1
|
Alves D, Araújo JC, Fangueiro R, Ferreira DP. Localized Therapeutic Approaches Based on Micro/Nanofibers for Cancer Treatment. Molecules 2023; 28:molecules28073053. [PMID: 37049815 PMCID: PMC10096407 DOI: 10.3390/molecules28073053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Cancer remains one of the most challenging health problems worldwide, and localized therapeutic approaches based on micro/nanofibers have shown potential for its treatment. Micro/nanofibers offer several advantages as a drug delivery system, such as high surface area, tunable pore size, and sustained release properties, which can improve drug efficacy and reduce side effects. In addition, functionalization of these fibers with nanoparticles can enhance their targeting and therapeutic capabilities. Localized delivery of drugs and/or other therapeutic agents via micro/nanofibers can also help to overcome the limitations of systemic administration, such as poor bioavailability and off-target effects. Several studies have shown promising results in preclinical models of cancer, including inhibition of tumor growth and improved survival rates. However, more research is needed to overcome technical and regulatory challenges to bring these approaches to clinical use. Localized therapeutic approaches based on micro/nanofibers hold great promise for the future of cancer treatment, providing a targeted, effective, and minimally invasive alternative to traditional treatments. The main focus of this review is to explore the current treatments utilizing micro/nanofibers, as well as localized drug delivery systems that rely on fibrous structures to deliver and release drugs for the treatment of cancer in a specific area.
Collapse
|
2
|
Farooq N, Ather L, Shafiq M, Nawaz-Ul-Rehman MS, Haseeb M, Anjum T, Abbas Q, Hussain M, Ali N, Asad Abbas SAA, Mushtaq S, Haider MS, Sadiq S, Shahid MA. Magnetofection approach for the transformation of okra using green iron nanoparticles. Sci Rep 2022; 12:16568. [PMID: 36195624 PMCID: PMC9532403 DOI: 10.1038/s41598-022-20569-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 09/15/2022] [Indexed: 11/18/2022] Open
Abstract
Climate change, pesticide resistance, and the need for developing new plant varieties have galvanized biotechnologists to find new solutions in order to produce transgenic plants. Over the last decade scientists are working on green metallic nanoparticles to develop DNA delivery systems for plants. In the current study, green Iron nanoparticles were synthesized using leaf extract of Camellia sinensis (green tea) and Iron Chloride (FeCl3), the characterization and Confirmation was done using UV-VIS Spectroscopy, FTIR, SEM, and TEM. Using these nanoparticles, a novel method of gene transformation in okra plants was developed, with a combination of different Magnetofection factors. Maximum gene transformation efficiency was observed at the DNA to Iron-nanoparticles ratio of 1:20, by rotation of mixture (Plasmid DNA, Iron-nanoparticles, and seed embryo) at 800 rpm for 5 h. Using this approach, the transformation of the GFP (green fluorescent protein) gene was successfully carried out in Abelmoschus esculentus (Okra plant). The DNA transformation was confirmed by observing the expression of transgene GFP via Laser Scanning Confocal Microscope (LSCM) and PCR. This method is highly economical, adaptable, genotype independent, eco-friendly, and time-saving as well. We infer that this approach can be a potential solution to combat the yield and immunity challenges of plants against pathogens.
Collapse
Affiliation(s)
- Naila Farooq
- Department of Biotechnology, Lahore Garrison University, P.O BOX. 54000, Lahore, Pakistan
| | - Laraib Ather
- Department of Biotechnology, Lahore Garrison University, P.O BOX. 54000, Lahore, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan.
| | | | - Muhammad Haseeb
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Tehmina Anjum
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Qamar Abbas
- Department of Biotechnology, Lahore Garrison University, P.O BOX. 54000, Lahore, Pakistan
| | - Mujahid Hussain
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Numan Ali
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Syed Agha Armaghan Asad Abbas
- Department of Agronomy, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Sehrish Mushtaq
- Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Muhammad Saleem Haider
- Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Saleha Sadiq
- Institute of Biochemistry, Biotechnology, and Bioinformatics (IBBB), The Islamia University of Bahawalpur, P.O BOX. 63100, Bahawalpur, Pakistan
| | - Muhammad Adnan Shahid
- North Florida Research and Education Center, 155 Research Rd., Quincy, FL, 32351, USA.
| |
Collapse
|
3
|
Amo-Duodu G, Tetteh EK, Rathilal S, Chollom MN. Assessment of Magnetic Nanomaterials for Municipality Wastewater Treatment Using Biochemical Methane Potential (BMP) Tests. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9805. [PMID: 36011432 PMCID: PMC9408801 DOI: 10.3390/ijerph19169805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Wastewater as a substrate potential for producing renewable energy in the form of biogas is gaining global attention. Herein, nanomaterials can be utilised as a nutrient source for microorganisms for anaerobic digestion activity. Therefore, this study explored the impact of seven different magnetic nanomaterials (MNMs) on the anaerobic digestion of wastewater via biochemical methane potential (BMP) tests for biogas production. The BMP assay was carried out with eight bioreactors, where each was charged with 50% wastewater and 30% activated sludge, leaving a headspace of 20%. Aside the control bioreactor, the other seven (7) bioreactors were dosed with 1.5 g of MNMs. This was operated under anaerobic conditions at a mesophilic temperature of 35 °C for 31 days. At the degree of 80% degradation of contaminants, the results that showed bioreactors charged with 1.5 g MNMs of TiO2 photocatalyst composites were more effective than those constituting metallic composites, whereas the control achieved 65% degradation. Additionally, the bioreactor with magnetite (Fe3O4) produced the highest cumulative biogas of 1172 mL/day. Kinetically, the modified Gompertz model favoured the cumulative biogas data obtained with a significant regression coefficient (R2) close to one.
Collapse
|
4
|
Farmand M, Jahanpeyma F, Gholaminejad A, Azimzadeh M, Malaei F, Shoaie N. Carbon nanostructures: a comprehensive review of potential applications and toxic effects. 3 Biotech 2022; 12:159. [PMID: 35814038 PMCID: PMC9259781 DOI: 10.1007/s13205-022-03175-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/25/2022] [Indexed: 12/17/2022] Open
Abstract
There is no doubt that nanotechnology has revolutionized our life since the 1970s when it was first introduced. Nanomaterials have helped us to improve the current products and services we use. Among the different types of nanomaterials, the application of carbon-based nanomaterials in every aspect of our lives has rapidly grown over recent decades. This review discusses recent advances of those applications in distinct categories, including medical, industrial, and environmental applications. The first main section introduces nanomaterials, especially carbon-based nanomaterials. In the first section, we discussed medical applications, including medical biosensors, drug and gene delivery, cell and tissue labeling and imaging, tissue engineering, and the fight against bacterial and fungal infections. The next section discusses industrial applications, including agriculture, plastic, electronic, energy, and food industries. In addition, the environmental applications, including detection of air and water pollutions and removal of environmental pollutants, were vastly reviewed in the last section. In the conclusion section, we discussed challenges and future perspectives.
