1
|
Tsakem B, Tchamgoue J, Kinge RT, Tiani GLM, Teponno RB, Kouam SF. Diversity of African fungi, chemical constituents and biological activities. Fitoterapia 2024; 178:106154. [PMID: 39089594 DOI: 10.1016/j.fitote.2024.106154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Besides plants and animals, the fungal kingdom consists of several species characterized by various forms and applications. Fungi are amazing producers of bioactive natural products with applications in medicine and agriculture. Though this kingdom has been extensively investigated worldwide, it remains relatively underexplored in Africa. To address the knowledge gaps, encourage research interest, and suggest opportunities for the discovery of more bioactive substances from African fungi, we considered it appropriate to extensively review the research work carried out on African fungi since 1988. This review summarizes the diversity and distribution of fungi throughout Africa, the secondary metabolites yet reported from studied fungi, their biological activities and, the countries where they were collected. The studied fungi originated from eleven African countries and were mainly endophytic fungi and higher fungi (macrofungi). Their investigation led to the isolation of five hundred and three (503) compounds with polyketides representing the main class of secondary metabolites. The compounds exhibited varied biological activities with antibacterial and antiproliferative properties being the most prominent.
Collapse
Affiliation(s)
- Bienvenu Tsakem
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon; Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Joseph Tchamgoue
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon; Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Rosemary Tonjock Kinge
- Department of Plant Sciences, Faculty of Science, The University of Bamenda, P.O. Box 39, Bambili, Cameroon
| | - Gesqiere Laure M Tiani
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon; Department of Fundamental Science, University Institute for Wood Technology Mbalmayo, P.O. Box 306, Mbalmayo, Cameroon
| | - Rémy Bertrand Teponno
- Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Simeon F Kouam
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon.
| |
Collapse
|
2
|
van der Merwe B, Rockefeller A, Kilian A, Clark C, Sethathi M, Moult T, Jacobs K. A description of two novel Psilocybe species from southern Africa and some notes on African traditional hallucinogenic mushroom use. Mycologia 2024; 116:821-834. [PMID: 38953774 DOI: 10.1080/00275514.2024.2363137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Two new Psilocybe species (Hymenogastraceae), P. ingeli and P. maluti, are described from southern Africa. Morphology and phylogeny were used to separate the two novel fungi from their closest relatives in the genus. Psilocybe ingeli was found fruiting on bovine manure-enriched grasslands in the Kwa-Zulu Natal Province of South Africa and differs from its closest relative P. keralensis and others in the internal transcribed spacer ITS1-5.8S-ITS2, partial 28S nuc rDNA, and translation elongation factor 1-alpha regions, distribution, and having larger basidiospores. Similarly, P. maluti was collected from the Free State Province of South Africa and observed in the Kingdom of Lesotho, growing on bovine manure. A secotioid pileus, geographic distribution, and differences in the same DNA regions distinguish P. maluti from its closest relative P. chuxiongensis. Furthermore, the spore dispersal and traditional, spiritualistic use of P. maluti are discussed here.
Collapse
MESH Headings
- Phylogeny
- DNA, Fungal/genetics
- DNA, Ribosomal Spacer/genetics
- Animals
- South Africa
- Psilocybe/genetics
- Cattle
- Sequence Analysis, DNA
- DNA, Ribosomal/genetics
- Spores, Fungal
- Africa, Southern
- Manure/microbiology
- RNA, Ribosomal, 28S/genetics
- Peptide Elongation Factor 1/genetics
- Fruiting Bodies, Fungal
- RNA, Ribosomal, 5.8S/genetics
- Agaricales/classification
- Agaricales/genetics
- Agaricales/isolation & purification
Collapse
Affiliation(s)
- B van der Merwe
- Department of Microbiology, Stellenbosch University, Private Bag X1, Stellenbosch 7600, South Africa
| | | | - A Kilian
- 22 Cannon Road, Kelderhof Country Estate, Somerset West 7310, South Africa
| | - C Clark
- Unit 2 Empire Park, 5 Gateway Close, Capricorn Business Park, Muizenberg 7945, South Africa
| | | | - T Moult
- P.O. Box 113, KwaZulu Natal, Seapark 4241, South Africa
| | - K Jacobs
- Department of Microbiology, Stellenbosch University, Private Bag X1, Stellenbosch 7600, South Africa
| |
Collapse
|
3
|
Visagie C, Yilmaz N, Allison J, Barreto R, Boekhout T, Boers J, Delgado M, Dewing C, Fitza K, Furtado E, Gaya E, Hill R, Hobden A, Hu D, Hülsewig T, Khonsanit A, Luangsa-ard J, Mthembu A, Pereira C, Price1 JL, Pringle A, Qikani N, Sandoval-Denis M, Schumacher R, Seifert K, Slippers B, Tennakoon D, Thanakitpipattana D, van Vuuren N, Groenewald J, Crous P. New and Interesting Fungi. 7. Fungal Syst Evol 2024; 13:441-494. [PMID: 39135884 PMCID: PMC11318372 DOI: 10.3114/fuse.2024.13.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/04/2024] [Indexed: 08/15/2024] Open
Abstract
