1
|
Fei Q, Bentley I, Ghadiali SN, Englert JA. Pulmonary drug delivery for acute respiratory distress syndrome. Pulm Pharmacol Ther 2023; 79:102196. [PMID: 36682407 PMCID: PMC9851918 DOI: 10.1016/j.pupt.2023.102196] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
The acute respiratory distress syndrome (ARDS) is a life-threatening condition that causes respiratory failure. Despite numerous clinical trials, there are no molecularly targeted pharmacologic therapies to prevent or treat ARDS. Drug delivery during ARDS is challenging due to the heterogenous nature of lung injury and occlusion of lung units by edema fluid and inflammation. Pulmonary drug delivery during ARDS offers several potential advantages including limiting the off-target and off-organ effects and directly targeting the damaged and inflamed lung regions. In this review we summarize recent ARDS clinical trials using both systemic and pulmonary drug delivery. We then discuss the advantages of pulmonary drug delivery and potential challenges to its implementation. Finally, we discuss the use of nanoparticle drug delivery and surfactant-based drug carriers as potential strategies for delivering therapeutics to the injured lung in ARDS.
Collapse
Affiliation(s)
- Qinqin Fei
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA; Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA; Department of Biomedical Engineering, The Ohio State University, 140West 19th Avenue, Columbus, OH, 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Ian Bentley
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Samir N Ghadiali
- Department of Biomedical Engineering, The Ohio State University, 140West 19th Avenue, Columbus, OH, 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Joshua A Englert
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
2
|
Salem HF, Moubarak GA, Ali AA, Salama AAA, Salama AH. Budesonide-Loaded Bilosomes as a Targeted Delivery Therapeutic Approach Against Acute Lung Injury in Rats. J Pharm Sci 2023; 112:760-770. [PMID: 36228754 PMCID: PMC9549718 DOI: 10.1016/j.xphs.2022.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/02/2022] [Accepted: 10/02/2022] [Indexed: 11/17/2022]
Abstract
Budesonide (BUD), a glucocorticoids drug, inhibits all steps in the inflammatory response. It can reduce and treat inflammation and other symptoms associated with acute lung injury such as COVID-19. Loading BUD into bilosomes could boost its therapeutic activity, and lessen its frequent administration and side effects. Different bilosomal formulations were prepared where the independent variables were lipid type (Cholesterol, Phospholipon 80H, L-alpha phosphatidylcholine, and Lipoid S45), bile salt type (Na cholate and Na deoxycholate), and drug concentration (10, 20 mg). The measured responses were: vesicle size, entrapment efficiency, and release efficiency. One optimum formulation (composed of cholesterol, Na cholate, and 10 mg of BUD) was selected and investigated for its anti-inflammatory efficacy in vivo using Wistar albino male rats. Randomly allocated rats were distributed into four groups: The first: normal control group and received intranasal saline, the second one acted as the acute lung injury model received intranasal single dose of 2 mg/kg potassium dichromate (PD). Whereas the third and fourth groups received the market product (Pulmicort® nebulising suspension 0.5 mg/ml) and the optimized formulation (0.5 mg/kg; intranasal) for 7 days after PD instillation, respectively. Results showed that the optimized formulation decreased the pro-inflammatory cytokines TNF-α, and TGF-β contents as well as reduced PKC content in lung. These findings suggest the potentiality of BUD-loaded bilosomes for the treatment of acute lung injury with the ability of inhibiting the pro-inflammatory cytokines induced COVID-19.