Collapse
Affiliation(s)
- Maryam Farmand
- Department of Biology, Tehran University, PO Box: 14155-6619, Tehran, Iran
| | - Fatemeh Jahanpeyma
- Department of Medical Biotechnology, Faculty of Medical Science, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran
| | - Alieh Gholaminejad
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, PO Box: 73461-81746, Isfahan, Iran
| | - Mostafa Azimzadeh
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, PO Box: 89195-999, Yazd, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, PO Box: 89195-999, Yazd, Iran
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, PO Box: 8916188635, Yazd, Iran
| | - Fatemeh Malaei
- Department of Medical Biotechnology, Faculty of Medical Science, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran
| | - Nahid Shoaie
- Department of Medical Biotechnology, Faculty of Medical Science, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran
| |
Collapse
|
5
|
Abu-El-Rub E, Khasawneh RR, Almahasneh F. Prodigious therapeutic effects of combining mesenchymal stem cells with magnetic nanoparticles. World J Stem Cells 2022; 14:513-526. [PMID: 36157526 PMCID: PMC9350622 DOI: 10.4252/wjsc.v14.i7.513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/18/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have gained wide-ranging reputation in the medical research community due to their promising regenerative abilities. MSCs can be isolated from various resources mostly bone marrow, Adipose tissues and Umbilical cord. Huge advances have been achieved in comprehending the possible mechanisms underlying the therapeutic functions of MSCs. Despite the proven role of MSCs in repairing and healing of many disease modalities, many hurdles hinder the transferring of these cells in the clinical settings. Among the most reported problems encountering MSCs therapy in vivo are loss of tracking signal post-transplantation, insufficient migration, homing and engraftment post-infusion, and undesirable differentiation at the site of injury. Magnetic nano particles (MNPs) have been used widely for various biomedical applications. MNPs have a metallic core stabilized by an outer coating material and their ma gnetic properties can be modulated by an external magnetic field. These magnetic properties of MNPs were found to enhance the quality of diagnostic imaging procedures and can be used to create a carrying system for targeted delivery of therapeutic substances mainly drug, genes and stem cells. Several studies highlighted the advantageous outcomes of combining MSCs with MNPs in potentiating their tracking, monitoring, homing, engraftment and differentiation. In this review, we will discuss the role of MNPs in promoting the therapeutic profile of MSCs which may improve the success rate of MSCs transplantation and solve many challenges that delay their clinical applicability.
Collapse
Affiliation(s)
- Ejlal Abu-El-Rub
- Department of Physiology and Pathophysiology, Yarmouk University, Irbid 21163, Jordan
| | - Ramada R Khasawneh
- Department of Anatomy and Histology, Yarmouk University, Irbid 21163, Jordan.
| | - Fatimah Almahasneh
- Department of Physiology and Pathophysiology, Yarmouk University, Irbid 21163, Jordan
| |
Collapse
|
6
|
McNulty MJ, Schwartz A, Delzio J, Karuppanan K, Jacobson A, Hart O, Dandekar A, Giritch A, Nandi S, Gleba Y, McDonald KA. Affinity Sedimentation and Magnetic Separation With Plant-Made Immunosorbent Nanoparticles for Therapeutic Protein Purification. Front Bioeng Biotechnol 2022; 10:865481. [PMID: 35573255 PMCID: PMC9092175 DOI: 10.3389/fbioe.2022.865481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
The virus-based immunosorbent nanoparticle is a nascent technology being developed to serve as a simple and efficacious agent in biosensing and therapeutic antibody purification. There has been particular emphasis on the use of plant virions as immunosorbent nanoparticle chassis for their diverse morphologies and accessible, high yield manufacturing via plant cultivation. To date, studies in this area have focused on proof-of-concept immunosorbent functionality in biosensing and purification contexts. Here we consolidate a previously reported pro-vector system into a single Agrobacterium tumefaciens vector to investigate and expand the utility of virus-based immunosorbent nanoparticle technology for therapeutic protein purification. We demonstrate the use of this technology for Fc-fusion protein purification, characterize key nanomaterial properties including binding capacity, stability, reusability, and particle integrity, and present an optimized processing scheme with reduced complexity and increased purity. Furthermore, we present a coupling of virus-based immunosorbent nanoparticles with magnetic particles as a strategy to overcome limitations of the immunosorbent nanoparticle sedimentation-based affinity capture methodology. We report magnetic separation results which exceed the binding capacity reported for current industry standards by an order of magnitude.
Collapse
Affiliation(s)
- Matthew J. McNulty
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | | | - Jesse Delzio
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Kalimuthu Karuppanan
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Aaron Jacobson
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Olivia Hart
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Abhaya Dandekar
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | | | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
- Global HealthShare® Initiative, University of California, Davis, Davis, CA, United States
| | | | - Karen A. McDonald
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
- Global HealthShare® Initiative, University of California, Davis, Davis, CA, United States
- *Correspondence: Karen A. McDonald,
| |
Collapse
|
7
|
Shtykalova S, Egorova A, Maretina M, Baranov V, Kiselev A. Magnetic Nanoparticles as a Component of Peptide-Based DNA Delivery System for Suicide Gene Therapy of Uterine Leiomyoma. Bioengineering (Basel) 2022; 9:bioengineering9030112. [PMID: 35324801 PMCID: PMC8945779 DOI: 10.3390/bioengineering9030112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 11/24/2022] Open
Abstract
Suicidegene therapy is considered a promising approach for the treatment of uterine leiomyoma (UL), a benign tumor in women characterized by precise localization. In this study, we investigate the efficiency of αvβ3 integrin-targeted arginine-rich peptide carrier R6p-cRGD electrostatically bound to magnetic nanoparticles (MNPs) for targeted DNA delivery into the UL cells. The physico–chemical and cytotoxic properties, transfection efficiency, and specificity of R6p-cRGD/DNA/MNPs polyplexes were evaluated. The addition of MNPs resulted in a decrease in the time needed for successful transfection with simultaneous increase in efficiency. We revealed a therapeutic effect on primary UL cells after delivery of plasmid encoding the herpes simplex virus type 1 (HSV-1) thymidine kinase gene. Treatment with ganciclovir resulted in 20% efficiency of suicide gene therapy in UL cells transfected with the pPTK-1 plasmid. Based on these results, we conclude that the use of cationic peptide carriers with MNPs can be promising for the development of modular non-viral carriers for suicide gene delivery to UL cells.
Collapse
|
8
|
Ullah Khan A, Chen L, Ge G. Recent development for biomedical applications of magnetic nanoparticles. INORG CHEM COMMUN 2021; 134:108995. [PMID: 34658663 PMCID: PMC8500685 DOI: 10.1016/j.inoche.2021.108995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022]
Abstract
In recent decades, the use of engineered nanoparticles has been increasing in various sectors, including biomedicine, diagnosis, water treatment, and environmental remediation leading to significant public concerns. Among these nanoparticles, magnetic nanoparticles (MNPs) have gained many attentions in medicine, pharmacology, drug delivery system, molecular imaging, and bio-sensing due to their various properties. In addition, various studies have reviewed MNPs main applications in the biomedical engineering area with intense progress and recent achievements. Nanoparticles, especially the magnetic nanoparticles, have recently been confirmed with excellent antiviral activity against different viruses, including SARS-CoV-2(Covid-19) and their recent development against Covid-19 also has also been discussed. This review aims to highlight the recent development of the magnetic nanoparticles and their biomedical applications such as diagnosis of diseases, molecular imaging, hyperthermia, bio-sensing, gene therapy, drug delivery and the diagnosis of Covid-19.
