1
|
Liu H, Bi X, Yang N, Zhang X, Fang B, Kusuman N, Ma W, Li J, Chu J, Sun L, Li L, Lü G, Lin R. Induced hepatocyte-like cells derived from adipose-derived stem cells alleviates liver injury in mice infected with Echinococcus Multilocularis. Sci Rep 2024; 14:26296. [PMID: 39487286 PMCID: PMC11530467 DOI: 10.1038/s41598-024-77555-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024] Open
Abstract
Accumulating evidence has shown that adipose-derived stem cells (ADSCs) have the potential to differentiate into hepatic lineages, which are ideal engraftments for tissue-engineered repair. In this study, we investigated the potential of transplanted induced hepatocyte-like cells (iHEPs) in treating hepatic alveolar echinococcosis and describe an efficient three-step protocol for the generation of iHEPs in vitro from ADSCs. The expression of hepatocyte lineage markers was assessed and iHEPs function was evaluated by Periodic acid-Schiff staining. iHEPs were intravenously transplanted into mice infected with Echinococcus multilocularis. Histopathological analysis and liver function tests were used to assess therapeutic effects. The iHEPs exhibit morphological features and a glycogen storage function similar to those of mature hepatocytes and demonstrate an upregulation in hepatic gene programs with increasing induction time. Following transplantation, iHEPs were observed surrounding the metacestode lesions in the liver parenchyma of E. multilocularis-infected mice. iHEPs transplantation effectively restored liver function and improved liver injury in the infected mice. Additionally, we observed significant activation of the Wnt/β-catenin signaling pathway in the livers of infected mice transplanted with iHEPs. Our results provide evidence that iHEPs transplantation can alleviate E. multilocularis-induced liver injury, potentially creating new avenues for treating liver injury in end-stage hepatic alveolar echinococcosis.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaojuan Bi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Ning Yang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xue Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Bingbing Fang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Nuerbaiti Kusuman
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wenmei Ma
- Pathology department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jing Li
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jin Chu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Li Sun
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Liang Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Guodong Lü
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Renyong Lin
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
2
|
Shi L, Liu Y, Liu Q, Chang C, Liu W, Zhang Z. Adipose-derived stem cells can alleviate RHDV2 induced acute liver injury in rabbits. Res Vet Sci 2024; 172:105255. [PMID: 38608346 DOI: 10.1016/j.rvsc.2024.105255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/06/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Rabbit hemorrhagic disease virus (RHDV) can cause fatal fulminant hepatitis, which is very similar to human acute liver failure. The aim of this study was to investigate whether adipose-derived stem cells (ADSCs) could alleviate RHDV2-induced liver injury in rabbits. Twenty 50-day-old rabbits were divided randomly into two groups (RHDV2 group, ADSCs + RHDV2 group). Starting from the 1st day, two groups of rabbits were given 0.5 ml of viral suspensions by subcutaneous injection in the neck. Meanwhile, the ADSCs + RHDV2 group was injected with ADSCs cell suspension (1.5 × 107 cells/ml) via a marginal ear vein, and the RHDV2 group was injected with an equal amount of saline via a marginal ear vein. At the end of the 48 h experiment, the animals were euthanized and gross hepatic changes were observed before liver specimens were collected. Histopathological analysis was performed using hematoxylin-eosin (HE), periodic acid schiff (PAS) and Masson's trichrome staining. For RHDV2 affected rabbits, HE staining demonstrated disorganized hepatic cords, loss of cellular detail, and severe cytoplasmic vacuolation within hepatocytes. Glycogen was not observed with PAS staining, and Masson's Trichrome staining showed increased hepatic collagen deposition. For rabbits treated with ADSCs at the time of inoculation, hepatic pathological changes were significantly less severe, liver glycogen synthesis was increased, and collagen fiber deposition was decreased. For RHDV2 affected rabbits, Tunel and immunofluorescence staining showed that the number of apoptotic cells, TGF-β, and MMP-9 protein expression increased. And that in the ADSC treated group there was less hepatocyte apoptosis. In addition, RHDV2 induces liver inflammation and promotes the expression of IL-1β, IL-6, and TNF-α. In rabbits administered ADSCs at time of inoculation, the expression of inflammatory factors in liver tissue decreased significantly. Our experiments show that ADSCs can protect rabbits from liver injury by RHDV2 and reduce the pathological and inflammatory response of liver. However, the specific protective mechanism needs further study.
