that was developed using response surface methodology (RSM) shows that the variables (compression strength, elastic modulus, Poisson’s ratio, and drying shrinkage) rely on the independent (CR and GO) variables and are highly correlated.
Collapse
|
18
|
Zhao Y, Yin H, Zhang X. Modification of graphene oxide by angiopep-2 enhances anti-glioma efficiency of the nanoscaled delivery system for doxorubicin. Aging (Albany NY) 2020; 12:10506-10516. [PMID: 32474457 PMCID: PMC7346081 DOI: 10.18632/aging.103275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/20/2020] [Indexed: 04/14/2023]
Abstract
OBJECTIVE This study aimed to evaluate the efficacy of the improved nanoscaled delivery system for doxorubicin (Dox) based on angiopep (ANG)-2 modified graphene oxide (GO), the so-called ANG-Dox-GO, in suppressing the growth and and metastasis of glioma cells. RESULTS Modification of GO by angiopep-2 significantly increased the cellular uptake of Dox. In addition, ANG-Dox-GO treatment of U87 MG cells significantly inhibited cell viability, decreased clone number, cell migration and invasion andinduced cell apoptosis, with superior efficiency over that of Dox-GO and free Dox. Similar results were observed in in vivo experiments-tumor size and weight of glioma xenograft mice were obviously decreased after treatments with ANG-Dox-GO, Dox-GO and Dox, respectively, as compared with control group, and the efficiency was the highest in ANG-Dox-GO, followed by Dox-Go and Dox. CONCLUSIONS ANG-Dox-GO exhibited superior anti-glioma effects over Dox-GO both in vitro and in vivo experiments. METHODS The morphology of ANG-Dox-GO was analyzed by UV visible absorption spectroscopy and atomic force microscopy and its in vitro cellular uptake was measured using confocal imaging analysis. The antitumor effects of GO, unbound Dox, Dox-GO and ANG-Dox-GO were evaluated by MTT assay, colony-forming assay, cell apoptosis assay and Transwell assay in U87 malignant glioma (MG) cells.
Collapse
Affiliation(s)
- Yue Zhao
- Radiotherapy Department, Cangzhou Central Hospital, Cangzhou 061000, China
| | - Hang Yin
- Department of Cardiology, Cangzhou People’s Hospital, Cangzhou 061000, China
| | - Xiaoyu Zhang
- Department of Thyroid and Breast Surgery, Cangzhou Central Hospital, Cangzhou 061000, China
| |
Collapse
|
19
|
Chen Z, Ye SY, Yang Y, Li ZY. A review on charred traditional Chinese herbs: carbonization to yield a haemostatic effect. PHARMACEUTICAL BIOLOGY 2019; 57:498-506. [PMID: 31401925 PMCID: PMC6713113 DOI: 10.1080/13880209.2019.1645700] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 05/23/2023]
Abstract
Context: Charcoal of Chinese drugs is a kind of special processing product in Chinese medicine and used for treatment of haemoptysis, hematemesis and haemorrhage in the clinic during ancient times. During carbonizing, significant changes occur in chemical constituents and the efficacy of haemostasis will be enhanced. But the quality control standard of 'carbonizing retains characteristics' should be followed. Objective: This review introduces the typical methods of carbonizing, which highlight current research progress on haemostatic substances of charcoal drugs so as to provide a reasonable explanation for the theory of haemostasis treated by charcoal medicine. Methods: English and Chinese literature from 2004 to 2019 was collected from databases including Web of Science, PubMed, Elsevier and CNKI (Chinese). Charcoal drug, chemical constituents, processing, haemostasis and carbon dots were used as the key words. Results: Charcoal drugs mainly play a haemostatic role and the effect can be classified into four types to stop bleeding: removing blood stasis, cooling blood, warming meridians and astringing. Changes in composition lead to changes in pharmacodynamics. Carbonizing methods and basic research on haemostasis material in charcoal drugs have also been summarized. Conclusions: This review summarizes the classification of charcoal drugs and highlights the possible material bases for the haemostatic effect of charcoal drugs in recent years, providing new insights to future research.
Collapse
Affiliation(s)
- Zhi Chen
- College of Pharmacy, Shandong University of TCM, Jinan, China
| | - Si-Yong Ye
- Department of Pharmacy, Jinan Second People's Hospital, Jinan, China
| | - Ying Yang
- College of Pharmacy, Shandong University of TCM, Jinan, China
| | - Zhong-Yuan Li
- College of Pharmacy, Shandong University of TCM, Jinan, China
| |
Collapse
|
20
|
Sivakumar PM, Islami M, Zarrabi A, Khosravi A, Peimanfard S. Polymer-Graphene Nanoassemblies and their Applications in Cancer Theranostics. Anticancer Agents Med Chem 2019; 20:1340-1351. [PMID: 31746307 DOI: 10.2174/1871520619666191028112258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND OBJECTIVE Graphene-based nanomaterials have received increasing attention due to their unique physical-chemical properties including two-dimensional planar structure, large surface area, chemical and mechanical stability, superconductivity and good biocompatibility. On the other hand, graphene-based nanomaterials have been explored as theranostics agents, the combination of therapeutics and diagnostics. In recent years, grafting hydrophilic polymer moieties have been introduced as an efficient approach to improve the properties of graphene-based nanomaterials and obtain new nanoassemblies for cancer therapy. METHODS AND RESULTS This review would illustrate biodistribution, cellular uptake and toxicity of polymergraphene nanoassemblies and summarize part of successes achieved in cancer treatment using such nanoassemblies. CONCLUSION The observations showed successful targeting functionality of the polymer-GO conjugations and demonstrated a reduction of the side effects of anti-cancer drugs for normal tissues.