Collapse
Affiliation(s)
- Atta Ullah Khan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, China
| | - Lan Chen
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, China
| | - Guanglu Ge
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, China
| |
Collapse
|
9
|
Karal MAS, Ahamed MK, Ahmed M, Mahbub ZB. Recent developments in the kinetics of ruptures of giant vesicles under constant tension. RSC Adv 2021; 11:29598-29619. [PMID: 35479542 PMCID: PMC9040846 DOI: 10.1039/d1ra04647k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/17/2021] [Indexed: 01/03/2023] Open
Abstract
External tension in membranes plays a vital role in numerous physiological and physicochemical phenomena. In this review, recent developments in the constant electric- and mechanical-tension-induced rupture of giant unilamellar vesicles (GUVs) are considered. We summarize the results relating to the kinetics of GUV rupture as a function of membrane surface charge, ions in the bathing solution, lipid composition, cholesterol content in the membrane, and osmotic pressure. The mechanical stability and line tension of the membrane under these conditions are discussed. The membrane tension due to osmotic pressure and the critical tension of rupture for various membrane compositions are also discussed. The results and their analysis provide a biophysical description of the kinetics of rupture, along with insight into biological processes. Future directions and possible developments in this research area are included.
Collapse
Affiliation(s)
- Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology Dhaka-1000 Bangladesh +880-2-58613046 +880-2-9665613
| | - Md Kabir Ahamed
- Department of Physics, Bangladesh University of Engineering and Technology Dhaka-1000 Bangladesh +880-2-58613046 +880-2-9665613
| | - Marzuk Ahmed
- Department of Physics, Bangladesh University of Engineering and Technology Dhaka-1000 Bangladesh +880-2-58613046 +880-2-9665613
| | - Zaid Bin Mahbub
- Department of Mathematics and Physics, North South University Dhaka-1229 Bangladesh
| |
Collapse
|
10
|
Soto PA, Vence M, Piñero GM, Coral DF, Usach V, Muraca D, Cueto A, Roig A, van Raap MBF, Setton-Avruj CP. Sciatic nerve regeneration after traumatic injury using magnetic targeted adipose-derived mesenchymal stem cells. Acta Biomater 2021; 130:234-247. [PMID: 34082099 DOI: 10.1016/j.actbio.2021.05.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022]
Abstract
Traumatic peripheral nerve injuries constitute a huge concern to public health. Nerve damage leads to a decrease or even loss of mobility of the innervated area. Adult stem cell therapies have shown some encouraging results and have been identified as promising treatment candidates for nerve regeneration. A major obstacle to that approach is securing a sufficient number of cells at the injured site to produce measurable therapeutic effects. The present work tackles this issue and demonstrates enhanced nerve regeneration ability promoted by magnetic targeted cell therapy in an in vivo Wallerian degeneration model. To this end, adipose-derived mesenchymal stem cells (AdMSC) were loaded with citric acid coated superparamagnetic iron oxide nanoparticles (SPIONs), systemically transplanted and magnetically recruited to the injured sciatic nerve. AdMSC arrival to the injured nerve was significantly increased using magnetic targeting and their beneficial effects surpassed the regenerative properties of the stand-alone cell therapy. AdMSC-SPIONs group showed a partially conserved nerve structure with many intact myelinated axons. Also, a very remarkable restoration in myelin basic protein organization, indicative of remyelination, was observed. This resulted in an improvement in nerve conduction, demonstrating functional recovery. In summary, our results demonstrate that magnetically assisted delivery of AdMSC, using a non-invasive and non-traumatic method, is a highly promising strategy to promote cell recruitment and sciatic nerve regeneration after traumatic injury. Last but not least, our results validate magnetic targeting in vivo exceeding previous reports in less complex models through cell magnetic targeting in vitro and ex vivo. STATEMENT OF SIGNIFICANCE: Traumatic peripheral nerve injuries constitute a huge public health concern. They can lead to a decrease or even loss of mobility of innervated areas. Due to their complex pathophysiology, current pharmacological and surgical approaches are only partially effective. Cell-based therapies have emerged as a useful tool to achieve full tissue regeneration. However, a major bottleneck is securing enough cells at injured sites. Therefore, our proposal combining biological (adipose derived mesenchymal stem cells) and nanotechnological strategies (magnetic targeting) is of great relevance, reporting the first in vivo experiments involving "magnetic stem cell" targeting for peripheral nerve regeneration. Using a non-invasive and non-traumatic method, cell recruitment in the injured nerve was improved, fostering nerve remyelination and functional recovery.
Collapse
Affiliation(s)
- Paula A Soto
- Departamento de Química Biológica, Cátedra de Química Biológica Patológica. Junín 956, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina; Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Junín 956, CONICET, Universidad de Buenos Aires. Buenos Aires, Argentina
| | - Marianela Vence
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Junín 956, CONICET, Universidad de Buenos Aires. Buenos Aires, Argentina
| | - Gonzalo M Piñero
- Departamento de Química Biológica, Cátedra de Química Biológica Patológica. Junín 956, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina; Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Junín 956, CONICET, Universidad de Buenos Aires. Buenos Aires, Argentina
| | - Diego F Coral
- Instituto de Física La Plata (IFLP - CONICET), Departamento de Física, Facultad de Ciencias, Exactas, Universidad Nacional de La Plata (UNLP), c.c. 67, 1900, La Plata, Argentina
| | - Vanina Usach
- Departamento de Química Biológica, Cátedra de Química Biológica Patológica. Junín 956, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina; Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Junín 956, CONICET, Universidad de Buenos Aires. Buenos Aires, Argentina
| | - Diego Muraca
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, R. Sérgio Buarque de Holanda, 777 - 13083-859, Campinas, Brazil
| | - Alicia Cueto
- Hospital Español, Servicio de Neurología. Av. Belgrano 2975 C1209, Buenos Aires, Argentina
| | - Anna Roig
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, 08193 Bellaterra, Catalonia, Spain
| | - Marcela B Fernández van Raap
- Instituto de Física La Plata (IFLP - CONICET), Departamento de Física, Facultad de Ciencias, Exactas, Universidad Nacional de La Plata (UNLP), c.c. 67, 1900, La Plata, Argentina
| | - Clara P Setton-Avruj
- Departamento de Química Biológica, Cátedra de Química Biológica Patológica. Junín 956, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina; Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Junín 956, CONICET, Universidad de Buenos Aires. Buenos Aires, Argentina.
| |
Collapse
|
11
|
Sharma D, Arora S, Singh J, Layek B. A review of the tortuous path of nonviral gene delivery and recent progress. Int J Biol Macromol 2021; 183:2055-2073. [PMID: 34087309 PMCID: PMC8266766 DOI: 10.1016/j.ijbiomac.2021.05.192] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Gene therapy encompasses the transfer of exogenous genetic materials into the patient's target cells to treat or prevent diseases. Nevertheless, the transfer of genetic material into desired cells is challenging and often requires specialized tools or delivery systems. For the past 40 years, scientists are mainly pursuing various viruses as gene delivery vectors, and the overall progress has been slow and far from the expectation. As an alternative, nonviral vectors have gained substantial attention due to their several advantages, including superior safety profile, enhanced payload capacity, and stealth abilities. Since nonviral vectors encounter multiple extra- and intra-cellular barriers limiting the transfer of genetic payload into the target cell nucleus, we have discussed these barriers in detail for this review. A direct approach, utilizing physical methods like electroporation, sonoporation, gene gun, eliminate the requirement for a specific carrier for gene delivery. In contrast, chemical methods of gene transfer exploit natural or synthetic compounds as carriers to increase cellular targeting and gene therapy effectiveness. We have also emphasized the recent advancements aimed at enhancing the current nonviral approaches. Therefore, in this review, we have focused on discussing the current evolving state of nonviral gene delivery systems and their future perspectives.