Collapse
Affiliation(s)
- Lihui Shi
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Qianni Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Chenhao Chang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Weiqi Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Ziqiang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
3
|
Ma Q, Tao H, Li Q, Zhai Z, Zhang X, Lin Z, Kuang N, Pan J. OrganoidDB: a comprehensive organoid database for the multi-perspective exploration of bulk and single-cell transcriptomic profiles of organoids. Nucleic Acids Res 2022; 51:D1086-D1093. [PMID: 36271792 PMCID: PMC9825539 DOI: 10.1093/nar/gkac942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 01/30/2023] Open
Abstract
Organoids, three-dimensional in vitro tissue cultures derived from pluripotent (embryonic or induced) or adult stem cells, are promising models for the study of human processes and structures, disease onset and preclinical drug development. An increasing amount of omics data has been generated for organoid studies. Here, we introduce OrganoidDB (http://www.inbirg.com/organoid_db/), a comprehensive resource for the multi-perspective exploration of the transcriptomes of organoids. The current release of OrganoidDB includes curated bulk and single-cell transcriptome profiles of 16 218 organoid samples from both human and mouse. Other types of samples, such as primary tissue and cell line samples, are also integrated to enable comparisons with organoids. OrganoidDB enables queries of gene expression under different modes, e.g. across different organoid types, between different organoids from different sources or protocols, between organoids and other sample types, across different development stages, and via correlation analysis. Datasets and organoid samples can also be browsed for detailed information, including organoid information, differentially expressed genes, enriched pathways and single-cell clustering. OrganoidDB will facilitate a better understanding of organoids and help improve organoid culture protocols to yield organoids that are highly similar to living organs in terms of composition, architecture and function.
Collapse
Affiliation(s)
| | | | - Qiang Li
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Zhaoyu Zhai
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xuelu Zhang
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Zhewei Lin
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Ni Kuang
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jianbo Pan
- To whom correspondence should be addressed. Tel: +86 23 684 80209; Fax: +86 23 684 80209;
| |
Collapse
|
4
|
Abo-Aziza FAM, Zaki AKA, Adel RM, Fotouh A. Amelioration of aflatoxin acute hepatitis rat model by bone marrow mesenchymal stem cells and their hepatogenic differentiation. Vet World 2022; 15:1347-1364. [PMID: 35765490 PMCID: PMC9210847 DOI: 10.14202/vetworld.2022.1347-1364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Bone marrow-derived mesenchymal stem cells (BM-MSCs) transplantation and their hepatogenic differentiated cells (HDCs) can be applied for liver injury repair by tissue grafting. Regenerative potentiality in liver cirrhosis models was widely investigated; however, immunomodulation and anti-inflammation in acute hepatitis remain unexplored. This study aimed to explore the immunomodulatory and evaluate twice intravenous (IV) or intrahepatic (IH) administration of either BM-MSCs or middle-stage HDCs on aflatoxin (AF) acute hepatitis rat model. Materials and Methods: BM-MSCs viability, phenotypes, and proliferation were evaluated. Hepatogenic differentiation, albumin, and mmmmmmmm-fetoprotein gene expression were assessed. AF acute hepatitis was induced in rats using AFB1 supplementation. The transplantation of BM-MSCs or their HDCs was done either by IV or IH route. Hepatic ultrasound was performed after 3-weeks of therapy. Cytokines profile (tumor necrosis factor-α [TNF-α], interleukin [IL]-4, and IL-10) was assessed. Hepatic bio-indices, serum, and hepatic antioxidant activity were evaluated, besides examining liver histological sections. Results: Acute AFB1 showed a significant increase in TNF-α (p<0.01), liver enzyme activities (p<0.05), as well as decrease in IL-4, IL-10, and antioxidant enzyme activities (p<0.05). Cytokines profile was ameliorated in groups treated with IV and IH BM-MCs, showed a negative correlation between IL-4 and TNF-α (p<0.05), and a positive correlation between IL-10 upregulation and TNF-α (p<0.01). In IV HDCs treated group, positive correlations between IL-4 and IL-10 downregulation and TNF-α were observed. However, in IH HDCs group, a significant positive correlation between IL-4 and IL-10 upregulation and TNF-α, were recorded (p<0.05). In addition, IV BM-MSCs and IH HDCs treatments significantly increased antioxidant enzymes activity (p<0.05). IV and IH BM-MSCs significantly ameliorated liver transaminase levels, whereas IH HDCs significantly ameliorated alanine aminotransferase activity and nitric oxide concentration (p<0.05). Conclusion: The administration routes of BM-MSCs did not demonstrate any significant difference; however, the IH route of HDCs showed significant amelioration from the IV route. On the other hand, it showed noticeable anti-inflammatory and immunomodulatory improvements in aflatoxicosis rats. Therefore, it can be concluded that acute hepatitis can be treated by a noninvasive IV route without the expense of hepatogenic differentiation. Further research using clinical trials that address several problems regarding engraftment and potentiation are needed to determine the optimal manipulation strategy as well as to achieve better long term effects.