Collapse
Affiliation(s)
- Heba F Salem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ghada Abdelsabour Moubarak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt
| | - Adel A Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Abeer A A Salama
- Pharmacology Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Alaa H Salama
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt; Pharmaceutical Technology Department, National Research Centre, Dokki, Cairo 12622, Egypt.
| |
Collapse
|
3
|
Virmani T, Kumar G, Virmani R, Sharma A, Pathak K. Nanocarrier-based approaches to combat chronic obstructive pulmonary disease. Nanomedicine (Lond) 2022; 17:1833-1854. [PMID: 35856251 DOI: 10.2217/nnm-2021-0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abnormalities in airway mucus lead to chronic disorders in the pulmonary system such as asthma, fibrosis and chronic obstructive pulmonary disease (COPD). Among these, COPD is more prominent worldwide. Various conventional approaches are available in the market for the treatment of COPD, but the delivery of drugs to the target site remains a challenge with conventional approaches. Nanocarrier-based approaches are considered the best due to their sustained release properties to the target site, smaller size, high surface-to-volume ratio, patient compliance, overcoming airway defenses and improved pharmacotherapy. This article provides updated information about the treatment of COPD along with nanocarrier-based approaches as well as the potential of gene therapy and stem cell therapy to combat the COPD.
Collapse
Affiliation(s)
- Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Haryana, 121102, India
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Haryana, 121102, India
| | - Reshu Virmani
- School of Pharmaceutical Sciences, MVN University, Haryana, 121102, India
| | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Haryana, 121102, India
| | - Kamla Pathak
- Uttar Pradesh University of Medical Sciences, Etawah, Uttar Pradesh, 206001, India
| |
Collapse
|
4
|
Kumar M, Jha A, Bharti K, Parmar G, Mishra B. Advances in lipid-based pulmonary nanomedicine for the management of inflammatory lung disorders. Nanomedicine (Lond) 2022; 17:913-934. [PMID: 35451334 DOI: 10.2217/nnm-2021-0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inflammatory lung disorders have become one of the fastest growing global healthcare concerns, with more than 500 million annual cases of disorders such as chronic obstructive pulmonary disease, asthma and pulmonary fibrosis. Owing to environmental changes and socioeconomic disparity, the numbers are expected to grow even more in years to come. The therapeutic strategies and approved drugs currently employed in the management of inflammatory lung disorders show dose-dependent resistance and pharmacokinetic limitations. This review comprehensively discusses lipid-based pulmonary nanomedicine as a potential platform to overcome these barriers while ensuring site-specific drug delivery and minimal side effects in nontargeted tissues for the management of noninfectious inflammatory lung disorders.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Abhishek Jha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Kanchan Bharti
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Gourav Parmar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
5
|
Abstract
Drug delivery via the pulmonary route is a cornerstone in the pharmaceutical sector as an alternative to oral and parenteral administration. Nebulizer inhalation treatment offers multiple drug administration, easily employed with tidal breathing, suitable for children and elderly, can be adapted for severe patients and visible spray ensures patient satisfaction. This review discusses the operational and mechanical characteristics of nebulizer delivery devices in terms of aerosol production processes, their usage, benefits and drawbacks that are currently shaping the contemporary landscape of inhaled drug delivery. With the advent of particle engineering, novel inhaled nanosystems can be successfully developed to increase lung deposition and decrease pulmonary clearance. The above-mentioned advances might pave the path for treating a life-threatening disorder like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which is also discussed in the current state of the art.