Collapse
Affiliation(s)
- Divya Sharma
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA
| | - Sanjay Arora
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA
| | - Buddhadev Layek
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA.
| |
Collapse
|
12
|
Name LL, Toma SH, Pereira Nogueira H, Avanzi LH, Pereira RDS, Peffi Ferreira LF, Araki K, Cella R, Toyama MM. Phosphotungstic acid impregnated niobium coated superparamagnetic iron oxide nanoparticles as recyclable catalyst for selective isomerization of terpenes. RSC Adv 2021; 11:14203-14212. [PMID: 35423922 PMCID: PMC8697717 DOI: 10.1039/d1ra00012h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
Conversion efficiency as high as 80-100% and 50% selectivity for camphene and limonene was achieved with low production of polymeric byproducts (18-28%), easy recovery with a magnet and reuse for up to five cycles maintaining similar activity and distribution of products, using a new magnetically recyclable catalyst based on niobium oxide coated on superparamagnetic iron oxide nanoparticles (SPION) impregnated with phosphotungstic acid (HPW). The catalyst was demonstrated to be effective in the selective conversion of alpha and beta-pinenes into valuable terpenes, under ultrasonic probe activation and with toluene as solvent. A unique synergic effect between the components generating more active and selective catalytic sites was demonstrated, indicating that the SPION covered with 30 wt% of Nb2O5 gives the best performance when impregnated with HPW as co-catalyst. The materials were fully characterized by XRD, EDX, XPS, TEM, BET, VSM and FTIR.
Collapse
Affiliation(s)
- Luccas Lossano Name
- Department of Chemistry Engineering FEI University 3972B - Assunção - São Bernardo do Campo São Paulo CEP 09850-901 Brazil
| | - Sergio Hiroshi Toma
- Department of Fundamental Chemistry Institute of Chemistry, University of São Paulo, IQUSP Av Lineu Prestes, 748 - Cidade Universitária CEP 05508-000 São Paulo Brazil marcosmakotoyama@gmail
| | - Helton Pereira Nogueira
- Department of Fundamental Chemistry Institute of Chemistry, University of São Paulo, IQUSP Av Lineu Prestes, 748 - Cidade Universitária CEP 05508-000 São Paulo Brazil marcosmakotoyama@gmail
| | - Luis Humberto Avanzi
- Department of Physics FEI University 3972B - Assunção - São Bernardo do Campo São Paulo CEP 09850-901 Brazil
| | - Rafael Dos Santos Pereira
- Department of Physics, Universidade Federal do ABC, Centro de Ciências Naturais e Humanas Avenida dos Estados, 5001 - Bloco A - Torre 3 - Lab. L704-3 - 09210580 - Bangu - Santo André SP Brazil
| | - Luis Fernando Peffi Ferreira
- Department of Chemistry Engineering FEI University 3972B - Assunção - São Bernardo do Campo São Paulo CEP 09850-901 Brazil
| | - Koiti Araki
- Department of Fundamental Chemistry Institute of Chemistry, University of São Paulo, IQUSP Av Lineu Prestes, 748 - Cidade Universitária CEP 05508-000 São Paulo Brazil marcosmakotoyama@gmail
| | - Rodrigo Cella
- Department of Chemistry Engineering FEI University 3972B - Assunção - São Bernardo do Campo São Paulo CEP 09850-901 Brazil
| | - Marcos Makoto Toyama
- Department of Fundamental Chemistry Institute of Chemistry, University of São Paulo, IQUSP Av Lineu Prestes, 748 - Cidade Universitária CEP 05508-000 São Paulo Brazil marcosmakotoyama@gmail
| |
Collapse
|
13
|
Xiao F, Liu J, Zheng Y, Quan Z, Sun W, Fan Y, Luo C, Li H, Wu X. The targeted inhibition of prostate cancer by iron-based nanoparticles based on bioinformatics. J Biomater Appl 2020; 36:3-14. [PMID: 33283584 PMCID: PMC8217887 DOI: 10.1177/0885328220975249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Prostate cancer is an epithelial malignant tumor of the prostate, and it is one of the malignant tumors with a high incidence of urogenital system in men. The local treatment of prostate cancer is mainly radical resection and radical radiotherapy, but they are not applicable to advanced prostate cancer. Systemic therapy mainly includes targeted therapy and immunotherapy which could cause many complications, and will affect the prognosis and quality of life of patients. It is urgent to find new treatments for prostate cancer. Bioinformatics offers hope for us to find reliable therapeutic targets. Bioinformatics can use the tumor informations in database and analyze them to screen out the best differentially expressed genes. Using the selected differentially expressed genes as targets, a gene interference plasmid was designed, and the constructed plasmid was used for targeted gene therapy. There are some problems about gene therapy that need to be solved, such as how to transfer genes to target cells is also an important challenge. Due to their large molecular weight and hydrophilic nature, they cannot enter cells through passive diffusion mechanisms. Here we synthesized a DNA carrier used surface modified iron based nanoparticles, and used it to load plasmid including ShRNA which can inhibit the expression of oncogene SLC4A4 selected by bioinformatics’ method. After that we use this iron based nanoparticles/plasmid DNA nanocomposite to treat prostate cancer cells in vitro and in vivo. The target gene SLC4A4 we had selected using bioinformatics had a strong effect on the proliferation of prostate cells; Our nanocomposite could inhibit the expression of SLC4A4 effectively, it had strong inhibitory effects on prostate cancer cells both in vivo and in vitro, and can be used as a potential method for prostate cancer treatment.