Collapse
Affiliation(s)
- Ponnurengam M Sivakumar
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam
| | - Matin Islami
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Orta Mah., 34956 Tuzla, Istanbul, Turkey
| | - Arezoo Khosravi
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr/Isfahan, Iran
| | - Shohreh Peimanfard
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| |
Collapse
|
21
|
Geetha Bai R, Muthoosamy K, Manickam S, Hilal-Alnaqbi A. Graphene-based 3D scaffolds in tissue engineering: fabrication, applications, and future scope in liver tissue engineering. Int J Nanomedicine 2019; 14:5753-5783. [PMID: 31413573 PMCID: PMC6662516 DOI: 10.2147/ijn.s192779] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/22/2019] [Indexed: 12/14/2022] Open
Abstract
Tissue engineering embraces the potential of recreating and replacing defective body parts by advancements in the medical field. Being a biocompatible nanomaterial with outstanding physical, chemical, optical, and biological properties, graphene-based materials were successfully employed in creating the perfect scaffold for a range of organs, starting from the skin through to the brain. Investigations on 2D and 3D tissue culture scaffolds incorporated with graphene or its derivatives have revealed the capability of this carbon material in mimicking in vivo environment. The porous morphology, great surface area, selective permeability of gases, excellent mechanical strength, good thermal and electrical conductivity, good optical properties, and biodegradability enable graphene materials to be the best component for scaffold engineering. Along with the apt microenvironment, this material was found to be efficient in differentiating stem cells into specific cell types. Furthermore, the scope of graphene nanomaterials in liver tissue engineering as a promising biomaterial is also discussed. This review critically looks into the unlimited potential of graphene-based nanomaterials in future tissue engineering and regenerative therapy.
Collapse
Affiliation(s)
- Renu Geetha Bai
- Nanotechnology and Advanced Materials (NATAM), Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia
| | - Kasturi Muthoosamy
- Nanotechnology and Advanced Materials (NATAM), Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia
| | - Sivakumar Manickam
- Nanotechnology and Advanced Materials (NATAM), Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia
| | - Ali Hilal-Alnaqbi
- Electromechanical Technology, Abu Dhabi Polytechnic, Abu Dhabi, United Arab Emirates
| |
Collapse
|
22
|
Kazempour M, Namazi H, Akbarzadeh A, Kabiri R. Synthesis and characterization of PEG-functionalized graphene oxide as an effective pH-sensitive drug carrier. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:90-94. [DOI: 10.1080/21691401.2018.1543196] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mohamad Kazempour
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hassan Namazi
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Kabiri
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
23
|
Lin YH, Zhuang SX, Wang YL, Lin S, Hong ZW, Liu Y, Xu L, Li FP, Xu BH, Chen MH, He SW, Liao BQ, Fu XP, Jiang ZQ, Wang HL. The effects of graphene quantum dots on the maturation of mouse oocytes and development of offspring. J Cell Physiol 2019; 234:13820-13831. [PMID: 30644094 DOI: 10.1002/jcp.28062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/17/2018] [Indexed: 01/22/2023]
Abstract
Recently, graphene nanomaterials have attracted tremendous attention and have been utilized in various fields because of their excellent mechanical, thermal, chemical, optical properties, and good biocompatibility, especially in biomedical aspects. However, there is a concern that the unique characteristics of nanomaterials may have undesirable effects. Therefore, in this study, we sought to systematically investigate the effects of graphene quantum dots (GQDs) on the maturation of mouse oocytes and development of the offspring via in vitro and in vivo studies. In vitro, we found that the first polar body extrusion rate in the high dosage exposure groups (1.0-1.5 mg/ml) 2 decreased significantly and the failure of spindle migration and actin cap formation after GQDs exposure was observed. The underlying mechanisms might be associated with reactive oxygen species accumulation and DNA damage. Moreover, transmission electron microscope studies showed that GQDs may have been internalized into oocytes, tending to accumulate in the nucleus and severely affecting mitochondrial morphology, which included swollen and vacuolated mitochondria accompanied by cristae alteration with a lower amount of dense mitochondrial matrix. In vivo, when pregnant mice were exposed to GQDs at 8.5 days of gestation (GD, 8.5), we found that high dosage of GQD exposure (30 mg/kg) significantly affected mean fetal length; however, all the second generation of female mice grew up normal, attained sexual maturity, and gave birth to a healthy offspring after mating with a healthy male mouse. The results presented in this study are important for the future investigation of GQDs for the biomedical applications.