Collapse
|
6
|
Pramanik S, Mohanto S, Manne R, Rajendran RR, Deepak A, Edapully SJ, Patil T, Katari O. Nanoparticle-Based Drug Delivery System: The Magic Bullet for the Treatment of Chronic Pulmonary Diseases. Mol Pharm 2021; 18:3671-3718. [PMID: 34491754 DOI: 10.1021/acs.molpharmaceut.1c00491] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic pulmonary diseases encompass different persistent and lethal diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), cystic fibrosis (CF), asthma, and lung cancers that affect millions of people globally. Traditional pharmacotherapeutic treatment approaches (i.e., bronchodilators, corticosteroids, chemotherapeutics, peptide-based agents, etc.) are not satisfactory to cure or impede diseases. With the advent of nanotechnology, drug delivery to an intended site is still difficult, but the nanoparticle's physicochemical properties can accomplish targeted therapeutic delivery. Based on their surface, size, density, and physical-chemical properties, nanoparticles have demonstrated enhanced pharmacokinetics of actives, achieving the spotlight in the drug delivery research field. In this review, the authors have highlighted different nanoparticle-based therapeutic delivery approaches to treat chronic pulmonary diseases along with the preparation techniques. The authors have remarked the nanosuspension delivery via nebulization and dry powder carrier is further effective in the lung delivery system since the particles released from these systems are innumerable to composite nanoparticles. The authors have also outlined the inhaled particle's toxicity, patented nanoparticle-based pulmonary formulations, and commercial pulmonary drug delivery devices (PDD) in other sections. Recently advanced formulations employing nanoparticles as therapeutic carriers for the efficient treatment of chronic pulmonary diseases are also canvassed.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Pharmacy, Institute of Pharmacy Jalpaiguri, Netaji Subhas Chandra Bose Road, Hospital Para, Jalpaiguri, West Bengal 735101, India.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Himalayan Pharmacy Institute, Majhitar, East Sikkim 737176, India.,Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya, Mangalore, Karnataka 575018, India
| | - Ravi Manne
- Quality Control and Assurance Department, Chemtex Environmental Lab, 3082 25th Street, Port Arthur, Texas 77642, United States
| | - Rahul R Rajendran
- Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Drive West, Bethlehem, Pennsylvania 18015, United States
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering, Chennai, Tamil Nadu 600128, India
| | - Sijo Joy Edapully
- School of Biotechnology, National Institute of Technology Calicut, NIT campus, Kozhikode, Kerala 673601, India.,Corporate Head Office, HLL Lifecare Limited, Poojappura, Thiruvananthapuram, Kerala 695012, India
| | - Triveni Patil
- Department of Pharmaceutics, Bharati Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune, Maharashtra 411038, India
| | - Oly Katari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| |
Collapse
|
7
|
Khan I, Hussein S, Houacine C, Khan Sadozai S, Islam Y, Bnyan R, Elhissi A, Yousaf S. Fabrication, characterization and optimization of nanostructured lipid carrier formulations using Beclomethasone dipropionate for pulmonary drug delivery via medical nebulizers. Int J Pharm 2021; 598:120376. [PMID: 33617949 DOI: 10.1016/j.ijpharm.2021.120376] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 01/03/2023]
Abstract
Aerosolization is a non-invasive approach in drug delivery for localized and systemic effect. Nanostructured lipid carriers (NLCs) are new generation versatile carriers, which offer protection from degradation and enhance bioavailability of poorly water soluble drugs. The aim of this study was to develop and optimize NLC formulations in combination with optimized airflow rates (i.e. 60 and 15 L/min) and choice of medical nebulizers including Air jet, Vibrating mesh and Ultrasonic nebulizer for superior aerosolization performance, assessed via a next generation impactor (NGI). Novel composition and combination of NLC formulations (F1 - F15) were prepared via ultrasonication method, employing five solid lipids (glycerol trimyristate (GTM), glycerol trilaurate (GTL), cetyl palmitate (CP), glycerol monostearate (GMS) and stearic acid (SA)); and three liquid lipids (glyceryl tributyrate (GTB), propylene glycol dicaprylate/dicaprate (PGD) and isopropyl palmitate (IPP)) in 1:3 w/w ratios (i.e. combination of one solid and one liquid lipid), with Beclomethasone dipropionate (BDP) incorporated as the model drug. Out of fifteen BDP-NLC formulations, the physicochemical properties of formulations F7, F8 and F10 exhibited desirable stability (one week at 25 °C), with associated particle size of ~241 nm, and >91% of drug entrapment. Post aerosolization, F10 was observed to deposit notably smaller sized particles (from 198 