Two new genera, 17 new species, two epitypes, and six interesting new host and / or geographical records are introduced in this study. New genera include: Cadophorella (based on Cadophorella faginea) and Neosatchmopsis (based on Neosatchmopsis ogrovei). New species include: Alternaria halotolerans (from hypersaline sea water, Qatar), Amylostereum stillwellii (from mycangia of Sirex areolatus, USA), Angiopsora anthurii (on leaves of Anthurium andraeanum, Brazil), Anthracocystis zeae-maydis (from pre-stored Zea mays, South Africa), Bisifusarium solicola (from soil, South Africa), Cadophorella faginea (from dead capsule of Fagus sylvatica, Germany), Devriesia mallochii (from house dust, Canada), Fusarium kirstenboschense (from soil, South Africa), Macroconia podocarpi (on ascomata of ascomycete on twigs of Podocarpus falcatus, South Africa), Neosatchmopsis ogrovei (on Eucalyptus leaf litter, Spain), Ophiocordyceps kuchinaraiensis (on Coleoptera larva, Thailand), Penicillium cederbergense (from soil, South Africa), Penicillium pascuigraminis (from pasture mulch, South Africa), Penicillium viridipigmentum (from soil, South Africa), Pleurotheciella acericola (on stem, bark of living tree of Acer sp., Germany), Protocreopsis physciae (on Physcia caesia, Netherlands), and Talaromyces podocarpi (from soil, South Africa). Citation: Visagie CM, Yilmaz N, Allison JD, Barreto RW, Boekhout T, Boers J, Delgado MA, Dewing C, Fitza KNE, Furtado ECA, Gaya E, Hill R, Hobden A, Hu DM, Hülsewig T, Khonsanit A, Kolecka A, Luangsa-ard JJ, Mthembu A, Pereira CM, Price J-L, Pringle A, Qikani N, Sandoval-Denis M, Schumacher RK, Slippers B, Tennakoon DS, Thanakitpipattana D, van Vuuren NI, Groenewald JZ, Crous PW (2024). New and Interesting Fungi. 7. Fungal Systematics and Evolution 13: 441-494. doi: 10.3114/fuse.2024.13.12.
Collapse
Affiliation(s)
- C.M. Visagie
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - N. Yilmaz
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - J.D. Allison
- Natural Resources Canada – Canadian Forest Service, Great Lakes Forestry Centre, P6A 2E5, Sault Ste. Maria, Ontario, Canada
| | - R.W. Barreto
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - J. Boers
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | | | - C. Dewing
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - K.N.E. Fitza
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - E.C.A. Furtado
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - E. Gaya
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | - R. Hill
- Earlham Institute, Norwich, NR4 7UZ, UK
| | - A. Hobden
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - D.M. Hu
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, Nanchang 330045, China
| | | | - A. Khonsanit
- Plant Microbe Interaction Research Team, BIOTEC, National Science and Technology Development Agency (NSTDA) 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - J.J. Luangsa-ard
- Plant Microbe Interaction Research Team, BIOTEC, National Science and Technology Development Agency (NSTDA) 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - A. Mthembu
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - C.M. Pereira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - J.-L. Price1
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - A. Pringle
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - N. Qikani
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | | | - K.A. Seifert
- Department of Biology, Carleton University, 1125 Colonel By Drive Ottawa, Ontario, Canada K1S 5B6
| | - B. Slippers
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - D.S. Tennakoon
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, Nanchang 330045, China
| | - D. Thanakitpipattana
- Plant Microbe Interaction Research Team, BIOTEC, National Science and Technology Development Agency (NSTDA) 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - N.I. van Vuuren
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - P.W. Crous
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| |
Collapse
|
4
|
Khallil ARM, Ali EH, Ibrahim SS, Hassan EA. Seasonal fluctuations and diversity of Ingoldian mycobiota in two water bodies receiving different effluents at Assiut Governorate (Upper Egypt). BMC Microbiol 2023; 23:163. [PMID: 37280536 DOI: 10.1186/s12866-023-02903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/18/2023] [Indexed: 06/08/2023] Open
Abstract
In the current study, fifty-eight Ingoldain fungal species assignable to forty-one genera were recovered from two water bodies receiving the treated sewage and the effluents of oils and soaps factory at Assiut Governorate (Upper Egypt), of which Anguillospora, Amniculicola, Flagellospora, and Mycocentrospora were the most prevalent genera. The most widespread identified species were Anguillospora furtive, Amniculicola longissima and Flagellospora fusarioides. Forty-three species were identified for the first time in Egypt. The most Ingoldain taxa were estimated for El-Zinnar canal, with the highest recorded taxa in winter. Whereas, the highest dominance of Ingoldian fungi was estimated for the El-Ibrahimia canal. The highest Simpson and Shannon diversity indexes were estimated for El-Zinnar canal samples recording 0.9683 and 3.741, respectively. The poorest water sites with Ingoldian fungi were those exposed directly to either treated sewage or industrial effluents, with which relatively higher values of water conductivity, cations and anions. Water temperature was the main abiotic factor driving the seasonal occurrence of Ingoldian fungi. It is interesting to isolate some Ingoldian fungal species from the stressful water sites receiving the effluents which provide valuable insights regarding their adaptation, predictive and putative role as bioindicators and their potentiality in pollutants degradation, organic decomposition, and transformation of xenobiotic compounds.