Collapse
Affiliation(s)
- Faten A. M. Abo-Aziza
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| | - Abdel Kader A. Zaki
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt; Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Rana M. Adel
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Ahmed Fotouh
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, New Valley University, El-Kharga, Egypt
| |
Collapse
|
5
|
Current and Emerging Approaches for Hepatic Fibrosis Treatment. Gastroenterol Res Pract 2021; 2021:6612892. [PMID: 34326871 PMCID: PMC8310447 DOI: 10.1155/2021/6612892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 07/10/2021] [Indexed: 02/07/2023] Open
Abstract
Liver fibrosis resulting from chronic liver injury is a key factor to develop liver cirrhosis and risk of hepatocellular carcinoma (HCC) which are major health burden worldwide. Therefore, it is necessary for antifibrotic therapies to prevent chronic liver disease progression and HCC development. There has been tremendous progress in understanding the mechanisms of liver fibrosis in the last decade, which has created new opportunities for the treatment of this condition. In this review, we aim to make an overview on information of different potential therapies (drug treatment, cell therapy, and liver transplantation) for the liver fibrosis and hope to provide the therapeutic options available for the treatment of liver fibrosis and discuss novel approaches.
Collapse
|
6
|
Khazaei S, Keshavarz G, Bozorgi A, Nazari H, Khazaei M. Adipose tissue-derived stem cells: a comparative review on isolation, culture, and differentiation methods. Cell Tissue Bank 2021; 23:1-16. [PMID: 33616792 DOI: 10.1007/s10561-021-09905-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/01/2021] [Indexed: 01/14/2023]
Abstract
Adipose tissue-derived stem cells (ADSCs) are an available source of mesenchymal stem cells with the appropriate capacity to in vitro survive, propagate, and differentiate into cells from three lineages of ectoderm, mesoderm, and endoderm. The biological features of ADSCs depend on the donor physiology and health status, isolation procedure, culture conditions, and differentiation protocols used. Adipose tissue samples are provided by surgery and lipoaspiration-based methods and subjected to various mechanical and chemical digestion techniques to finally generate a heterogeneous mixture named stromal vascular fraction (SVF). ADSCs are purified through varied cell populations that exist within SVF and cultured under standard conditions to give rise to a highly rich resource of stem cells directly applied in the clinic or differentiated into a wide range of cells. The development and optimization of conventional isolation, expansion, and differentiation methods seem noteworthy to preserve the desirable biological functions of ADSCs in pre-clinical and clinical investigations.