to 136 nm, 283 to 135 nm and 239 to 157 nm for Air jet, Vibrating mesh and Ultrasonic nebulizers, respectively) in all stages (i.e. from stage 1 to 8) of the NGI, when compared to F7 and F8 formulations. Six week stability studies conducted at 4, 25 and 45 °C, demonstrated F10 formulation stability in terms of particle size, irrespective of temperature conditions. Nebulizer performance study using the NGI for F10 identified the Air jet to be the most efficient nebulizer, depositing lower concentrations of BDP in the earlier stages (1-3) and higher (circa 82 and 85%) in the lateral stages (4-8) using 60 and 15 L/min airflow rates, when compared to the Vibrating mesh and Ultrasonic nebulizers. Moreover, at both airflow rates, the Air jet nebulizer elicited a longer nebulization time of ~42 min, facilitating aerosol inhalation for prophylaxis of asthma with normal tidal breathing. Based on characterization and nebulizer performance employing both 60 and 15 L/min airflow rates, the Air jet nebulizer offered enhanced performance, exhibiting a higher fine particle dose (FPD) (90 and 69 µg), fine particle fraction (FPF) (70 and 54%), respirable fraction (RF) (92 and 69%), and lower mass median aerodynamic diameter (MMAD) (1.15 and 1.62 µm); in addition to demonstrating higher drug deposition in the lateral parts of the NGI, when compared to its counterpart nebulizers. The F10 formulation used with the Air jet nebulizer was identified as being the most suitable combination for delivery of BDP-NLC formulations.
Collapse
Affiliation(s)
- Iftikhar Khan
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom.
| | - Sozan Hussein
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - Chahinez Houacine
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Sajid Khan Sadozai
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
| | - Yamir Islam
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - Ruba Bnyan
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - Abdelbary Elhissi
- Pharmaceutical Sciences Section, College of Pharmacy, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Sakib Yousaf
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
| |
Collapse
|
8
|
Paliwal R, Paliwal SR, Kenwat R, Kurmi BD, Sahu MK. Solid lipid nanoparticles: a review on recent perspectives and patents. Expert Opin Ther Pat 2020; 30:179-194. [DOI: 10.1080/13543776.2020.1720649] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rishi Paliwal
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | - Shivani Rai Paliwal
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur, India
| | - Rameshroo Kenwat
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | - Balak Das Kurmi
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur, India
| | - Mukesh Kumar Sahu
- Department of Pharmaceutics, Columbia Institute of Pharmacy, Raipur, India
| |
Collapse
|
9
|
KianvashRad N, Barkhordari E, Mostafavi SH, Aghajani M. Optimizing microfluidic preparation parameters of nanosuspension to evaluate stability in nanoprecipitation of stable-iodine (127I). SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1011-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
10
|
Nemati E, Mokhtarzadeh A, Panahi-Azar V, Mohammadi A, Hamishehkar H, Mesgari-Abbasi M, Ezzati Nazhad Dolatabadi J, de la Guardia M. Ethambutol-Loaded Solid Lipid Nanoparticles as Dry Powder Inhalable Formulation for Tuberculosis Therapy. AAPS PharmSciTech 2019; 20:120. [PMID: 30796625 DOI: 10.1208/s12249-019-1334-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 02/02/2019] [Indexed: 01/15/2023] Open
Abstract
Ethambutol hydrocloride (EMB) is an anti-tuberculosis drug, which is commonly used as a protection agent against of unrecognized resistance to other drugs employed to treat this disease. Since oral form of EMB has some side effects and cellular toxicity, direct administration of EMB into lungs seems to be an attractive and reasonable option in order to overcome these side effects. Our main goal in this study was assessment of pulmonary administration through dry powder inhaler (DPI) using EMB-loaded solid lipid nanoparticles (SLNs). We prepared EMB-loaded SLNs using two techniques (hot homogenization and ultrasonication). DPI formulations were made by spray drying of EMB-loaded SLNs with and without mannitol. For investigation of flowbility of the prepared powders, Carr's index and Hausner ratio, and for in vitro deposition of the powders, Next Generation Impactor (NGI) analysis were used. The encapsulation efficiency and particle size of obtained particles were higher than 98% and sub-100 nm, respectively. Toxicity investigation of EMB-loaded SLNs via MTT assay showed biocompatibility and non-toxicity of the SLNs. Results of flowability and aerodynamic traits assessment of EMB-loaded SLN DPI powder confirmed the suitability of prepared powders. Overall, the attained results showed that EMB-loaded SLN DPI has high potential for direct treatment of tuberculosis.