Collapse
Affiliation(s)
- Feng Xiao
- Department of Urology, Chongqing Medical University First Affiliated Hospital, Chongqing, China
| | - Jiayu Liu
- Department of Urology, Chongqing Medical University First Affiliated Hospital, Chongqing, China
| | - Yongbo Zheng
- Department of Urology, Chongqing Medical University First Affiliated Hospital, Chongqing, China
| | - Zhen Quan
- Department of Urology, Chongqing Medical University First Affiliated Hospital, Chongqing, China
| | - Wei Sun
- Fuling Center Hospital of Chongqing City, Chongqing, China
| | - Yao Fan
- Department of Urology, Chongqing Medical University First Affiliated Hospital, Chongqing, China
| | - Chunli Luo
- Chongqing Medical University, Chongqing, China
| | - Hailiang Li
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiaohou Wu
- Department of Urology, Chongqing Medical University First Affiliated Hospital, Chongqing, China
| |
Collapse
|
14
|
Kumar P, Saini M, Dehiya BS, Sindhu A, Kumar V, Kumar R, Lamberti L, Pruncu CI, Thakur R. Comprehensive Survey on Nanobiomaterials for Bone Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2019. [PMID: 33066127 PMCID: PMC7601994 DOI: 10.3390/nano10102019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
One of the most important ideas ever produced by the application of materials science to the medical field is the notion of biomaterials. The nanostructured biomaterials play a crucial role in the development of new treatment strategies including not only the replacement of tissues and organs, but also repair and regeneration. They are designed to interact with damaged or injured tissues to induce regeneration, or as a forest for the production of laboratory tissues, so they must be micro-environmentally sensitive. The existing materials have many limitations, including impaired cell attachment, proliferation, and toxicity. Nanotechnology may open new avenues to bone tissue engineering by forming new assemblies similar in size and shape to the existing hierarchical bone structure. Organic and inorganic nanobiomaterials are increasingly used for bone tissue engineering applications because they may allow to overcome some of the current restrictions entailed by bone regeneration methods. This review covers the applications of different organic and inorganic nanobiomaterials in the field of hard tissue engineering.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Meenu Saini
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Brijnandan S. Dehiya
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Anil Sindhu
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India;
| | - Vinod Kumar
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (V.K.); (R.T.)
| | - Ravinder Kumar
- School of Mechanical Engineering, Lovely Professional University, Phagwara 144411, India
| | - Luciano Lamberti
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, 70125 Bari, Italy;
| | - Catalin I. Pruncu
- Department of Design, Manufacturing & Engineering Management, University of Strathclyde, Glasgow G1 1XJ, UK
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Rajesh Thakur
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (V.K.); (R.T.)
| |
Collapse
|
15
|
Deepak P, Siddalingam R, Kumar P, Anand S, Thakur S, Jagdish B, Jaiswal S. Gene based nanocarrier delivery for the treatment of hepatocellular carcinoma. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Abdou P, Wang Z, Chen Q, Chan A, Zhou DR, Gunadhi V, Gu Z. Advances in engineering local drug delivery systems for cancer immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1632. [PMID: 32255276 PMCID: PMC7725287 DOI: 10.1002/wnan.1632] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
Cancer immunotherapy aims to leverage the immune system to suppress the growth of tumors and to inhibit metastasis. The recent promising clinical outcomes associated with cancer immunotherapy have prompted research and development efforts towards enhancing the efficacy of immune checkpoint blockade, cancer vaccines, cytokine therapy, and adoptive T cell therapy. Advancements in biomaterials, nanomedicine, and micro-/nano-technology have facilitated the development of enhanced local delivery systems for cancer immunotherapy, which can enhance treatment efficacy while minimizing toxicity. Furthermore, locally administered cancer therapies that combine immunotherapy with chemotherapy, radiotherapy, or phototherapy have the potential to achieve synergistic antitumor effects. Herein, the latest studies on local delivery systems for cancer immunotherapy are surveyed, with an emphasis on the therapeutic benefits associated with the design of biomaterials and nanomedicines. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Peter Abdou
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Zejun Wang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren’ai Road, Suzhou, 215123, Jiangsu, PR China
| | - Amanda Chan
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Daojia R. Zhou
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Vivienne Gunadhi
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Lin M, Xiao Y, Jiang X, Zhang J, Guo T, Shi Y. A Combination Therapy of pHRE-Egr1-HSV-TK/Anti-CD133McAb- 131I/MFH Mediated by FePt Nanoparticles for Liver Cancer Stem Cells. JOURNAL OF NANOMATERIALS 2020; 2020:1-15. [DOI: 10.1155/2020/7180613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
It has been evidenced that liver cancer stem cells (LCSCs) are to blame hepatocellular carcinoma (HCC) occurrence, development, metastasis, and recurrence. Using iron-platinum nanoparticles (FePt-NPs) as a carrier and CD133 antigen as a target, a new strategy to targetly kill LCSCs by integrating HSV-TK suicide gene, 131I nuclide irradiation, and magnetic fluid hyperthermia (MFH) together was designed and investigated in the present study. The results showed that FePt-NPs modified with PEI (PEI-FePt-NPs) could bind with DNA, and the best binding ratio was 1 : 40 (mass ratio). Moreover, DNA binding to PEI-FePt-NPs could refrain from Dnase1 enzyme digestion and could release under certain conditions. LCSCs (CD133+ Huh-7 cells) were transfected with pHRE-Egr1-HSV-TK by PEI-FePt-NPs, and the transfection efficiency was 53.65±3.40%. These data showed a good potential of PEI-FePt-NPs as a gene transfer carrier.131I was labeled with anti-CD133McAb in order to facilitate therapy targeting. The combined intervention of pHRE-Egr1-HSV-TK/anti-CD133McAb-131I/MFH mediated by PEI-FePt-NPs could greatly inhibit LCSCs’ growth and induce cell apoptosis in vitro, significantly higher than any of the individual interventions (p<0.05). This study offers a practicable idea for LCSC treatment, and PEI-FePt-NPs may act as novel nonviral gene vectors and a magnetic induction medium.
Collapse
Affiliation(s)
- Mei Lin
- Clinical Laboratory, Taizhou People’s Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, China
| | - Yanhong Xiao
- Imaging Department, Taizhou People’s Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, China
| | - Xingmao Jiang
- Hubei Key Lab of Novel Reactor & Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jun Zhang
- Isotopic Laboratory, Taizhou People’s Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, China
| | - Ting Guo
- Institute of Clinical Medicine, Taizhou People’s Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, China
| | - Yujuan Shi
- Imaging Department, Taizhou People’s Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, China
| |
Collapse
|
18
|
Improving the Size Homogeneity of Multicore Superparamagnetic Iron Oxide Nanoparticles. Int J Mol Sci 2020; 21:ijms21103476. [PMID: 32423113 PMCID: PMC7279037 DOI: 10.3390/ijms21103476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 11/30/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have been widely explored for use in many biomedical applications. Methods for synthesis of magnetic nanoparticle (MNP), however, typically yield multicore structures with broad size distribution, resulting in suboptimal and variable performance in vivo. In this study, a new method for sorting SPIONs by size, labeled diffusive magnetic fractionation (DMF), is introduced as an improvement over conventional magnetic field flow fractionation (MFFF). Unlike MFFF, which uses a constant magnetic field to capture particles, DMF utilizes a pulsed magnetic field approach that exploits size-dependent differences in the diffusivity and magnetic attractive force of SPIONs to yield more homogenous particle size distributions. To compare both methods, multicore SPIONs with a broad size distribution (polydispersity index (PdI) = 0.24 ± 0.05) were fractionated into nine different-sized SPION subpopulations, and the PdI values were compared. DMF provided significantly improved size separation compared to MFFF, with eight out of the nine fractionations having significantly lower PdI values (p value < 0.01). Additionally, the DMF method showed a high particle recovery (>95%), excellent reproducibility, and the potential for scale-up. Mathematical models were developed to enable optimization, and experimental results confirmed model predictions (R2 = 0.98).