Collapse
Affiliation(s)
- Saber Khazaei
- Department of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghazal Keshavarz
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Azam Bozorgi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Nazari
- Department of Orofacial Surgery, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
7
|
Pinheiro D, Dias I, Ribeiro Silva K, Stumbo AC, Thole A, Cortez E, de Carvalho L, Weiskirchen R, Carvalho S. Mechanisms Underlying Cell Therapy in Liver Fibrosis: An Overview. Cells 2019; 8:cells8111339. [PMID: 31671842 PMCID: PMC6912561 DOI: 10.3390/cells8111339] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/19/2022] Open
Abstract
Fibrosis is a common feature in most pathogenetic processes in the liver, and usually results from a chronic insult that depletes the regenerative capacity of hepatocytes and activates multiple inflammatory pathways, recruiting resident and circulating immune cells, endothelial cells, non-parenchymal hepatic stellate cells, and fibroblasts, which become activated and lead to excessive extracellular matrix accumulation. The ongoing development of liver fibrosis results in a clinically silent and progressive loss of hepatocyte function, demanding the constant need for liver transplantation in clinical practice, and motivating the search for other treatments as the chances of obtaining compatible viable livers become scarcer. Although initially cell therapy has emerged as a plausible alternative to organ transplantation, many factors still challenge the establishment of this technique as a main or even additional therapeutic tool. Herein, the authors discuss the most recent advances and point out the corners and some controversies over several protocols and models that have shown promising results as potential candidates for cell therapy for liver fibrosis, presenting the respective mechanisms proposed for liver regeneration in each case.
Collapse
Affiliation(s)
- Daphne Pinheiro
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Isabelle Dias
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Karina Ribeiro Silva
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Ana Carolina Stumbo
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Alessandra Thole
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Erika Cortez
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Lais de Carvalho
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, D-52074 Aachen, Germany.
| | - Simone Carvalho
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| |
Collapse
|
8
|
Hu C, Zhao L, Li L. Current understanding of adipose-derived mesenchymal stem cell-based therapies in liver diseases. Stem Cell Res Ther 2019; 10:199. [PMID: 31287024 PMCID: PMC6613269 DOI: 10.1186/s13287-019-1310-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The liver, the largest organ with multiple synthetic and secretory functions in mammals, consists of hepatocytes, cholangiocytes, hepatic stellate cells (HSCs), sinusoidal endothelial cells, Kupffer cells (KCs), and immune cells, among others. Various causative factors, including viral infection, toxins, autoimmune defects, and genetic disorders, can impair liver function and result in chronic liver disease or acute liver failure. Mesenchymal stem cells (MSCs) from various tissues have emerged as a potential candidate for cell transplantation to promote liver regeneration. Adipose-derived MSCs (ADMSCs) with high multi-lineage potential and self-renewal capacity have attracted great attention as a promising means of liver regeneration. The abundance source and minimally invasive procedure required to obtain ADMSCs makes them superior to bone marrow-derived MSCs (BMMSCs). In this review, we comprehensively analyze landmark studies that address the isolation, proliferation, and hepatogenic differentiation of ADMSCs and summarize the therapeutic effects of ADMSCs in animal models of liver diseases. We also discuss key points related to improving the hepatic differentiation of ADMSCs via exposure of the cells to cytokines and growth factors (GFs), extracellular matrix (ECM), and various physical parameters in in vitro culture. The optimization of culturing methods and of the transplantation route will contribute to the further application of ADMSCs in liver regeneration and help improve the survival rate of patients with liver diseases. To this end, ADMSCs provide a potential strategy in the field of liver regeneration for treating acute or chronic liver injury, thus ensuring the availability of ADMSCs for research, trial, and clinical applications in various liver diseases in the future.