Collapse
Affiliation(s)
- Yan-Hong Lin
- Department of Gynaecology and Obstetrics, The Graduate School of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian, China.,Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen University, Xiamen, Fujian, China.,Department of Gynaecology, The Affiliated Hospital of Putian University, Putian University, Putian, Fujian, China
| | - Shu-Xin Zhuang
- Key Laboratory of Functional Materials and Applications of Fujian Province, School of Materials Science and Engineering, Xiamen University of Technology, Xiamen, Fujian, China
| | - Ya-Long Wang
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen University, Xiamen, Fujian, China
| | - Sheng Lin
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen University, Xiamen, Fujian, China
| | - Zi-Wei Hong
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen University, Xiamen, Fujian, China
| | - Yu Liu
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen University, Xiamen, Fujian, China
| | - Lin Xu
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen University, Xiamen, Fujian, China
| | - Fei-Ping Li
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen University, Xiamen, Fujian, China
| | - Bai-Hui Xu
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen University, Xiamen, Fujian, China
| | - Ming-Huang Chen
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen University, Xiamen, Fujian, China
| | - Shu-Wen He
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen University, Xiamen, Fujian, China
| | - Bao-Qiong Liao
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen University, Xiamen, Fujian, China
| | - Xian-Pei Fu
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen University, Xiamen, Fujian, China
| | - Zhong-Qing Jiang
- Department of Obstetrics and Gynaecology, Affiliated Fuzhou First Hospital of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian, China
| | - Hai-Long Wang
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
24
|
Rodríguez SJ, Albanesi EA. Electronic transport in a graphene single layer: application in amino acid sensing. Phys Chem Chem Phys 2019; 21:597-606. [PMID: 30543232 DOI: 10.1039/c8cp05093g] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We modeled a type of field-effect transistor device based on graphene for the recognition of amino acids with a potential application in the building of a protein sequencer. The theoretical model used was a combination of density functional theory (DFT) with the non-equilibrium Green's function (NEGF) in order to describe the coherent transport in molecular devices. First, we studied the physisorption of each amino acid on a graphene sheet and we reported the adsorption energy, the adsorption distances, the equilibrium configuration and the charge transfer of ten amino acids that can be considered as representative of all of the amino acids: histidine (His), alanine (Ala), aspartic acid (Asp), tyrosine (Tyr), arginine (Arg), glutamic acid (Glu), glycine (Gly), phenylalanine (Phe), proline (Pro) and lysine (Lys). As a result, significant differences were found in the density of states (DOS) after adsorption and there was a change in the semi-metallic character of the graphene due to the lysine and arginine interactions. Furthermore, we noticed changes in the electrical characteristics of the devices, as the amino acids adsorbed onto the surface of the graphene. The curves of current vs. bias voltage (I-Vb) display a distinct response for each amino acid, i.e. the I-Vb curves produce a characteristic footprint for each amino acid. We identified a possible rectification mechanism related to the voltage profile asymmetry, where the amino acids can control the transport characteristics in the device, i.e. Lys and Phe amino acids physisorbed on graphene act as a molecular diode, where electrons can easily flow in one direction and decrease in the other. This may be promising for the prospect of biosensors: graphene could be used as an amino acid detector.
Collapse
Affiliation(s)
- Sindy J Rodríguez
- Instituto de Física del Litoral (CONICET-UNL), Güemes 3450, Santa Fe, Argentina.
| | | |
Collapse
|
25
|
Imani R, Prakash S, Vali H, Faghihi S. Polyethylene glycol and octa-arginine dual-functionalized nanographene oxide: an optimization for efficient nucleic acid delivery. Biomater Sci 2018; 6:1636-1650. [PMID: 29757340 DOI: 10.1039/c8bm00058a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The successful application of nucleic acid-based therapy for the treatment of various cancers is largely dependent on a safe and efficient delivery system. A dual-functionalized graphene oxide (GO)-based nanocarrier with the conjugation of aminated-polyethylene glycol (PEG-diamine) and octa-arginine (R8) for the intracellular delivery of nucleic acids is proposed. The functionalized sites are covalently co-conjugated and the PEG : R8 molar ratio is optimized at 10 : 1 to achieve a hydrocolloidally stable size of 252 ± 2.0 nm with an effective charge of +40.97 ± 1.05 and an amine-rich content of 10.87 ± 0.4 μmol g-1. The uptake of the nanocarrier in breast cancer cell lines, MCF-7 and MDA-MB 231, is investigated. The siRNA and pDNA condensation ability in the presence and absence of enzymes and the endosomal buffering capacity, as well as the intracellular localization of the gene/nanocarrier complex are also evaluated. Furthermore, the delivery of functional genes associated with the nanocarrier is assessed using c-Myc protein knockdown and EGFP gene expression. The effective uptake of the nanocarrier by the cells shows superior cytocompatibility, and protects the siRNA and pDNA against enzyme degradation while inhibiting their migration with N : P ratios of 10 and 5, respectively. The co-conjugation of PEG-diamine and the cationic cell-penetrating peptide (CPP) into the GO nanocarrier also provides a superior internalization efficacy of 85% in comparison with a commercially available transfection reagent. The c-Myc protein knockdown and EGFP expression, which are induced by the nanocarrier, confirm that the optimized PEG-diamine/R8-functionalized GO could effectively deliver pDNA and siRNA into the cells and interfere with gene expression.