Collapse
|
19
|
Pushing of Magnetic Microdroplet Using Electromagnetic Actuation System. NANOMATERIALS 2020; 10:nano10020371. [PMID: 32093280 PMCID: PMC7075344 DOI: 10.3390/nano10020371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022]
Abstract
Treatment of certain diseases requires the administration of drugs at specific areas of tissues and/or organs to increase therapy effectiveness and avoid side effects that may harm the rest of the body. Drug targeting is a research field that uses various techniques to administrate therapies at specific areas of the body, including magnetic systems able to drive nano “vehicles”, as well as magnetically labeled molecules, in human body fluids and tissues. Most available actuation systems can only attract magnetic elements in a relatively small workspace, limiting drug target applications to superficial tissues, and leaving no alternative cases where deep targeting is necessary. In this paper, we propose an electromagnetic actuation system able to push and deflect magnetic particles at distance of ~10 cm, enabling the manipulation of magnetic nano- and microparticles, as well as administration of drugs in tissues, which are not eligible for localized drug targeting with state-of-the-art systems. Laboratory experiments and modeling were conducted to prove the effectiveness of the proposed system. By further implementing our device, areas of the human body that previously were impossible to treat with magnetically labeled materials such as drugs, cells, and small molecules can now be accessible using the described system.
Collapse
|
20
|
Abstract
Magnetic nanoparticles became increasingly interesting in recent years as a result of their tailorable size-dependent properties, which enable their use in a wide range of applications. One of their emerging applications is biomedicine; in particular, bimetallic nickel/copper magnetic nanoparticles (NiCu MNPs) are gaining momentum as a consequence of their unique properties that are suitable for biomedicine. These characteristics include stability in various chemical environments, proven biocompatibility with various cell types, and tunable magnetic properties that can be adjusted by changing synthesis parameters. Despite the obvious potential of NiCu MNPs for biomedical applications, the general interest in their use for this purpose is rather low. Nevertheless, the steadily increasing annual number of related papers shows that increasingly more researchers in the biomedical field are studying this interesting formulation. As with other MNPs, NiCu-based formulations were examined for their application in magnetic hyperthermia (MH) as one of their main potential uses in clinics. MH is a treatment method in which cancer tissue is selectively heated through the localization of MNPs at the target site in an alternating magnetic field (AMF). This heating destroys cancer cells only since they are less equipped to withstand temperatures above 43 °C, whereas this temperature is not critical for healthy tissue. Superparamagnetic particles (e.g., NiCu MNPs) generate heat by relaxation losses under an AMF. In addition to MH in cancer treatment, which might be their most beneficial potential use in biomedicine, the properties of NiCu MNPs can be leveraged for several other applications, such as controlled drug delivery and prolonged localization at a desired target site in the body. After a short introduction that covers the general properties of NiCu MNPs, this review explores different synthesis methods, along with their main advantages and disadvantages, potential surface modification approaches, and their potential in biomedical applications, such as MH, multimodal cancer therapy, MH implants, antibacterial activity, and dentistry.
Collapse
|
21
|
Dowaidar M, Nasser Abdelhamid H, Hällbrink M, Langel Ü, Zou X. Chitosan enhances gene delivery of oligonucleotide complexes with magnetic nanoparticles-cell-penetrating peptide. J Biomater Appl 2019; 33:392-401. [PMID: 30223733 DOI: 10.1177/0885328218796623] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gene-based therapies, including the delivery of oligonucleotides, offer promising methods for the treatment of cancer cells. However, they have various limitations including low efficiency. Herein, cell-penetrating peptides (CPPs)-conjugated chitosan-modified iron oxide magnetic nanoparticles (CPPs-CTS@MNPs) with high biocompatibility as well as high efficiency were tested for the delivery of oligonucleotides such as plasmid pGL3, splice correction oligonucleotides, and small-interfering RNA. A biocompatible nanocomposite, in which CTS@MNPs was incorporated in non-covalent complex with CPPs-oligonucleotide, is developed. Modifying the surface of magnetic nanoparticles with cationic chitosan-modified iron oxide improved the performance of magnetic nanoparticles-CPPs for oligonucleotide delivery. CPPs-CTS@MNPs complexes enhance oligonucleotide transfection compared to CPPs@MNPs or CPPs. The hydrophilic character of CTS@MNPs improves complexation with plasmid pGL3, splice correction oligonucleotides, and small-interfering RNA payload, which consequently resulted in not only strengthening the colloidal stability of the constructed complex but also improving their biocompatibility. Transfection using PF14-splice correction oligonucleotides-CTS@MNPs showed sixfold increase of the transfection compared to splice correction oligonucleotides-PF14 that showed higher transfection than the commercially available lipid-based vector Lipofectamine™ 2000. Nanoscaled CPPs-CTS@MNPs comprise a new family of biomaterials that can circumvent some of the limitations of CPPs or magnetic nanoparticles.
Collapse
Affiliation(s)
- Moataz Dowaidar
- 1 Department of Biochemistry and Biophysics, Stockholm University
| | - Hani Nasser Abdelhamid
- 2 Department of Chemistry, Faculty of Science, Assuit University Assuit, Egypt.,3 Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | | | - Ülo Langel
- 1 Department of Biochemistry and Biophysics, Stockholm University
| | - Xiaodong Zou
- 3 Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|
22
|
Asik E, Akpinar Y, Caner A, Kahraman N, Guray T, Volkan M, Albarracin C, Pataer A, Arun B, Ozpolat B. EF2-kinase targeted cobalt-ferrite siRNA-nanotherapy suppresses BRCA1-mutated breast cancer. Nanomedicine (Lond) 2019; 14:2315-2338. [DOI: 10.2217/nnm-2019-0132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: To investigate the role of EF2K in BRCA1-mutated breast cancer. Materials & methods: We developed silica coated cobalt-ferrite (CoFe) nanoparticles for in vivo delivery of small interfering RNAs (siRNAs) into BRCA1-mutated breast cancer. Results: Expression of EF2K is highly upregulated in the majority (78.5%) of BRCA1-mutated patients and significantly associated with poor patient survival and metastasis. Silencing of EF2K reduced cell proliferation, migration and invasion of the cancer cells. In vivo therapeutic targeting of EF2K by CoFe-siRNA-nanoparticles leads to sustained EF2K gene knockdown and suppressed tumor growth in orthotopic xenograft models of BRCA1-mutated breast cancer. Conclusion: EF2K is a potential novel molecular target in BRCA1-mutated tumors and CoFe-based siRNA nanotherapy may be used as a novel approach to target EF2K.