Collapse
Affiliation(s)
- Abdel-Raouf M Khallil
- Botany and Microbiology Department, Faculty of Science, University of Assiut, Assiut, EG-71515, Egypt
| | - Essam H Ali
- Botany and Microbiology Department, Faculty of Science, University of Assiut, Assiut, EG-71515, Egypt
| | - Sabreen S Ibrahim
- Botany and Microbiology Department, Faculty of Science, University of Assiut, Assiut, EG-71515, Egypt
| | - Elhagag Ahmed Hassan
- Botany and Microbiology Department, Faculty of Science, University of Assiut, Assiut, EG-71515, Egypt.
| |
Collapse
|
5
|
Van der Merwe B, Herrmann P, Jacobs K. Hericium ophelieae sp. nov., a novel species of Hericium (Basidiomycota: Russulales, Hericiaceae) from the Southern Afrotemperate forests of South Africa. Mycology 2023; 14:133-141. [PMID: 37152849 PMCID: PMC10161958 DOI: 10.1080/21501203.2023.2191636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
A novel species of Hericium was recently collected in the Afrotemperate forests (Knysna - Amatole region) of Southern Africa. The novel species shares many similar, dentate features common to other species in Hericium, and its basidiome first appears stark white and yellows with age. However, the substrate choice and gloeocystidia and basidiospore sizes of the specimens collected were distinct from other Hericium species. This was confirmed by sequencing the ITS and 28S genetic markers, respectively. The novel species is described as Hericium ophelieae sp. nov. and appears unique as it grows on hardwoods indigenous to Southern Africa. The species has larger basidiospores and wider gloeocystidia compared to its closest relative. H. ophelieae sp. nov. is the first endemic species of the medicinal mushroom genus Hericium to be described from Southern Africa, and the second to be described from Africa, after its closest relative, H. bembedjaense, which was isolated in Cameroon. Although this is the first Hericium to be described from the Southern African region, there are likely others to be discovered, and this study highlights the need for further research into the fungal diversity of Afrotemperate environments.
Collapse
|
6
|
Alem D, Dejene T, Geml J, Oria-de-Rueda JA, Martín-Pinto P. Metabarcoding analysis of the soil fungal community to aid the conservation of underexplored church forests in Ethiopia. Sci Rep 2022; 12:4817. [PMID: 35314738 PMCID: PMC8938458 DOI: 10.1038/s41598-022-08828-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/14/2022] [Indexed: 11/10/2022] Open
Abstract
Most of the Dry Afromontane forests in the northern part of Ethiopia are located around church territories and, hence, are called church forests. These forests are biodiversity islands and provide key ecosystem services to local communities. A previous study of church forest fungal species was based on sporocarp collections. However, to obtain a complete picture of the fungal community, the total fungal community present in the soil needs to be analyzed. This information is important to integrate church forests into global biodiversity conservation strategies and to understand what actions are required to conserve church forests and their biological components, including fungi, which are known for their exceptionally high diversity levels. We assessed soil fungal communities in three church forests using ITS2 rDNA metabarcoding. In total, 5152 fungal operational taxonomic units representing 16 fungal phyla were identified. Saprotrophs followed by ectomycorrhizal fungi and animal pathogens dominated fungal communities. Significant differences in diversity and richness were observed between forests. Non-metric multidimensional scaling confirmed that fungal community composition differed in each forest. The composition was influenced by climatic, edaphic, vegetation, and spatial variables. Linear relationships were found between tree basal area and the abundance of total fungi and trophic groups. Forest management strategies that consider cover, tree density, enrichment plantations of indigenous host tree species, and environmental factors would offer suitable habitats for fungal diversity, production, and function in these forest systems. The application of the baseline information obtained in this study could assist other countries with similar forest conservation issues due to deforestation and forest fragmentation.
Collapse
Affiliation(s)
- Demelash Alem
- Sustainable Forest Management Research Institute, University of Valladolid, Avda. Madrid 44, 34071, Palencia, Spain.,Ethiopian Environment and Forest Research Institute (EEFRI), P. O. Box 30708, 1000, Addis Ababa, Ethiopia
| | - Tatek Dejene
- Sustainable Forest Management Research Institute, University of Valladolid, Avda. Madrid 44, 34071, Palencia, Spain.,Ethiopian Environment and Forest Research Institute (EEFRI), P. O. Box 30708, 1000, Addis Ababa, Ethiopia
| | - József Geml
- MTA-EKE Lendület Environmental Microbiome Research Group, Eszterházy Károly University, Leányka u. 6, 3300, Eger, Hungary
| | - Juan Andrés Oria-de-Rueda
- Sustainable Forest Management Research Institute, University of Valladolid, Avda. Madrid 44, 34071, Palencia, Spain
| | - Pablo Martín-Pinto
- Sustainable Forest Management Research Institute, University of Valladolid, Avda. Madrid 44, 34071, Palencia, Spain.
| |
Collapse
|
7
|
Human ZR, Roets F, Crous CJ, Wingfield MJ, de Beer ZW, Venter SN. Fire impacts bacterial composition in Protea repens (Proteaceae) infructescences. FEMS Microbiol Lett 2021; 368:6385756. [PMID: 34626182 DOI: 10.1093/femsle/fnab132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/07/2021] [Indexed: 01/04/2023] Open
Abstract
The diverse bacterial communities in and around plants provide important benefits, such as protection against pathogens and cycling of essential minerals through decomposition of moribund plant biomass. Biodiverse fynbos landscapes generally have limited deadwood habitats due to the absence of large trees and frequent fire. In this study, we determined the effect of a fire disturbance on the bacterial communities in a fynbos landscape dominated by the shrub Protea repens using 16S ribosomal RNA amplicon sequencing. The bacterial community composition in newly formed fruiting structures (infructescences) and soil at a recently burnt site was different from that in an unburnt site. Bacteria inhabiting P. repens infructescences were similar to well-known taxa from decomposing wood and litter. This suggests a putative role for these aboveground plant structures as reservoirs for postfire decomposer bacteria. The results imply that inordinately frequent fires, which are commonplace in the Anthropocene, are a significant disturbance to bacterial communities and could affect the diversity of potentially important microbes from these landscapes.