Collapse
Affiliation(s)
- Rana Imani
- Stem cell and regenerative medicine group, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran.
| | | | | | | |
Collapse
|
26
|
Paulmurugan R, Ajayan PM, Liepmann D, Renugopalakrishnan V. Intracellular MicroRNA Quantification in Intact Cells: A Novel Strategy based on Reduced Graphene Oxide Based Fluorescence Quenching. MRS COMMUNICATIONS 2018; 8:642-651. [PMID: 30705781 PMCID: PMC6349379 DOI: 10.1557/mrc.2018.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/25/2018] [Indexed: 06/09/2023]
Abstract
Nanomaterials have been proposed as key components in biosensing, imaging, and drug-delivery since they offer distinctive advantages over conventional approaches. The unique chemical and physical properties of graphene make it possible to functionalize and develop protein transducers, therapeutic delivery vehicles, and microbial diagnostics. In this study we evaluate reduced graphene oxide (rGO) as a potential nanomaterial for quantification of microRNAs including their structural differentiation in vitro in solution and inside intact cells. Our results provide evidence for the potential use of graphene nanomaterials as a platform for developing devices that can be used for microRNA quantitation as biomarkers for clinical applications.
Collapse
Affiliation(s)
- Ramasamy Paulmurugan
- Cellular Pathway Imaging Laboratory (CPIL), Dept. of Radiology, Stanford University School of Medicine, 3155 Porter Drive, Suite 2236, Palo Alto, CA 94304
| | - Pulickel M. Ajayan
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX 77005, USA
| | - Dorian Liepmann
- Department of Bioengineering, University of California, Berkeley, CA
| | - V. Renugopalakrishnan
- Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
27
|
Jafarirad S, Hammami Torghabe E, Rasta SH, Salehi R. A novel non-invasive strategy for low-level laser-induced cancer therapy by using new Ag/ZnO and Nd/ZnO functionalized reduced graphene oxide nanocomposites. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:800-816. [PMID: 29764213 DOI: 10.1080/21691401.2018.1470523] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the present research, an effective drug-free approach was developed to kill MCF7 breast cancer cells using low-level laser therapy (LLLT) combined with reduced graphene oxide (rGO)-based hybrid nanocomposites (NCs). Here, fruit extract of Rosa canina was used for the first time to obtain the rGO/ZnO, Ag-ZnO/rGO and Nd-ZnO/rGO NCs by green synthesis. Physico/photochemical properties of these NCs were evaluated using FTIR, XRD, Raman, XPS, SEM/EDX, UV-Vis, DLS and AFM. The potential of the as-synthesized NCs on ROS generating and antioxidant activity were assessed by DPPH. After optimizing the proper concentration of the NCs their anti-tumoral efficacy were evaluated by DAPI staining and MTT assay tests for laser therapy on MCF7 breast cancer cells. Interestingly, cell death was increased dramatically by increasing irradiation dose from 8-32 J/cm2 and then decreased by enhancing laser dose. The maximum amount of cell death is 50% which was observed in the presence of ZnO/rGO 20% by irradiation dose of 32 J/cm2. Furthermore, in comparison with 810 nm, 630 nm lasers were more effective in LLLT of MCF7 cells. The results show the potential of using rGO-based NCs in LLLT, which may be combined with other therapeutic approaches to assist our fight against cancer.
Collapse
Affiliation(s)
- Saeed Jafarirad
- a Research institute for Fundamental sciences (RIFS), University of Tabriz , Tabriz , Iran
| | | | - Seyed Hosseyn Rasta
- b School of Medical Sciences , University of Aberdeen , Aberdeen , UK.,c Department of Medical Bioengineering , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Roya Salehi
- d Drug Applied Research Center, Tabriz University of Medical Science , Tabriz , Iran.,e Department of Medical Nanotechnology, Faculty of Advanced Medical Science , Tabriz University of Medical Science , Tabriz , Iran
| |
Collapse
|
28
|
Graphene-Based Nanocomposites as Promising Options for Hard Tissue Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:103-117. [PMID: 30357620 DOI: 10.1007/978-981-13-0950-2_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Tissues are often damaged by physical trauma, infection or tumors. A slight injury heals naturally through the normal healing process, while severe injury causes serious health implications. Therefore, many efforts have been devoted to treat and repair various tissue defects. Recently, tissue engineering approaches have attracted a rapidly growing interest in biomedical fields to promote and enhance healing and regeneration of large-scale tissue defects. On the other hand, with the recent advances in nanoscience and nanotechnology, various nanomaterials have been suggested as novel biomaterials. Graphene, a two-dimensional atomic layer of graphite, and its derivatives have recently been found to possess promoting effects on various types of cells. In addition, their unique properties, such as outstanding mechanical and biological properties, allow them to be a promising option for hard tissue regeneration. Herein, we summarized recent research advances in graphene-based nanocomposites for hard tissue regeneration, and highlighted their promising potentials in biomedical and tissue engineering.