Collapse
Affiliation(s)
- Elif Asik
- Department of Experimental Therapeutics, The University of Texas-MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey
| | - Yeliz Akpinar
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
- Department of Chemistry, Kırsehir Ahi Evran University, Kırsehir 40100, Turkey
| | - Ayse Caner
- Department of Experimental Therapeutics, The University of Texas-MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Nermin Kahraman
- Department of Experimental Therapeutics, The University of Texas-MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Tulin Guray
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey
| | - Murvet Volkan
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| | - Constance Albarracin
- Department of Pathology, Division of Pathology/Lab Medicine, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Apar Pataer
- Department of Thoracic Surgery, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Banu Arun
- Departments of Breast Medical Oncology & Breast Cancer Genetics, The University of Texas-MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas-MD Anderson Cancer Center, Houston, TX 77054, USA
- Center for RNA Interference & Non-Coding RNA, The University of Texas-MD Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|
23
|
Zuvin M, Kuruoglu E, Kaya VO, Unal O, Kutlu O, Yagci Acar H, Gozuacik D, Koşar A. Magnetofection of Green Fluorescent Protein Encoding DNA-Bearing Polyethyleneimine-Coated Superparamagnetic Iron Oxide Nanoparticles to Human Breast Cancer Cells. ACS OMEGA 2019; 4:12366-12374. [PMID: 31460354 PMCID: PMC6682024 DOI: 10.1021/acsomega.9b01000] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/04/2019] [Indexed: 05/05/2023]
Abstract
Gene therapy is a developing method for the treatment of various diseases. For this purpose, the search for nonviral methods has recently accelerated to avoid toxic effects. A strong alternative method is magnetofection, which involves the use of superparamagnetic iron oxide nanoparticles (SPIONs) with a proper organic coating and external magnetic field to enhance the localization of SPIONs at the target site. In this study, a new magnetic actuation system consisting of four rare-earth magnets on a rotary table was designed and manufactured to obtain improved magnetofection. As a model, green fluorescent protein DNA-bearing polyethyleneimine-coated SPIONs were used. Magnetofection was tested on MCF7 cells. The system reduced the transfection time (down to 1 h) of the standard polyethyleneimine transfection protocol. As a result, we showed that the system could be effectively used for gene transfer.
Collapse
Affiliation(s)
- Merve Zuvin
- Mechatronics
Engineering Program, Faculty of Engineering and Natural
Sciences, Molecular Biology, Genetics and Bioengineering Program, Faculty of
Engineering and Natural Sciences, and Center of Excellence for Functional
Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Orhanli, 34956 Tuzla, Istanbul, Turkey
| | - Efe Kuruoglu
- Mechatronics
Engineering Program, Faculty of Engineering and Natural
Sciences, Molecular Biology, Genetics and Bioengineering Program, Faculty of
Engineering and Natural Sciences, and Center of Excellence for Functional
Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Orhanli, 34956 Tuzla, Istanbul, Turkey
| | - Veysel Ogulcan Kaya
- Mechatronics
Engineering Program, Faculty of Engineering and Natural
Sciences, Molecular Biology, Genetics and Bioengineering Program, Faculty of
Engineering and Natural Sciences, and Center of Excellence for Functional
Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Orhanli, 34956 Tuzla, Istanbul, Turkey
| | - Ozlem Unal
- Department
of Chemistry, Faculty of Arts and Sciences, Koc University, 34450 Sariyer, Istanbul, Turkey
| | - Ozlem Kutlu
- Mechatronics
Engineering Program, Faculty of Engineering and Natural
Sciences, Molecular Biology, Genetics and Bioengineering Program, Faculty of
Engineering and Natural Sciences, and Center of Excellence for Functional
Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Orhanli, 34956 Tuzla, Istanbul, Turkey
- SUNUM
Nanotechnology Research and Application Center, Orhanli, 34956 Tuzla, Istanbul, Turkey
| | - Havva Yagci Acar
- Mechatronics
Engineering Program, Faculty of Engineering and Natural
Sciences, Molecular Biology, Genetics and Bioengineering Program, Faculty of
Engineering and Natural Sciences, and Center of Excellence for Functional
Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Orhanli, 34956 Tuzla, Istanbul, Turkey
- Department
of Chemistry, Faculty of Arts and Sciences, Koc University, 34450 Sariyer, Istanbul, Turkey
| | - Devrim Gozuacik
- Mechatronics
Engineering Program, Faculty of Engineering and Natural
Sciences, Molecular Biology, Genetics and Bioengineering Program, Faculty of
Engineering and Natural Sciences, and Center of Excellence for Functional
Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Orhanli, 34956 Tuzla, Istanbul, Turkey
- SUNUM
Nanotechnology Research and Application Center, Orhanli, 34956 Tuzla, Istanbul, Turkey
| | - Ali Koşar
- Mechatronics
Engineering Program, Faculty of Engineering and Natural
Sciences, Molecular Biology, Genetics and Bioengineering Program, Faculty of
Engineering and Natural Sciences, and Center of Excellence for Functional
Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Orhanli, 34956 Tuzla, Istanbul, Turkey
- SUNUM
Nanotechnology Research and Application Center, Orhanli, 34956 Tuzla, Istanbul, Turkey
| |
Collapse
|
24
|
SPIONs Prepared in Air through Improved Synthesis Methodology: The Influence of γ-Fe 2O 3/Fe 3O 4 Ratio and Coating Composition on Magnetic Properties. NANOMATERIALS 2019; 9:nano9070943. [PMID: 31261832 PMCID: PMC6669523 DOI: 10.3390/nano9070943] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 01/19/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have shown great potential in biomedicine due to their high intrinsic magnetization behaviour. These are small particles of magnetite or maghemite, and when coated, their surface oxidation is prevented, their aggregation tendency is reduced, their dispersity is improved, and the stability and blood circulation time are increased, which are mandatory requirements in biomedical applications. In this work, SPIONs were synthesized in air through a reduction-precipitation method and coated with four different polymers (Polyethylene glycol(PEG) 1000/6000 and dextran T10/T70). All the synthesized samples were structurally and magnetically characterized by transmission electron microscopy, Fourier transform infra-red spectroscopy, X-ray powder diffraction, Mössbauer spectroscopy, and Superconducting Quantum Interference Device (SQUID) magnetometry. SPIONs centrifuged and dried in vacuum with an average diameter of at least 7.5 nm and a composition ≤60% of maghemite and ≥40% of magnetite showed the best magnetization results, namely a saturation magnetization of ~64 emu/g at 300 K, similar to the best reported values for SPIONs prepared in controlled atmosphere. As far as SPIONs’ coatings are concerned, during their preparation procedure, surface polymers must be introduced after the SPIONs’ precipitation. Furthermore, polymers with shorter chains do not affect the SPIONs’ magnetization performance, although longer chain polymers significantly decrease the coated particle magnetization values, which is undesirable.
Collapse
|
25
|
Farjadian F, Ghasemi A, Gohari O, Roointan A, Karimi M, Hamblin MR. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine (Lond) 2019; 14:93-126. [PMID: 30451076 PMCID: PMC6391637 DOI: 10.2217/nnm-2018-0120] [Citation(s) in RCA: 305] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/15/2018] [Indexed: 12/23/2022] Open
Abstract
There has been a revolution in nanotechnology and nanomedicine. Since 1980, there has been a remarkable increase in approved nano-based pharmaceutical products. These novel nano-based systems can either be therapeutic agents themselves, or else act as vehicles to carry different active pharmaceutical agents into specific parts of the body. Currently marketed nanostructures include nanocrystals, liposomes and lipid nanoparticles, PEGylated polymeric nanodrugs, other polymers, protein-based nanoparticles and metal-based nanoparticles. A range of issues must be addressed in the development of these nanostructures. Ethics, market size, possibility of market failure, costs and commercial development, are some topics which are on the table to be discussed. After passing all the ethical and biological assessments, and satisfying the investors as to future profitability, only a handful of these nanoformulations, successfully obtained marketing approval. We survey the range of nanomedicines that have received regulatory approval and are marketed. We discuss ethics, costs, commercial development and possible market failure. We estimate the global nanomedicine market size and future growth. Our goal is to summarize the different approved nanoformulations on the market, and briefly cover the challenges and future outlook.