Collapse
Affiliation(s)
- Chenxia Hu
- 0000 0004 1759 700Xgrid.13402.34Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Lingfei Zhao
- 0000 0004 1759 700Xgrid.13402.34Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Lanjuan Li
- 0000 0004 1759 700Xgrid.13402.34Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| |
Collapse
|
9
|
Liu QW, Liu QY, Li JY, Wei L, Ren KK, Zhang XC, Ding T, Xiao L, Zhang WJ, Wu HY, Xin HB. Therapeutic efficiency of human amniotic epithelial stem cell-derived functional hepatocyte-like cells in mice with acute hepatic failure. Stem Cell Res Ther 2018; 9:321. [PMID: 30463600 PMCID: PMC6249765 DOI: 10.1186/s13287-018-1063-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022] Open
Abstract
Background Hepatocyte transplantation has been proposed as an effective treatment for patients with acute liver failure (ALF), but its application is limited by a severe shortage of donor livers. Human pluripotent stem cells (hPSCs) have emerged as a potential cell source for regenerative medicine. Human amniotic epithelial stem cells (hAESCs) derived from amniotic membrane have multilineage differentiation potential which makes them suitable for possible application in hepatocyte regeneration and ALF treatment. Methods The pluripotent characteristics, immunogenicity, and tumorigenicity of hAESCs were studied by various methods. hAESCs were differentiated to hepatocyte-like cells (HLCs) using a non-transgenic and three-step induction protocol. ALB secretion, urea production, periodic acid-Schiff staining, and ICG uptake were performed to investigate the function of HLCs. The HLCs were transplanted into ALF NOD-SCID (nonobese diabetic severe combined immunodeficient) mouse, and the therapeutic effects were determined via liver function test, histopathology, and survival rate analysis. The ability of HLCs to engraft the damaged liver was evaluated by detecting the presence of GFP-positive cells. Results hAESCs expressed various markers of embryonic stem cells, epithelial stem cells, and mesenchymal stem cells and have low immunogenicity and no tumorigenicity. hAESC-derived hepatocytes possess the similar functions of human primary hepatocytes (hPH) such as producing urea, secreting ALB, uptaking ICG, storing glycogen, and expressing CYP enzymes. HLC transplantation via the tail vein could engraft in live parenchymal, improve the liver function, and protect hepatic injury from CCl4-induced ALF in mice. More importantly, HLC transplantation was able to significantly prolong the survival of ALF mouse. Conclusion We have established a rapid and efficient differentiation protocol that is able to successfully generate ample functional HLCs from hAESCs, in which the liver injuries and death rate of CCl4-induced ALF mouse can be significantly rescued by HLC transplantation. Therefore, our results may offer a superior approach for treating ALF.
Collapse
Affiliation(s)
- Quan-Wen Liu
- Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi Province, People's Republic of China
| | - Qian-Yu Liu
- Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi Province, People's Republic of China
| | - Jing-Yuan Li
- Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi Province, People's Republic of China.,School of Life and Science, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi Province, People's Republic of China
| | - Li Wei
- Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi Province, People's Republic of China
| | - Kang-Kang Ren
- Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi Province, People's Republic of China
| | - Xiang-Cheng Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Ting Ding
- Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi Province, People's Republic of China
| | - Ling Xiao
- Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi Province, People's Republic of China
| | - Wen-Jie Zhang
- Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi Province, People's Republic of China
| | - Han-You Wu
- Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi Province, People's Republic of China
| | - Hong-Bo Xin
- Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi Province, People's Republic of China. .,School of Life and Science, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi Province, People's Republic of China.
| |
Collapse
|
10
|
Ma C, Wang K, Ji H, Wang H, Guo L, Wang Z, Ren H, Wang X, Guan W. Multilineage potential research of Beijing duck amniotic mesenchymal stem cells. Cell Tissue Bank 2018; 19:519-529. [PMID: 29858719 PMCID: PMC6280870 DOI: 10.1007/s10561-018-9701-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 05/14/2018] [Indexed: 12/18/2022]
Abstract
Amnion, which is usually discarded as medical waste, is considered as abundant sources for mesenchymal stem cells. In human and veterinary medicine, the multipotency of mesenchymal stem cells derived from amnion (AMSCs) together with their plasticity, self-renewal, low immunogenicity and nontumorigenicity characteristics make AMSCs a promising candidate cell for cell-based therapies and tissue engineering. However, up till now, the multipotential characteristics and therapeutic potential of AMSCs on preclinical studies remain uncertain. In this work, we successfully obtained AMSCs from Beijing duck embryos in vitro, and also attempted to detect their biological characteristics. The isolated AMSCs were phenotypically identified, the growth kinetics and karyotype were tested. Also, the cells were positive for MSCs-related markers (CD29, CD71, CD105, CD166, Vimentin and Fibronection), while the expression of CD34 and CD45 were undetectable. Additionally, AMSCs also expressed the pluripotent marker gene OCT4. Particularly, when appropriately induced, AMSCs could be induced to trans-differentiate into adipocytes, osteoblasts, chondrocytes and neurocytes in vitro. Together, these results demonstrated that the isolated AMSCs maintained their stemness and proliferation in vitro, which may be useful for future cell therapy in regenerative medicine.