Collapse
Affiliation(s)
- Zander R Human
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Francois Roets
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Casparus J Crous
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Z Wilhelm de Beer
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
8
|
Nephalela-Mavhunga M, Kwinda GT, Summerell BA, Venter E, Jacobs A. Genetic Diversity of the Fusarium oxysporum Complex Isolated from the Grassland Biome of South Africa. PHYTOPATHOLOGY 2021; 111:1459-1469. [PMID: 33225833 DOI: 10.1094/phyto-09-20-0377-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The genetic diversity of pathogenic members of the Fusarium oxysporum species complex (FOSC) has been intensively studied worldwide, yet strains occurring in native soils with low anthropogenic disturbance remain poorly understood. This study focused on 355 F. oxysporum isolates from soils with low anthropogenic activity obtained from the grassland biome of South Africa. Analysis of the translation elongation factor 1-alpha (tef-1α) gene revealed high levels of sequence type diversity within the soil population in comparison with the global dataset. Phylogenetic relationships of the South African isolates revealed that four nested within FOSC clade 1. This is the first report of members of the basal clade recovered from ecosystems with low anthropogenic disturbance from Sub-Saharan Africa. The remaining strains nested within clades 2 to 5. This study contributes significantly to our understanding of the distribution of the FOSC in natural systems as we show that FOSC populations in the South African grassland biome are genetically diverse. This fills in our knowledge gap because previous studies reported only on the occurrence and diversity of the FOSC isolated from plant debris in South Africa. This is the first comprehensive survey of fusaria from grassland soils with low anthropogenic disturbance in South Africa.
Collapse
Affiliation(s)
- Mudzuli Nephalela-Mavhunga
- Department of Botany and Plant Biotechnology, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
| | - Grace T Kwinda
- Biosystematics Unit, Plant Health and Protection, Agricultural Research Council, Pretoria 0001, South Africa
| | - Brett A Summerell
- Australian Institute of Botanical Science, Royal Botanic Gardens and Domain Trust, Sydney NSW 2000, Australia
| | - Eduard Venter
- Department of Botany and Plant Biotechnology, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
| | - Adriaana Jacobs
- Biosystematics Unit, Plant Health and Protection, Agricultural Research Council, Pretoria 0001, South Africa
| |
Collapse
|
9
|
Serrano R, González-Menéndez V, Martínez G, Toro C, Martín J, Genilloud O, Tormo JR. Metabolomic Analysis of The Chemical Diversity of South Africa Leaf Litter Fungal Species Using an Epigenetic Culture-Based Approach. Molecules 2021; 26:molecules26144262. [PMID: 34299537 PMCID: PMC8305139 DOI: 10.3390/molecules26144262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
Microbial natural products are an invaluable resource for the biotechnological industry. Genome mining studies have highlighted the huge biosynthetic potential of fungi, which is underexploited by standard fermentation conditions. Epigenetic effectors and/or cultivation-based approaches have successfully been applied to activate cryptic biosynthetic pathways in order to produce the chemical diversity suggested in available fungal genomes. The addition of Suberoylanilide Hydroxamic Acid to fermentation processes was evaluated to assess its effect on the metabolomic diversity of a taxonomically diverse fungal population. Here, metabolomic methodologies were implemented to identify changes in secondary metabolite profiles to determine the best fermentation conditions. The results confirmed previously described effects of the epigenetic modifier on the metabolism of a population of 232 wide diverse South Africa fungal strains cultured in different fermentation media where the induction of differential metabolites was observed. Furthermore, one solid-state fermentation (BRFT medium), two classic successful liquid fermentation media (LSFM and YES) and two new liquid media formulations (MCKX and SMK-II) were compared to identify the most productive conditions for the different populations of taxonomic subgroups.
Collapse
|
10
|
Bose T, Hulbert JM, Burgess TI, Paap T, Roets F, Wingfield MJ. Two novel Phytophthora species from the southern tip of Africa. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01702-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Gafforov Y, Ordynets A, Langer E, Yarasheva M, de Mello Gugliotta A, Schigel D, Pecoraro L, Zhou Y, Cai L, Zhou LW. Species Diversity With Comprehensive Annotations of Wood-Inhabiting Poroid and Corticioid Fungi in Uzbekistan. Front Microbiol 2020; 11:598321. [PMID: 33362746 PMCID: PMC7756097 DOI: 10.3389/fmicb.2020.598321] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/09/2020] [Indexed: 01/04/2023] Open
Abstract
Uzbekistan, located in Central Asia, harbors high diversity of woody plants. Diversity of wood-inhabiting fungi in the country, however, remained poorly known. This study summarizes the wood-inhabiting basidiomycte fungi (poroid and corticoid fungi plus similar taxa such as Merismodes, Phellodon, and Sarcodon) (Agaricomycetes, Basidiomycota) that have been found in Uzbekistan from 1950 to 2020. This work is based on 790 fungal occurrence records: 185 from recently collected specimens, 101 from herbarium specimens made by earlier collectors, and 504 from literature-based records. All data were deposited as a species occurrence record dataset in the Global Biodiversity Information Facility and also summarized in the form of an annotated checklist in this paper. All 286 available specimens were morphologically examined. For 138 specimens, the 114 ITS and 85 LSU nrDNA sequences were newly sequenced and used for phylogenetic analysis. In total, we confirm the presence of 153 species of wood-inhabiting poroid and corticioid fungi in Uzbekistan, of which 31 species are reported for the first time in Uzbekistan, including 19 that are also new to Central Asia. These 153 fungal species inhabit 100 host species from 42 genera of 23 families. Polyporales and Hymenochaetales are the most recorded fungal orders and are most widely distributed around the study area. This study provides the first comprehensively updated and annotated the checklist of wood-inhabiting poroid and corticioid fungi in Uzbekistan. Such study should be expanded to other countries to further clarify species diversity of wood-inhabiting fungi around Central Asia.