Collapse
|
29
|
Ramakrishna TRB, Nalder TD, Yang W, Marshall SN, Barrow CJ. Controlling enzyme function through immobilisation on graphene, graphene derivatives and other two dimensional nanomaterials. J Mater Chem B 2018; 6:3200-3218. [DOI: 10.1039/c8tb00313k] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Controlling enzyme function through immobilisation on graphene, graphene derivatives and other two dimensional nanomaterials.
Collapse
Affiliation(s)
- Tejaswini R. B. Ramakrishna
- School of Life and Environmental Sciences
- Deakin University
- Australia
- Seafood Unit
- The New Zealand Institute for Plant & Food Research Limited
| | - Tim D. Nalder
- School of Life and Environmental Sciences
- Deakin University
- Australia
- Seafood Unit
- The New Zealand Institute for Plant & Food Research Limited
| | - Wenrong Yang
- School of Life and Environmental Sciences
- Deakin University
- Australia
| | - Susan N. Marshall
- Seafood Unit
- The New Zealand Institute for Plant & Food Research Limited
- Nelson 7010
- New Zealand
| | - Colin J. Barrow
- School of Life and Environmental Sciences
- Deakin University
- Australia
| |
Collapse
|
30
|
One-pot exfoliation, functionalization, and size manipulation of graphene sheets: efficient system for biomedical applications. Lasers Med Sci 2017; 33:795-802. [DOI: 10.1007/s10103-017-2422-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/12/2017] [Indexed: 12/21/2022]
|
31
|
Samadishadlou M, Farshbaf M, Annabi N, Kavetskyy T, Khalilov R, Saghfi S, Akbarzadeh A, Mousavi S. Magnetic carbon nanotubes: preparation, physical properties, and applications in biomedicine. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1314-1330. [DOI: 10.1080/21691401.2017.1389746] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mehrdad Samadishadlou
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
- Material Science and Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Masoud Farshbaf
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Nasim Annabi
- Biomaterials Innovation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Taras Kavetskyy
- Joint Ukrainian-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych Ukraine & Baku, Azerbaijan
- Drohobych Ivan Franko State Pedagogical University, Drohobych, Ukraine
- The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Rovshan Khalilov
- Joint Ukrainian-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych Ukraine & Baku, Azerbaijan
- Institute of Radiation Problems of NAS Azerbaijan, Baku, Azerbaijan
| | - Siamak Saghfi
- Joint Ukrainian-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych Ukraine & Baku, Azerbaijan
| | - Abolfazl Akbarzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Sepideh Mousavi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
32
|
Zhang Y, Kong H, Liu X, Cheng J, Zhang M, Wang Y, Lu F, Qu H, Zhao Y. Quantum dot-based lateral-flow immunoassay for rapid detection of rhein using specific egg yolk antibodies. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1685-1693. [PMID: 29037062 DOI: 10.1080/21691401.2017.1389749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The lateral-flow immunoassays based on novel fluorescent labels have been receiving increasing attention. Here, we developed a rapid, quantitative, lateral-flow immunoassay for rapid and accurate detection of rhein (RHE). The competitive immunoassay used anti-RHE IgY (immunoglobulin of yolk) probe conjugated with QDs as reporter. Our results showed that the immunochromatographic strip can be applied for qualitative and quantitative analysis of RHE in samples. For quantitative analysis, the strips were scanned by a membrane-strip reader, and a detection curve (y = -0.128ln(x) + 1.7627, correlation coefficient = 0.9792) representing the averages of the scanned data was obtained. The detection range was 80-5000 ng mL-1 and the qualitative-detection limit for RHE was 98.2 ng mL-1. To our knowledge, this is the first report of the quantitative detection of a natural product by QDs-IgY immunochromatography, which creates a new strategy to detect the harmful or index component of TCM and may be applied as a supplement or alternative to instrument detection.
Collapse
Affiliation(s)
- Yue Zhang
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Hui Kong
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Xiaoman Liu
- b School of Basic Medical Sciences , Beijing University of Chinese Medicine , Beijing , China
| | - Jinjun Cheng
- b School of Basic Medical Sciences , Beijing University of Chinese Medicine , Beijing , China
| | - Meiling Zhang
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Yongzhi Wang
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Fang Lu
- b School of Basic Medical Sciences , Beijing University of Chinese Medicine , Beijing , China
| | - Huihua Qu
- c Center of Scientific Experiment, Beijing University of Chinese Medicine , Beijing , China
| | - Yan Zhao
- b School of Basic Medical Sciences , Beijing University of Chinese Medicine , Beijing , China
| |
Collapse
|
33
|
Zhang M, Zhao Y, Cheng J, Liu X, Wang Y, Yan X, Zhang Y, Lu F, Wang Q, Qu H. Novel carbon dots derived from Schizonepetae Herba Carbonisata and investigation of their haemostatic efficacy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1562-1571. [PMID: 28925715 DOI: 10.1080/21691401.2017.1379015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Schizonepetae Herba Carbonisata (SHC) has been used in traditional Chinese medicine (TCM) to treat haemorrhagic diseases for more than 1000 years. However, little information is available on its haemostatic components and mechanism. In this study, we developed novel water-soluble carbon dots (CDs) in aqueous extracts of SHC for the first time and a modified pyrolysis method was used to prepare the SHC using Schizonepetae Herba (SH) as the sole precursor. The SHC-CDs were characterized using transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier transform infrared (FT-IR), ultraviolet-visible (UV-Vis) and fluorescence spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and high-performance liquid chromatography (HPLC). Furthermore, the CDs with a quantum yield (QY) around 2.26% exhibited no toxicity within approximately 0.84 mg/mL in the CCK-8 assay. More interestingly, tail haemorrhaging and liver haemorrhaging experiments showed that CDs-treated mice had significantly shorter bleeding time than did normal saline (NS)-treated control group. Coagulation assays suggested that SHC-CDs could stimulate the extrinsic blood coagulation system and activate the fibrinogen system. These results suggested that SHC-CDs possess a remarkable haemostatic property, which provides evidence to support the further investigation of the considerable potential and effective material basis of TCM.