Collapse
|
11
|
Ngan CL, Asmawi AA. Lipid-based pulmonary delivery system: a review and future considerations of formulation strategies and limitations. Drug Deliv Transl Res 2018; 8:1527-1544. [DOI: 10.1007/s13346-018-0550-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Wang X, Wang Y, Xi R, Wang Y, Yang X. Process optimization of spray-dried fanhuncaoin powder for pulmonary drug delivery and its pharmacokinetic evaluation in rats. Drug Dev Ind Pharm 2018. [PMID: 29542335 DOI: 10.1080/03639045.2018.1451878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The optimization of process parameters of spray-dried powder containing fanhuncaoin, a newly discovered anti-inflammatorily active phenolic acid isolated from Chinese herb, was conducted using response surface methodology (RSM). The experimental results were fitted into partial cubic polynomial model to describe and predict the response quality in terms of the final angle of repose, aerodynamic diameter, respirable fraction (RF), and yield. The recommended optimum spray-drying parameters for the development of fanhuncaoin powder with optimum quality were 110 °C inlet temperature, 0.50 m3/min aspiration speed, and 7.95 ml/min feed flow rate. The obtained optimum process parameters were employed for the production of spray-dried fanhuncaoin powder and to check the validity of the partial cubic model. Small and insignificant deviations were found between the predicted values and the experimental ones, showing the efficiency of the model in predicting the quality attributes of fanhuncaoin powder. The optimized powder was further examined for its pharmacokinetic properties in rats. A UPLC/MS assay was used to determine plasma fanhuncaoin concentration. Statistical analysis demonstrated that there was no significant difference in the t1/2 and dose-normalized Cmax and AUC as well as other pharmacokinetic parameters between the groups dosed differently following intratracheal administration (p > .05), indicating that fanhuncaoin followed linear kinetics. The pharmacokinetic parameters of fanhuncaoin after intratracheal administration differed significantly from the ones observed after intravenous administration (p < .05). The lower values of Cmax and AUC(0-∞) obtained following intratracheal administration may lead to effective drug concentrations at the target site with minimal systemic bioavailability and side effects.
Collapse
Affiliation(s)
- Xiaobo Wang
- a Department of Clinical Pharmacology, College of Pharmacy , Dalian Medical University , Dalian , China.,b The 210th hospital of People's Liberation Army , Dalian , China
| | - Yinan Wang
- c The First Affiliated Hospital of Dalian Medical University , Dalian , China
| | - Ronggang Xi
- b The 210th hospital of People's Liberation Army , Dalian , China
| | - Yuanyuan Wang
- b The 210th hospital of People's Liberation Army , Dalian , China.,d Department of Pharmaceutics , Shenyang Pharmaceutical University , Shenyang , China
| | - Xiaobo Yang
- a Department of Clinical Pharmacology, College of Pharmacy , Dalian Medical University , Dalian , China
| |
Collapse
|
13
|
Le NHA, Van Phan H, Yu J, Chan HK, Neild A, Alan T. Acoustically enhanced microfluidic mixer to synthesize highly uniform nanodrugs without the addition of stabilizers. Int J Nanomedicine 2018; 13:1353-1359. [PMID: 29563792 PMCID: PMC5849384 DOI: 10.2147/ijn.s153805] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background This article presents an acoustically enhanced microfluidic mixer to generate highly uniform and ultra-fine nanoparticles, offering significant advantages over conventional liquid antisolvent techniques. Methods The method employed a 3D microfluidic geometry whereby two different phases – solvent and antisolvent – were introduced at either side of a 1 μm thick resonating membrane, which contained a through-hole. The vibration of the membrane rapidly and efficiently mixed the two phases, at the location of the hole, leading to the formation of nanoparticles. Results The versatility of the device was demonstrated by synthesizing budesonide (a common asthma drug) with a mean diameter of 135.7 nm and a polydispersity index of 0.044. Conclusion The method offers a 40-fold reduction in the size of synthesized particles combined with a substantial improvement in uniformity, achieved without the need of stabilizers.