Collapse
Affiliation(s)
- Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Amir Ghasemi
- Department of Materials Science & Engineering, Sharif University of Technology, Tehran 11365-9466, Iran
- Advances Nanobiotechnology & Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14496-4535, Iran
| | - Omid Gohari
- Department of Materials Science & Engineering, Sharif University of Technology, Tehran 11365-9466, Iran
| | - Amir Roointan
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Science, Shiraz 71348-14336, Iran
| | - Mahdi Karimi
- Cellular & Molecular Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard – MIT Division of Health Sciences & Technology, Cambridge, MA 02139, USA
| |
Collapse
|
26
|
Lateral Tension-Induced Penetration of Particles into a Liposome. MATERIALS 2017; 10:ma10070765. [PMID: 28773125 PMCID: PMC5551808 DOI: 10.3390/ma10070765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 12/03/2022]
Abstract
It is important that we understand the mechanism of the penetration of particles into a living cell to achieve advances in bionanotechnology, such as for treatment, visualization within a cell, and genetic modification. Although there have been many studies on the application of functional particles to cells, the basic mechanism of penetration across a biological membrane is still poorly understood. Here we used a model membrane system to demonstrate that lateral membrane tension drives particle penetration across a lipid bilayer. After the application of osmotic pressure, fully wrapped particles on a liposome surface were found to enter the liposome. We discuss the mechanism of the tension-induced penetration in terms of narrow constriction of the membrane at the neck part. The present findings are expected to provide insight into the application of particles to biological systems.
Collapse
|
27
|
Aşık E, Akpınar Y, Güray NT, İşcan M, Demircigil GÇ, Volkan M. Cellular uptake, genotoxicity and cytotoxicity of cobalt ferrite magnetic nanoparticles in human breast cells. Toxicol Res (Camb) 2016; 5:1649-1662. [PMID: 30090464 PMCID: PMC6062407 DOI: 10.1039/c6tx00211k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/01/2016] [Indexed: 01/10/2023] Open
Abstract
Magnetic nanoparticles (MNPs) have been increasingly used for many years as MRI agents and for gene delivery and hyperthermia therapy, although there have been conflicting results on their safety. In this study, cobalt ferrite magnetic nanoparticles (CoFe-MNPs) were prepared by the co-precipitation method and their surfaces were modified with silica by the sol-gel method. The particle and hydrodynamic sizes, morphology and crystal structure of the bare and silica-coated CoFe-MNPs were evaluated by transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction spectroscopy (XRD) and Fourier transform infrared spectroscopy (FTIR). The size of the bare CoFe-MNPs was in the range 8-20 nm and they were homogeneously coated with 3-4 nm silica shells. The bare and silica-coated CoFe-MNPs were agglomerated at physiological pH. However, the sizes of the agglomerates were below 200 nm both in water and complete medium. The cytotoxic and genotoxic potentials of the bare and silica-coated CoFe-MNPs were evaluated in a metastatic breast cancer cell line, MDA-MB-231, as well as a noncancerous mammary epithelial cell line, MCF-10A, by using XTT cytotoxicity, single-cell gel electrophoresis (comet), and cytokinesis-blocked (CB) micronucleus (CBMN) assays. Characterization studies with TEM, inductively coupled plasma optical emission spectroscopy (ICP-OES) and Prussian blue staining indicated that the CoFe-MNPs were internalized into the cells by energy-dependent endocytosis. The highest amount of uptake was observed in the cancer cells and the uptake of the silica-coated CoFe-MNPs was higher than that of the bare ones in both cell lines. The bare CoFe-MNPs showed higher levels of both cytotoxicity and genotoxicity than the silica-coated CoFe-MNPs. Moreover, the cancer cells seemed to be more susceptible to the CoFe-MNPs' toxicity compared to the noncancerous cells. There was a concentration and time-dependent increase in DNA damage and the micronucleus (MN) frequency, which was statistically significant starting with the lowest concentration of bare CoFe-MNPs (p < 0.05), while no significance was observed below the concentration of 250 μg mL-1 for the silica-coated MNPs. Also, the extent of both DNA damage and MN frequency was much higher in the cancer cells compared to the noncancerous cells. According to our results, the silica coating ameliorated both the cytotoxicity and genotoxicity as well the internalization of the CoFe-MNPs.
Collapse
Affiliation(s)
- Elif Aşık
- Department of Biotechnology , Middle East Technical University , Ankara 06800 , Turkey
| | - Yeliz Akpınar
- Department of Chemistry , Middle East Technical University , Ankara 06800 , Turkey
| | - N Tülin Güray
- Department of Biotechnology , Middle East Technical University , Ankara 06800 , Turkey
- Department of Biological Sciences , Middle East Technical University , Ankara 06800 , Turkey
| | - Mesude İşcan
- Department of Biotechnology , Middle East Technical University , Ankara 06800 , Turkey
- Department of Biological Sciences , Middle East Technical University , Ankara 06800 , Turkey
| | - Gonca Çakmak Demircigil
- Department of Toxicology , Faculty of Pharmacy , Gazi University , Ankara 06330 , Turkey . ; Tel: +90 312 2023089
| | - Mürvet Volkan
- Department of Biotechnology , Middle East Technical University , Ankara 06800 , Turkey
- Department of Chemistry , Middle East Technical University , Ankara 06800 , Turkey
| |
Collapse
|
28
|
|
29
|
Photodegradation of Eosin Y Using Silver-Doped Magnetic Nanoparticles. Int J Anal Chem 2015; 2015:797606. [PMID: 26617638 PMCID: PMC4649070 DOI: 10.1155/2015/797606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/08/2015] [Indexed: 11/23/2022] Open
Abstract
The purification of industrial wastewater from dyes is becoming increasingly important since they are toxic or carcinogenic to human beings. Nanomaterials have been receiving significant attention due to their unique physical and chemical properties compared with their larger-size counterparts. The aim of the present investigation was to fabricate magnetic nanoparticles (MNPs) using a coprecipitation method, followed by coating with silver (Ag) in order to enhance the photocatalytic activity of the MNPs by loading metal onto them. The fabricated magnetic nanoparticles coated with Ag were characterised using different instruments such as a scanning electron microscope (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDAX) spectroscopy, and X-ray diffraction (XRD) analysis. The average size of the magnetic nanoparticles had a mean diameter of about 48 nm, and the average particle size changed to 55 nm after doping. The fabricated Ag-doped magnetic nanoparticles were used for the degradation of eosin Y under UV-lamp irradiation. The experimental results revealed that the use of fabricated magnetic nanoparticles coated with Ag can be considered as reliable methods for the removal of eosin Y since the slope of evaluation of pseudo-first-order rate constant from the slope of the plot between ln(Co/C) and the irradiation time was found to be linear. Ag-Fe3O4 nanoparticles would be considered an efficient photocatalyst to degrade textile dyes avoiding the tedious filtration step.
Collapse
|