Collapse
Affiliation(s)
- Meiling Zhang
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Yan Zhao
- b School of Basic Medical Sciences , Beijing University of Chinese Medicine , Beijing , China
| | - Jinjun Cheng
- b School of Basic Medical Sciences , Beijing University of Chinese Medicine , Beijing , China
| | - Xiaoman Liu
- b School of Basic Medical Sciences , Beijing University of Chinese Medicine , Beijing , China
| | - Yongzhi Wang
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Xin Yan
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Yue Zhang
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Fang Lu
- b School of Basic Medical Sciences , Beijing University of Chinese Medicine , Beijing , China
| | - Qingguo Wang
- b School of Basic Medical Sciences , Beijing University of Chinese Medicine , Beijing , China
| | - Huihua Qu
- c Center of Scientific Experiment, Beijing University of Chinese Medicine , Beijing , China
| |
Collapse
|
34
|
Akhter MH, Rizwanullah M, Ahmad J, Ahsan MJ, Mujtaba MA, Amin S. Nanocarriers in advanced drug targeting: setting novel paradigm in cancer therapeutics. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:873-884. [DOI: 10.1080/21691401.2017.1366333] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Md. Habban Akhter
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Md. Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Javed Ahmad
- Department of Pharmaceutics, Najran University, Najran, Saudi Arabia
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur, Rajasthan, India
| | - Md. Ali Mujtaba
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | - Saima Amin
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi, India
| |
Collapse
|
35
|
Golchin J, Golchin K, Alidadian N, Ghaderi S, Eslamkhah S, Eslamkhah M, Akbarzadeh A. Nanozyme applications in biology and medicine: an overview. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 45:1-8. [DOI: 10.1080/21691401.2017.1313268] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jafar Golchin
- Division of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kazem Golchin
- Division of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Alidadian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahrooz Ghaderi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Division of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Eslamkhah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Eslamkhah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Division of Nanomedicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Akbarzadeh A, Kafshdooz L, Razban Z, Dastranj Tbrizi A, Rasoulpour S, Khalilov R, Kavetskyy T, Saghfi S, Nasibova AN, Kaamyabi S, Kafshdooz T. An overview application of silver nanoparticles in inhibition of herpes simplex virus. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:263-267. [PMID: 28403676 DOI: 10.1080/21691401.2017.1307208] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Nanoscale particles and molecules are a potential different for the treatment of disease because they have distinctive biologic property based on their structure and size, which is different from traditional small-molecule drugs. The antimicrobial mechanisms of silver nanoparticles include the formation of free radicals damaging the bacterial membranes, interactions with DNA, adhesion to cell surface altering the membrane properties, and enzyme damage. In this review, we focus on applications of silver nanoparticles in inhibition of herpes simplex virus.
Collapse
Affiliation(s)
- Abolfazl Akbarzadeh
- a Stem Cell Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,b Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems , Drohobych , Ukraine & Baku , Azerbaijan.,c Universal Scientific Education and Research Network (USERN) , Tabriz , Iran
| | - Leila Kafshdooz
- d Student Research Committee , Tabriz Azad University , Tabriz , Iran.,e Drug Applied Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Zohre Razban
- e Drug Applied Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Ali Dastranj Tbrizi
- e Drug Applied Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Shadi Rasoulpour
- f Department of Chemistry , Isfahan University of Technology , Isfahan , Islamic Republic of Iran
| | - Rovshan Khalilov
- b Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems , Drohobych , Ukraine & Baku , Azerbaijan.,g Institute of Radiation Problems , National Academy of Sciences of Azerbaijan , Baku , Azerbaijan.,h Faculty of Biology, Department of Biophysics and Molecular Biology , Baku State University , Baku , Azerbaijan Republic
| | - Taras Kavetskyy
- b Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems , Drohobych , Ukraine & Baku , Azerbaijan.,i The John Paul II Catholic University of Lublin , Lublin , Poland
| | - Siamak Saghfi
- b Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems , Drohobych , Ukraine & Baku , Azerbaijan.,h Faculty of Biology, Department of Biophysics and Molecular Biology , Baku State University , Baku , Azerbaijan Republic
| | - Aygun N Nasibova
- b Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems , Drohobych , Ukraine & Baku , Azerbaijan.,g Institute of Radiation Problems , National Academy of Sciences of Azerbaijan , Baku , Azerbaijan
| | - Sharif Kaamyabi
- j Department of Basic Science , Farhangian University , Tehran , Iran
| | - Taiebeh Kafshdooz
- k Biotechnology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
37
|
Heidari Sharafdarkolaei S, Motovali-Bashi M, Gill P. Fluorescent detection of point mutation via ligase reaction assisted by quantum dots and magnetic nanoparticle-based probes. RSC Adv 2017. [DOI: 10.1039/c7ra03767h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A nanodiagnostic genotyping method was presented for point mutation detection directly in human genomic DNA based on ligase reaction coupled with quantum dots and magnetic nanoparticle-based probes.