Collapse
Affiliation(s)
- Nguyen Hoai An Le
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC
| | - Hoang Van Phan
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC
| | - Jiaqi Yu
- The Advanced Drug Delivery Group, Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Hak-Kim Chan
- The Advanced Drug Delivery Group, Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Adrian Neild
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC
| | - Tuncay Alan
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC
| |
Collapse
|
14
|
Bakhtiary Z, Barar J, Aghanejad A, Saei AA, Nemati E, Ezzati Nazhad Dolatabadi J, Omidi Y. Microparticles containing erlotinib-loaded solid lipid nanoparticles for treatment of non-small cell lung cancer. Drug Dev Ind Pharm 2017; 43:1244-1253. [PMID: 28323493 DOI: 10.1080/03639045.2017.1310223] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Non-small cell lung cancer (NSCLC) patients with sensitizing mutations in the exons 18-21 of the epithelial growth factor receptor (EGFR) gene show increased kinase activity of EGFR. Hence, tyrosine kinase inhibitors (TKIs) such as erlotinib (ETB) have commonly been used as the second line therapeutic option for the treatment of metastatic NSCLC. While the ETB is available as an oral dosage form, the local delivery of this TKI to the diseased cells of the lung may ameliorate its therapeutic impacts. In the current study, we report on the development of ETB-loaded solid lipid nanoparticle (SLN) based formulation of dry powder inhaler (ETB-SLN DPI). ETB-SLNs were formulated using designated amount of compritol/poloxamer 407. The engineered ETB-SLNs showed sub-100 nm spherical shape with an encapsulation efficiency of 78.21%. MTT assay and DAPI staining revealed that the ETB-SLNs enhanced the cytotoxicity of cargo drug molecules in the human alveolar adenocarcinoma epithelial A549 cells as a model for NSCLC. To attain the ETB-SLN DPI, the ETB-SLNs were efficiently spray dried into microparticles (1-5 μm) along with mannitol. The ETB-SLN DPI powder displayed suitable flowability and aerodynamic traits. The Carr's Index, Hausner ratio and Next Generation Impactor (NGI) analyses confirmed deep inhalation pattern of the formulation. Based on these findings, we propose the ETB-SLN DPI as a promising treatment modality for the NSCLC patients.
Collapse
Affiliation(s)
- Zahra Bakhtiary
- a Student Research Committee, Faculty of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Jaleh Barar
- b Research Center for Pharmaceutical Nanotechnology , Tabriz University of Medical Sciences , Tabriz , Iran.,c Department of Pharmaceutics, Faculty of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Ayuob Aghanejad
- b Research Center for Pharmaceutical Nanotechnology , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Amir Ata Saei
- d Division of Physiological Chemistry, Department of Medical Biochemistry and Biophysics , KarolinskaInstitutet , Stockholm , Sweden
| | - Elhameh Nemati
- b Research Center for Pharmaceutical Nanotechnology , Tabriz University of Medical Sciences , Tabriz , Iran
| | | | - Yadollah Omidi
- b Research Center for Pharmaceutical Nanotechnology , Tabriz University of Medical Sciences , Tabriz , Iran.,c Department of Pharmaceutics, Faculty of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|