Collapse
Affiliation(s)
- Yusufjon Gafforov
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Department of Ecology, University of Kassel, Kassel, Germany
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Núcleo de Pesquisa em Micologia, Instituto de Botânica, São Paulo, Brazil
- Department of Ecology and Botany, Andijan State University, Andijan, Uzbekistan
- Tashkent State Agrarian University, Tashkent, Uzbekistan
| | | | - Ewald Langer
- Department of Ecology, University of Kassel, Kassel, Germany
| | - Manzura Yarasheva
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | - Dmitry Schigel
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Global Biodiversity Information Facility (GBIF), Secretariat, Universitetsparken, Copenhagen, Denmark
| | - Lorenzo Pecoraro
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, China
| | - Yu Zhou
- Graduate School of Geography, Clark University, Worcester, MA, United States
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Li-Wei Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
12
|
Hyde KD, Jeewon R, Chen YJ, Bhunjun CS, Calabon MS, Jiang HB, Lin CG, Norphanphoun C, Sysouphanthong P, Pem D, Tibpromma S, Zhang Q, Doilom M, Jayawardena RS, Liu JK, Maharachchikumbura SSN, Phukhamsakda C, Phookamsak R, Al-Sadi AM, Thongklang N, Wang Y, Gafforov Y, Gareth Jones EB, Lumyong S. The numbers of fungi: is the descriptive curve flattening? FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00458-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Microbial Communities in the Fynbos Region of South Africa: What Happens during Woody Alien Plant Invasions. DIVERSITY 2020. [DOI: 10.3390/d12060254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Cape Floristic Region (CFR) is globally known for its plant biodiversity, and its flora is commonly referred to as fynbos. At the same time, this area is under severe pressure from urbanization, agricultural expansion and the threat of invasive alien plants. Acacia, Eucalyptus and Pinus are the common invasive alien plants found across the biome and considerable time, effort and resources are put into the removal of invasive alien plants and the rehabilitation of native vegetation. Several studies have shown that invasion not only affects the composition of plant species, but also has a profound effect on the soil chemistry and microbial populations. Over the last few years, a number of studies have shown that the microbial populations of the CFR are unique to the area, and harbour many endemic species. The extent of the role they play in the invasion process is, however, still unclear. This review aims to provide an insight into the current knowledge on the different microbial populations from this system, and speculate what their role might be during invasion. More importantly, it places a spotlight on the lack of information about this process.
Collapse
|
14
|
Abstract
AbstractThe genus Ravenelia represents the third largest genus of rust fungi and parasitizes a great number of leguminous shrubs and trees, mainly in the subtropics and tropics. Molecular phylogenetic analyses of this genus using nc 28S rDNA and CO3 sequences are presented with a special focus on South African representatives of Ravenelia. Many of the specimens had been collected by us in recent years, mainly from acacia species of the genera Vachellia and Senegalia. Morphological characters were extensively studied using light microscopy and scanning electron microscopy. The analyses resolved several well-supported phylogenetic groups. By linking these groups to their morphology and life cycle characteristics, it was possible to interpret the outcomes in terms of their evolutionary ecology and biogeography. Several characters previously used to define subgeneric groups within Ravenelia were found to be misleading because of assumed convergent evolution. However, host associations, the ability to induce aecial galls as well as the development of two-layered probasidial cells emerged as useful criteria for inferring monophyletic groups. Six novel Ravenelia species were discovered and described. Furthermore, five species represent new reports for South Africa, species descriptions were emended for two taxa, and a new host report emerged for R. inornata.
Collapse
|
15
|
Kinge TR, Goldman G, Jacobs A, Ndiritu GG, Gryzenhout M. A first checklist of macrofungi for South Africa. MycoKeys 2020; 63:1-48. [PMID: 32089638 PMCID: PMC7015970 DOI: 10.3897/mycokeys.63.36566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 11/07/2019] [Indexed: 12/22/2022] Open
Abstract
Macrofungi are considered as organisms that form large fruiting bodies above or below the ground that are visible without the aid of a microscope. These fungi include most basidiomycetes and a small number of ascomycetes. Macrofungi have different ecological roles and uses, where some are edible, medicinal, poisonous, decomposers, saprotrophs, predators and pathogens, and they are often used for innovative biotechnological, medicinal and ecological applications. However, comprehensive checklists, and compilations on the diversity and distribution of mushrooms are lacking for South Africa, which makes regulation, conservation and inclusion in national biodiversity initiatives difficult. In this review, we compiled a checklist of macrofungi for the first time (excluding lichens). Data were compiled based on available literature in journals, books and fungorium records from the National Collection of Fungi. Even if the list is not complete due to numerous unreported species present in South Africa, it still represents an overview of the current knowledge of the macromycetes of South Africa. The list of names enables the assessment of gaps in collections and knowledge on the fungal biodiversity of South Africa, and downstream applications such as defining residency status of species. It provides a foundation for new names to be added in future towards developing a list that will be as complete as possible, and that can be used by a wide audience including scientists, authorities and the public.