Collapse
Affiliation(s)
- Caiyun Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Kunfu Wang
- College of Wildlife Resources, Northeast Forestry University, Harbin, China
| | - Hongda Ji
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongliang Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liangcai Guo
- Mudanjiang Normal University, Mudanjiang, 157011, China
| | - Zhiyong Wang
- Mudanjiang Normal University, Mudanjiang, 157011, China
| | - Han Ren
- Mudanjiang Normal University, Mudanjiang, 157011, China
| | - Xishuai Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Weijun Guan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
11
|
Hwang Y, Goh M, Kim M, Tae G. Injectable and detachable heparin-based hydrogel micropatches for hepatic differentiation of hADSCs and their liver targeted delivery. Biomaterials 2018. [DOI: 10.1016/j.biomaterials.2018.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Kehtari M, Zeynali B, Soleimani M, Kabiri M, Seyedjafari E. Fabrication of a co-culture micro-bioreactor device for efficient hepatic differentiation of human induced pluripotent stem cells (hiPSCs). ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:161-170. [DOI: 10.1080/21691401.2018.1452753] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Mousa Kehtari
- Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran
| | - Bahman Zeynali
- Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
13
|
Ma C, Lu T, Wen H, Zheng Y, Han X, Ji X, Guan W. Isolation and biological characteristic evaluation of a novel type of cartilage stem/progenitor cell derived from Small‑tailed Han sheep embryos. Int J Mol Med 2018; 42:525-533. [PMID: 29693133 DOI: 10.3892/ijmm.2018.3629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/14/2018] [Indexed: 11/05/2022] Open
Abstract
Cartilage stem/progenitor cells (CSPCs) are a novel stem cell population and function as promising therapeutic candidates for cell‑based cartilage repair. Until now, numerous existing research materials have been obtained from humans, horses, cows and other mammals, but rarely from sheep. In the present study, CSPCs with potential applications in repairing tissue damage and cell‑based therapy were isolated from 45‑day‑old Small‑tailed Han Sheep embryos, and examined at the cellular and molecular level. The expression level of characteristic surface markers of the fetal sheep CSPCs were also evaluated by immunofluorescence, reverse transcription‑polymerase chain reaction analysis and flow cytometric assays. Biological growth curves were drawn in accordance with cell numbers. Additionally, karyotype analysis showed no marked differences in the in vitro cultured CSPCs and they were genetically stable among different passages. The CSPCs were also capable of adipogenic, osteogenic and chondrogenic lineage progression under the appropriate induction medium in vitro. Together, these findings provide a theoretical basis and experimental evidence for cellular transplant therapy in tissue engineering.
Collapse
Affiliation(s)
- Caiyun Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Tengfei Lu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Hebao Wen
- Mudanjiang Normal University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yanjie Zheng
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Xiao Han
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Xongda Ji
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Weijun Guan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| |
Collapse
|
14
|
Sa Y, Wang L, Shu H, Gu J. Post-transcriptional suppression of TIMP-1 in epithelial-differentiated adipose-derived stem cells seeded bladder acellular matrix grafts reduces urethral scar formation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:306-313. [PMID: 29611434 DOI: 10.1080/21691401.2018.1457040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Yinglong Sa
- Department of Urology, Shanghai Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Lin Wang
- Department of Urology, Shanghai Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Huiquan Shu
- Department of Urology, Shanghai Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jie Gu
- Department of Urology, Shanghai Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
15
|
Bacakova L, Zarubova J, Travnickova M, Musilkova J, Pajorova J, Slepicka P, Kasalkova NS, Svorcik V, Kolska Z, Motarjemi H, Molitor M. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells - a review. Biotechnol Adv 2018; 36:1111-1126. [PMID: 29563048 DOI: 10.1016/j.biotechadv.2018.03.011] [Citation(s) in RCA: 347] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 02/08/2023]
Abstract