Collapse
Affiliation(s)
| | | | - P. Gill
- Nanomedicine Group
- Immunogenetics Research Center
- Mazandaran University of Medical Sciences
- Sari
- Iran
| |
Collapse
|
38
|
Karnoosh-Yamchi J, Rahmati-Yamchi M, Akbarzadeh A, Davaran S, Ostad Rahimi AR, Garnoosh K, Bahmani Z, Ashoori M, Mobasseri M. pH sensitive insulin-loaded nanohydrogel increases the effect of oral insulin in diabetic rats. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:1-5. [PMID: 27537672 DOI: 10.1080/21691401.2016.1216859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND There are different methods for insulin administration in diabetic patient. Nano-hydrogel is one of the most talented drug carrier for its sensitivity to environmental stimulus. METHODS AND RESULTS NIPAAm-MAA-HEM copolymers were synthesized by radical chain reaction. The copolymers were characterized with Scanning electron microscopy (SEM) and Transient electron microscopy (TEM). Copolymers were loaded with regular insulin by modified double emulsion method. Diabetic rats are used for feeding insulin-loaded nanohydrogel. Analysis of the results from the measurement of the amount of blood insulin from the rats blood that received insulin in nanohydrogel loaded form compared with rats that received pure insulin is significantly high, which confirm that insulin has been able to pass from the stomach acid barrier by nanohydrogel and is absorbed from the intestine. Blood sugar levels from tested rats indicate that with increasing amount of insulin, blood sugar levels fall down. CONCLUSION Our study confirms that insulin has been able to pass from the stomach acid barrier by nanohydrogel and be absorbed from the intestine.
Collapse
Affiliation(s)
- Jalil Karnoosh-Yamchi
- a Nutrition Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Clinical Biochemistry, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran.,c Aras International Branch of Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammad Rahmati-Yamchi
- a Nutrition Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Clinical Biochemistry, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran.,c Aras International Branch of Tabriz University of Medical Sciences , Tabriz , Iran
| | - Abolfazl Akbarzadeh
- d Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Soodabeh Davaran
- d Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | | | - Khalil Garnoosh
- e Department of Neurology, Faculty of Medicine , Neuroscience Research Center (NSRC), Tabriz University of Medical Sciences , Tabriz , Iran
| | - Zahra Bahmani
- f Plant Science Department , University of Tabriz , Tabriz , Iran
| | - Mohammad Ashoori
- b Department of Clinical Biochemistry, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Majid Mobasseri
- g Bone Health Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
39
|
Asadi N, Davaran S, Panahi Y, Hasanzadeh A, Malakootikhah J, Fallah Moafi H, Akbarzadeh A. Application of nanostructured drug delivery systems in immunotherapy of cancer: a review. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:18-23. [PMID: 27196810 DOI: 10.1080/21691401.2016.1178136] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cancer immunotherapy method uses the specificity of the immune system to provide a more effective than more conventional treatments, such as chemotherapy and radiotherapy. Immunotherapy has two main strategies (passive or active) to organize the immune system. Passive strategies use advantage of tumor-hyperpermeable cells, which have enhanced permeability and retention effects. Nanoparticles due to their better accumulation within tissues and cells of the immune system are well suitable for delivery of immune therapies such as vaccines or adjuvants. In this review, we explained application of nanotechnology in immunotherapy of cancer.
Collapse
Affiliation(s)
- Nahideh Asadi
- a Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran.,b Student Research Committee , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Soodabeh Davaran
- a Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Yunes Panahi
- c Chemical Injuries Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Arash Hasanzadeh
- d Laboratory of Biochemistry, Department of Biology, Faculty of Natural Sciences , University of Tabriz , Tabriz , Iran
| | - Javad Malakootikhah
- e Department of New Sciences and Technologies , University of Tehran , Tehran , Iran
| | - Hadi Fallah Moafi
- f Department of Chemistry, Faculty of Science , University of Guilan , Rasht , Iran
| | - Abolfazl Akbarzadeh
- a Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran.,b Student Research Committee , Tabriz University of Medical Sciences , Tabriz , Iran.,c Chemical Injuries Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran.,g Drug Applied Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
40
|
Shabestari Khiabani S, Farshbaf M, Akbarzadeh A, Davaran S. Magnetic nanoparticles: preparation methods, applications in cancer diagnosis and cancer therapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:6-17. [DOI: 10.3109/21691401.2016.1167704] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | - Masoud Farshbaf
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Faculty of Medicine, Islamic Azad University Tabriz Branch, Tabriz, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
41
|
Bikhof Torbati M, Ebrahimian M, Yousefi M, Shaabanzadeh M. GO-PEG as a drug nanocarrier and its antiproliferative effect on human cervical cancer cell line. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:568-573. [PMID: 27027552 DOI: 10.3109/21691401.2016.1161641] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The graphene oxide nanosheets can act as a nanocarrier for the delivery of therapeutic agents. The PEGylated GO has high solubility, good stability, and more biocompatibility in physiological solutions. In this study, the anticancer effects of synthesized GO-PEG as a drug nanocarrier evaluated to estimate the synergistic cytotoxic effect of drugs loaded on this type of nanocarrier and to determine the actual effect of any drugs encapsulated on it. The cytotoxic effects of GO-PEG nanosheets were evaluated on HeLa cell line by MTT assay. The results exhibited cytotoxic property of PEGylated GO drug nanocarrier significantly is dose dependent and incubation time dependent.