Collapse
Affiliation(s)
- Tonjock Rosemary Kinge
- Department of Genetics, University of the Free State, Bloemfontein, PO Box 339, Bloemfontein 9300, Republic of South AfricaUniversity of the Free StateBloemfonteinSouth Africa
- Department of Biological Sciences, Faculty of Science, University of Bamenda, P.O. Box 39, Bambili, North West Region, CameroonUniversity of BamendaBambiliCambodia
| | - Gary Goldman
- MushroomFundi, Cape Town, South AfricaMushroomFundiCape TownSouth Africa
| | - Adriaana Jacobs
- National Collection of Fungi, Mycology Unit, Plant Health and Protection, Agricultural Research Council, Pretoria, South AfricaNational Collection of FungiPretoriaSouth Africa
| | - George Gatere Ndiritu
- School of Natural Resources and Environmental Studies, Karatina University, P.O. Box 1957, Karatina 10101, KenyaKaratina UniversityKaratinaKenya
| | - Marieka Gryzenhout
- Department of Genetics, University of the Free State, Bloemfontein, PO Box 339, Bloemfontein 9300, Republic of South AfricaUniversity of the Free StateBloemfonteinSouth Africa
| |
Collapse
|
16
|
Musvuugwa T, de Beer ZW, Dreyer LL, Duong T, Marincowitz S, Oberlander KC, Roets F. New ophiostomatoid fungi from wounds on storm-damaged trees in Afromontane forests of the Cape Floristic Region. Mycol Prog 2020. [DOI: 10.1007/s11557-019-01545-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Wu B, Hussain M, Zhang W, Stadler M, Liu X, Xiang M. Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology 2019; 10:127-140. [PMID: 31448147 PMCID: PMC6691916 DOI: 10.1080/21501203.2019.1614106] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/22/2019] [Indexed: 01/09/2023] Open
Abstract
The global bio-diversity of fungi has been extensively investigated and their species number has been estimated. Notably, the development of molecular phylogeny has revealed an unexpected fungal diversity and utilisation of culture-independent approaches including high-throughput amplicon sequencing has dramatically increased number of fungal operational taxonomic units. A number of novel taxa including new divisions, classes, orders and new families have been established in last decade. Many cryptic species were identified by molecular phylogeny. Based on recently generated data from culture-dependent and -independent survey on same samples, the fungal species on the earth were estimated to be 12 (11.7-13.2) million compared to 2.2-3.8 million species recently estimated by a variety of the estimation techniques. Moreover, it has been speculated that the current use of high-throughput sequencing techniques would reveal an even higher diversity than our current estimation. Recently, the formal classification of environmental sequences and permission of DNA sequence data as fungal names' type were proposed but strongly objected by the mycologist community. Surveys on fungi in unusual niches have indicated that many previously regarded "unculturable fungi" could be cultured on certain substrates under specific conditions. Moreover, the high-throughput amplicon sequencing, shotgun metagenomics and a single-cell genomics could be a powerful means to detect novel taxa. Here, we propose to separate the fungal types into physical type based on specimen, genome DNA (gDNA) type based on complete genome sequence of culturable and uncluturable fungal specimen and digital type based on environmental DNA sequence data. The physical and gDNA type should have priority, while the digital type can be temporal supplementary before the physical type and gDNA type being available. The fungal name based on the "digital type" could be assigned as the "clade" name + species name. The "clade" name could be the name of genus, family or order, etc. which the sequence of digital type affiliates to. Facilitating future cultivation efforts should be encouraged. Also, with the advancement in knowledge of fungi inhabiting various environments mostly because of rapid development of new detection technologies, more information should be expected for fungal diversity on our planet.
Collapse
Affiliation(s)
- Bing Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Muzammil Hussain
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Weiwei Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Teke NA, Kinge TR, Bechem E, Nji TM, Ndam LM, Mih AM. Ethnomycological study in the Kilum-Ijim mountain forest, Northwest Region, Cameroon. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2018; 14:25. [PMID: 29609649 PMCID: PMC5880009 DOI: 10.1186/s13002-018-0225-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/18/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Majority of the people in rural areas depend on traditional fungi-based medicines to combat different illnesses. This ethnomycological survey was undertaken to document the traditional knowledge of mushrooms among the communities in the Kilum-Ijim mountain forest reserve. Although macrofungi are exploited for food and medicine, their ethnomycological knowledge has not been documented in this ecosystem. METHODS A field study was carried out between 2014 and 2015; 14 mushrooms used by the local communities were collected and identified using the polymorphism of the ribosomal ITS1, 5.8S, and ITS2 regions. Semi-structured questionnaires, focus group discussions, and pictorial method were used to collect information on edibility, local names, indigenous knowledge, and the role of macrofungi in ten communities. RESULTS Ethnomycological findings revealed that mushrooms were used as food and medicine, while the non-edible species were regarded as food from Satan. Eight species, Polyporus tenuiculus, Termitomyces striatus, Termitomyces microcarpus Auricularia polytricha, Laetiporus sulphureus, Termitomyces sp.1, Termitomyces sp.2, and Polyporus dictyopus, were reported as edible and Auricularia polytricha, Daldinia concentrica, Ganoderma applanatum, Lentinus squarrosulus, Polyporus dictyopus, Termitomyces microcarpus, Trametes versicolor, Vascellum pretense and Xylaria sp., were used as medicine in traditional health care. Local names were found to be a very important factor in distinguishing between edible, medicinal, and poisonous mushrooms. Edible mushrooms are called "awo'oh" in Belo and "Kiwoh" in Oku. Poisonous mushrooms were commonly referred to as "awo'oh Satan" in Belo and "Kiwohfiyini" in Oku. Mushrooms were highly valued as a source of protein and as a substitute for meat in their diets. It is worth noting that Polyporus dictyopus was reported here for the first time in literature as an edible mushroom species. CONCLUSION Local knowledge of medicinal mushrooms in the treatment of different illness still exists in all ten villages surveyed. Elderly men and women appear to play an important role in primary health care services in these communities. This survey underscores the need to preserve and document traditional knowledge of the different medicinal mushrooms used in treating different illnesses and for more future scientific research on the mushrooms to determine their efficacy and their safety.