Stem cells can be defined as units of biological organization that are responsible for the development and the regeneration of organ and tissue systems. They are able to renew their populations and to differentiate into multiple cell lineages. Therefore, these cells have great potential in advanced tissue engineering and cell therapies. When seeded on synthetic or nature-derived scaffolds in vitro, stem cells can be differentiated towards the desired phenotype by an appropriate composition, by an appropriate architecture, and by appropriate physicochemical and mechanical properties of the scaffolds, particularly if the scaffold properties are combined with a suitable composition of cell culture media, and with suitable mechanical, electrical or magnetic stimulation. For cell therapy, stem cells can be injected directly into damaged tissues and organs in vivo. Since the regenerative effect of stem cells is based mainly on the autocrine production of growth factors, immunomodulators and other bioactive molecules stored in extracellular vesicles, these structures can be isolated and used instead of cells for a novel therapeutic approach called "stem cell-based cell-free therapy". There are four main sources of stem cells, i.e. embryonic tissues, fetal tissues, adult tissues and differentiated somatic cells after they have been genetically reprogrammed, which are referred to as induced pluripotent stem cells (iPSCs). Although adult stem cells have lower potency than the other three stem cell types, i.e. they are capable of differentiating into only a limited quantity of specific cell types, these cells are able to overcome the ethical and legal issues accompanying the application of embryonic and fetal stem cells and the mutational effects associated with iPSCs. Moreover, adult stem cells can be used in autogenous form. These cells are present in practically all tissues in the organism. However, adipose tissue seems to be the most advantageous tissue from which to isolate them, because of its abundancy, its subcutaneous location, and the need for less invasive techniques. Adipose tissue-derived stem cells (ASCs) are therefore considered highly promising in present-day regenerative medicine.
Collapse
Affiliation(s)
- Lucie Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, 4-Krc, Czech Republic.
| | - Jana Zarubova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, 4-Krc, Czech Republic
| | - Martina Travnickova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, 4-Krc, Czech Republic
| | - Jana Musilkova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, 4-Krc, Czech Republic
| | - Julia Pajorova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, 4-Krc, Czech Republic
| | - Petr Slepicka
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, 6-Dejvice, Czech Republic
| | - Nikola Slepickova Kasalkova
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, 6-Dejvice, Czech Republic
| | - Vaclav Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, 6-Dejvice, Czech Republic
| | - Zdenka Kolska
- Faculty of Science, J.E. Purkyne University, Ceske mladeze 8, 400 96 Usti nad Labem, Czech Republic
| | - Hooman Motarjemi
- Clinic of Plastic Surgery, Faculty Hospital Na Bulovce, Budinova 67/2, 180 81 Prague, 8-Liben, Czech Republic
| | - Martin Molitor
- Clinic of Plastic Surgery, Faculty Hospital Na Bulovce, Budinova 67/2, 180 81 Prague, 8-Liben, Czech Republic
| |
Collapse
|
16
|
Zhang Y, Zhou T, Luo L, Cui Z, Wang N, Shu Y, Wang KP. Pharmacokinetics, biodistribution and receptor mediated endocytosis of a natural Angelica sinensis polysaccharide. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:254-263. [PMID: 29291632 DOI: 10.1080/21691401.2017.1421210] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yu Zhang
- Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Zhou
- Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Luo
- Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Cui
- Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Yamin Shu
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Kai-Ping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Lo Furno D, Mannino G, Cardile V, Parenti R, Giuffrida R. Potential Therapeutic Applications of Adipose-Derived Mesenchymal Stem Cells. Stem Cells Dev 2016; 25:1615-1628. [PMID: 27520311 DOI: 10.1089/scd.2016.0135] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Stem cells are subdivided into two main categories: embryonic and adult stem cells. In principle, pluripotent embryonic stem cells might differentiate in any cell types of the organism, whereas the potential of adult stem cells would be more restricted. Although adult stem cells from bone marrow have been initially the most extensively studied, those derived from human adipose tissue have been lately more widely investigated, because of several advantages. First, they can be easily obtained in large amounts from subcutaneous adipose tissue, with minimal pain and morbidity for the patients during harvesting. In addition, they feature low immunogenicity and can differentiate not only in cells of mesodermal lineage (adipocytes, osteoblasts, chondrocytes and muscle cells), but also in cells of other germ layers, such as neural or epithelial cells. As their multilineage differentiation capabilities are increasingly highlighted, their possible use in cell-based regenerative medicine is now broadly explored. In fact, starting from in vitro observations, many studies have already entered the preclinical and clinical phases. In this review, because of our main scientific interest, adipogenic, osteogenic, chondrogenic, and neurogenic differentiation abilities of adipose-derived mesenchymal stem cells, as well as their possible therapeutic applications, are chiefly focused. In addition, their ability to differentiate toward muscle, epithelial, pancreatic, and hepatic cells is briefly reported.