Collapse
Affiliation(s)
- Maryam Bikhof Torbati
- a Department of Biology , College of science, Yadegar-e-Imam Khomeini(RAH) Shahr-e-rey Branch, Islamic Azad University , Tehran , Iran
| | - Masoud Ebrahimian
- b Department of chemistry , College of science, Yadegar-e-Imam Khomeini(RAH) Shahr-e-rey Branch, Islamic Azad University , Tehran , Iran
| | - Mohammad Yousefi
- b Department of chemistry , College of science, Yadegar-e-Imam Khomeini(RAH) Shahr-e-rey Branch, Islamic Azad University , Tehran , Iran
| | - Masoud Shaabanzadeh
- c Department of Chemistry , College of science, Damghan Branch, Islamic Azad University , Damghan , Iran
| |
Collapse
|
42
|
Gorjikhah F, Azizi Jalalian F, Salehi R, Panahi Y, Hasanzadeh A, Alizadeh E, Akbarzadeh A, Davaran S. Preparation and characterization of PLGA-β-CD polymeric nanoparticles containing methotrexate and evaluation of their effects on T47D cell line. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:432-440. [DOI: 10.3109/21691401.2016.1160915] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Fatemeh Gorjikhah
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farid Azizi Jalalian
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roya Salehi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yunes Panahi
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Arash Hasanzadeh
- Laboratory of Biochemistry, Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
43
|
Dalkıran B, Erden PE, Kılıç E. Graphene and tricobalt tetraoxide nanoparticles based biosensor for electrochemical glutamate sensing. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:340-348. [PMID: 26939621 DOI: 10.3109/21691401.2016.1153482] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
An amperometric biosensor based on tricobalt tetraoxide nanoparticles (Co3O4), graphene (GR), and chitosan (CS) nanocomposite modified glassy carbon electrode (GCE) for sensitive determination of glutamate was fabricated. Scanning electron microscopy was implemented to characterize morphology of the nanocomposite. The biosensor showed optimum response within 25 s at pH 7.5 and 37 °C, at +0.70 V. The linear working range of biosensor for glutamate was from 4.0 × 10-6 to 6.0 × 10-4 M with a detection limit of 2.0 × 10-6 M and sensitivity of 0.73 μA/mM or 7.37 μA/mMcm2. The relatively low Michaelis-Menten constant (1.09 mM) suggested enhanced enzyme affinity to glutamate. The glutamate biosensor lost 45% of its initial activity after three weeks.
Collapse
Affiliation(s)
- Berna Dalkıran
- a Department of Chemistry , Ankara University, Faculty of Science , Tandoğan , Ankara , Turkey
| | - Pınar Esra Erden
- a Department of Chemistry , Ankara University, Faculty of Science , Tandoğan , Ankara , Turkey
| | - Esma Kılıç
- a Department of Chemistry , Ankara University, Faculty of Science , Tandoğan , Ankara , Turkey
| |
Collapse
|
44
|
Eskandari L, Akbarzadeh A, Zarghami N, Rahmati-Yamchi M. Gold nanoprobe-based method for sensing activated leukocyte cell adhesion molecule (ALCAM) gene expression, as a breast cancer biomarker. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:277-282. [DOI: 10.3109/21691401.2016.1146732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Leila Eskandari
- Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
- Tuberculosis and Lung Disease Research Center of Tabriz, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahmati-Yamchi
- Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
- Tuberculosis and Lung Disease Research Center of Tabriz, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
45
|
Asghari F, Samiei M, Adibkia K, Akbarzadeh A, Davaran S. Biodegradable and biocompatible polymers for tissue engineering application: a review. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:185-192. [DOI: 10.3109/21691401.2016.1146731] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Fatemeh Asghari
- Department of Medical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Endododntics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Samiei
- Department of Medical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Endododntics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
46
|
Ahmadi-Aghkand F, Gholizadeh-Ghaleh Aziz S, Panahi Y, Daraee H, Gorjikhah F, Gholizadeh-Ghaleh Aziz S, Hsanzadeh A, Akbarzadeh A. Recent prospective of nanofiber scaffolds fabrication approaches for skin regeneration. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1635-41. [DOI: 10.3109/21691401.2015.1111232] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|