Collapse
Affiliation(s)
- N. A. Teke
- Department of Botany and Plant Physiology, Faculty of Science, University of Buea, P.O. Box 63, Buea, South West Region Cameroon
| | - T. R. Kinge
- Department of Biological Sciences, Faculty of Science, The University of Bamenda, P.O.Box 39, Bamenda, North West Region Cameroon
| | - E. Bechem
- Department of Botany and Plant Physiology, Faculty of Science, University of Buea, P.O. Box 63, Buea, South West Region Cameroon
| | - T. M. Nji
- Department of Sociology and Anthropology, Faculty of Science, University of Buea, P.O.Box 63, Buea, South West Region Cameroon
| | - L. M. Ndam
- Department of Botany and Plant Physiology, Faculty of Science, University of Buea, P.O. Box 63, Buea, South West Region Cameroon
- Tokyo University of Agriculture and Technology, 3-5-8 Sawai-Cho, Fuchu, Tokyo 183-8509 Japan
| | - A. M. Mih
- Department of Botany and Plant Physiology, Faculty of Science, University of Buea, P.O. Box 63, Buea, South West Region Cameroon
| |
Collapse
|
19
|
Ngubane NP, Dreyer LL, Oberlander KC, Roets F. Two new Sporothrix species from Protea flower heads in South African Grassland and Savanna. Antonie Van Leeuwenhoek 2017; 111:965-979. [PMID: 29214366 DOI: 10.1007/s10482-017-0995-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 12/01/2017] [Indexed: 11/29/2022]
Abstract
The inflorescences and infructescences of African Protea trees provide habitat for a large diversity of Sporothrix species. Here we describe two additional members, Sporothrix nsini sp. nov. and Sporothrix smangaliso sp. nov., that are associated with the infructescences of various Protea species from grasslands and savannas in the KwaZulu-Natal, North-West, Gauteng and Mpumalanga provinces of South Africa. Their description raises the number of described Protea-associated Sporothrix species to twelve. S. smangaliso sp. nov. is distantly related to other Protea-associated species and, in phylogenies using multiple markers (ITS, beta-tubulin and calmodulin), groups with taxa such as Sporothrix bragantina from Brazil and Sporothrix curviconia from the Ivory Coast. S. nsini sp. nov. resolved as sister to a clade containing four other Protea-associated species within the Sporothrix stenoceras complex. S. nsini sp. nov. was collected from within the same infructescences of Protea caffra that also contained the closely related S. africana and S. protearum. This highlights the need to study and understand the factors that influence host selection and speciation of Sporothrix in this atypical niche.
Collapse
Affiliation(s)
- Nombuso P Ngubane
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa
| | - Leanne L Dreyer
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa.,DST/NRF Centre of Excellence in Tree Health Biotechnology (CTHB), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - Kenneth C Oberlander
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa
| | - Francois Roets
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa. .,DST/NRF Centre of Excellence in Tree Health Biotechnology (CTHB), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa.
| |
Collapse
|
20
|
Isolation and Characterization of Fungi Associated with Disease Symptoms on Ziziphus mucronata Leaves and Phaseolus vulgaris Pods in Windhoek, Namibia. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.2.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
21
|
Magwaza NM, Nxumalo EN, Mamba BB, Msagati TAM. The Occurrence and Diversity of Waterborne Fungi in African Aquatic Systems: Their Impact on Water Quality and Human Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14050546. [PMID: 28531124 PMCID: PMC5451996 DOI: 10.3390/ijerph14050546] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 11/16/2022]
Abstract
Currently, there is a worldwide growing interest in the occurrence and diversity of fungi and their secondary metabolites in aquatic systems, especially concerning their role in water quality and human health. However, this concern is hampered by the scant information that is available in the literature about aquatic fungi and how they affect water quality. There are only few published reports that link certain species of aquatic fungi to human health. The common aquatic fungal species that have been reported so far in African aquatic systems belong to the hyphomycetes kingdom. This paper thus aims to survey the information about the occurrence and factors that control the distribution of different species of fungi in African aquatic systems, as well as their effect on water quality and the possible metabolic pathways that lead to the formation of toxic secondary metabolites that are responsible for the deterioration of water quality. This review will also investigate the analytical and bioanalytical procedures that have been reported for the identification of different species of waterborne fungi and their secondary metabolites.