Collapse
Affiliation(s)
- Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania , Catania, Italy
| | - Giuliana Mannino
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania , Catania, Italy
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania , Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania , Catania, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania , Catania, Italy
| |
Collapse
|
18
|
Fu Y, Deng J, Jiang Q, Wang Y, Zhang Y, Yao Y, Cheng F, Chen X, Xu F, Huang M, Yang Y, Zhang S, Yu D, Zhao RC, Wei Y, Deng H. Rapid generation of functional hepatocyte-like cells from human adipose-derived stem cells. Stem Cell Res Ther 2016; 7:105. [PMID: 27495937 PMCID: PMC4974756 DOI: 10.1186/s13287-016-0364-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/24/2016] [Accepted: 07/13/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Liver disease is a major cause of death worldwide. Orthotropic liver transplantation (OLT) represents the only effective treatment for patients with liver failure, but the increasing demand for organs is unfortunately so great that its application is limited. Hepatocyte transplantation is a promising alternative to OLT for the treatment of some liver-based metabolic disorders or acute liver failure. Unfortunately, the lack of donor livers also makes it difficult to obtain enough viable hepatocytes for hepatocyte-based therapies. Currently, a fundamental solution to this key problem is still lacking. Here we show a novel non-transgenic protocol that facilitates the rapid generation of functional induced hepatocytes (iHeps) from human adipose-derived stem cells (hADSCs), providing a source of available cells for autologous hepatocytes to treat liver disease. METHODS We used collagenase digestion to isolate hADSCs. The surface marker was detected by flow cytometry. The multipotential differentiation potency was detected by induction into adipocytes, osteocytes, and chondrocytes. Passage 3-7 hADSCs were induced into iHeps using an induction culture system composed of small molecule compounds and cell factors. RESULTS Primary cultured hADSCs presented a fusiform or polygon appearance that became fibroblast-like after passage 3. More than 95 % of the cells expressed the mesenchymal cell markers CD29, CD44, CD166, CD105, and CD90. hADSCs possessed multipotential differentiation towards adipocytes, osteocytes, and chondrocytes. We rapidly induced hADSCs into iHeps within 10 days in vitro; the cellular morphology changed from fusiform to close-connected cubiform, which was similar to hepatocytes. After induction, most of the iHeps co-expressed albumin and alpha-1 antitrypsin; they also expressed mature hepatocyte special genes and achieved the basic functions of hepatocyte. Moreover, iHep transplantation could improve the liver function of acute liver-injured NPG mice and prolong life. CONCLUSIONS We isolated highly purified hADSCs and rapidly induced them into functional hepatocyte-like cells within 10 days. These results provide a source of available cells for autologous hepatocytes to treat liver disease.
Collapse
Affiliation(s)
- Yanli Fu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, Sichuan 610041 People’s Republic of China
| | - Jie Deng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, Sichuan 610041 People’s Republic of China
| | - Qingyuan Jiang
- Department of Obstetrics, Sichuan Provincial Hospital For Women and Children, Chengdu, People’s Republic of China
| | - Yuan Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, Sichuan 610041 People’s Republic of China
| | - Yujing Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, Sichuan 610041 People’s Republic of China
| | - Yunqi Yao
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, Sichuan 610041 People’s Republic of China
| | - Fuyi Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, Sichuan 610041 People’s Republic of China
| | - Xiaolei Chen
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, Sichuan 610041 People’s Republic of China
| | - Fen Xu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, Sichuan 610041 People’s Republic of China
| | - Meijuan Huang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, Sichuan 610041 People’s Republic of China
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, Sichuan 610041 People’s Republic of China
| | - Shuang Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, Sichuan 610041 People’s Republic of China
| | - Dechao Yu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, Sichuan 610041 People’s Republic of China
| | - Robert Chunhua Zhao
- Center of Excellence in Tissue Engineering, Key Laboratory of Beijing, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, Sichuan 610041 People’s Republic of China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, Sichuan 610041 People’s Republic of China
| |
Collapse
|