Collapse
Affiliation(s)
- Nontokozo M Magwaza
- Nanotechnology and Water Sustainability Research Unit, College of Science Engineering and Technology, University of South Africa, Roodepoort, 1710 Johannesburg, South Africa.
| | - Edward N Nxumalo
- Nanotechnology and Water Sustainability Research Unit, College of Science Engineering and Technology, University of South Africa, Roodepoort, 1710 Johannesburg, South Africa.
| | - Bhekie B Mamba
- Nanotechnology and Water Sustainability Research Unit, College of Science Engineering and Technology, University of South Africa, Roodepoort, 1710 Johannesburg, South Africa.
| | - Titus A M Msagati
- Nanotechnology and Water Sustainability Research Unit, College of Science Engineering and Technology, University of South Africa, Roodepoort, 1710 Johannesburg, South Africa.
| |
Collapse
|
22
|
Sridhar KR. Chapter 15 Aquatic Hyphomycete Communities in Freshwater. Mycology 2017. [DOI: 10.1201/9781315119496-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
23
|
Aylward J, Dreyer LL, Laas T, Smit L, Roets F. Knoxdaviesia capensis : dispersal ecology and population genetics of a flower-associated fungus. FUNGAL ECOL 2017. [DOI: 10.1016/j.funeco.2016.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Omomowo IO, Salami AO, Olabiyi TI. Preliminary study on climate seasonal and spatial variations on the abundance and diversity of fungi species in natural plantation ecosystems of Ile-Ife, South West, Nigeria. ACTA ACUST UNITED AC 2017. [DOI: 10.5897/ajest2016.2147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
25
|
Damm U, Crous PW, Fourie PH. Botryosphaeriaceae as potential pathogens of Prunus species in South Africa, with descriptions of Diplodia africana and Lasiodiplodia plurivora sp. nov. Mycologia 2017. [DOI: 10.1080/15572536.2007.11832531] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ulrike Damm
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Stellenbosch 7602, South Africa
| | - Pedro W. Crous
- Centraalbureau voor Schimmelcultures, Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands, and Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Stellenbosch 7602, South Africa
| | - Paul H. Fourie
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Stellenbosch 7602, South Africa
| |
Collapse
|
26
|
Ethno-mycological Survey and Molecular Identification of Mushrooms in the Shimoga Region of the Western Ghats of Karnataka (India). JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2016. [DOI: 10.22207/jpam.10.4.70] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Cruywagen EM, Slippers B, Roux J, Wingfield MJ. Phylogenetic species recognition and hybridisation in Lasiodiplodia: A case study on species from baobabs. Fungal Biol 2016; 121:420-436. [PMID: 28317543 DOI: 10.1016/j.funbio.2016.07.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/28/2016] [Accepted: 07/28/2016] [Indexed: 01/26/2023]
Abstract
Lasiodiplodia species (Botryosphaeriaceae, Ascomycota) infect a wide range of typically woody plants on which they are associated with many different disease symptoms. In this study, we determined the identity of Lasiodiplodia isolates obtained from baobab (Adansonia species) trees in Africa and reviewed the molecular markers used to describe Lasiodiplodia species. Publicly available and newly produced sequence data for some of the type strains of Lasiodiplodia species showed incongruence amongst phylogenies of five nuclear loci. We conclude that several of the previously described Lasiodiplodia species are hybrids of other species. Isolates from baobab trees in Africa included nine species of Lasiodiplodia and two hybrid species. Inoculation trials with the most common Lasiodiplodia species collected from these trees produced significant lesions on young baobab trees. There was also variation in aggressiveness amongst isolates from the same species. The apparently widespread tendency of Lasiodiplodia species to hybridise demands that phylogenies from multiple loci (more than two and preferably four or more) are compared for congruence prior to new species being described. This will avoid hybrids being incorrectly described as new taxa, as has clearly occurred in the past.
Collapse
Affiliation(s)
- Elsie M Cruywagen
- Department of Plant and Soil Sciences, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB), Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0083, South Africa.
| | - Bernard Slippers
- Department of Genetics, CTHB, FABI, University of Pretoria, Pretoria 0083, South Africa.
| | - Jolanda Roux
- Department of Plant and Soil Sciences, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB), Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0083, South Africa.
| | - Michael J Wingfield
- Department of Plant and Soil Sciences, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB), Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0083, South Africa.
| |
Collapse
|
28
|
Duarte S, Bärlocher F, Pascoal C, Cássio F. Biogeography of aquatic hyphomycetes: Current knowledge and future perspectives. FUNGAL ECOL 2016. [DOI: 10.1016/j.funeco.2015.06.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
The need to engage with citizen scientists to study the rich fungal biodiversity in South Africa. IMA Fungus 2015. [DOI: 10.1007/bf03449355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
AbstractFungi are a marginal interest group for the South African public even with the recent boom in nature guides covering diverse topics. However, fungi are not a marginal group in any ecosystem on Earth, and have vital ecological functions with significant positive or negative impacts on the lives of humans. The reasons for the obscurity of fungi, are that fungi are not well-known, often negatively perceived and not well publicized. Yet strong interest exists from laymen to diverse biologists. These enthusiasts are frustrated by a lack of information and expertise. South Africa has an incredibly rich diversity of fungi but there are no active experts cataloguing and describing these fungi, especially the groups the public encounters. This is a problem also experienced by many other African countries. Planned and focused efforts including citizens will contribute to the needed stimulation, promotion and funding of research in mycology in South Africa.
Collapse
|
30
|
Aylward J, Dreyer LL, Steenkamp ET, Wingfield MJ, Roets F. Panmixia defines the genetic diversity of a unique arthropod-dispersed fungus specific to Protea flowers. Ecol Evol 2014; 4:3444-55. [PMID: 25535560 PMCID: PMC4228618 DOI: 10.1002/ece3.1149] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/05/2014] [Accepted: 06/07/2014] [Indexed: 11/05/2022] Open
Abstract
Knoxdaviesia proteae, a fungus specific to the floral structures of the iconic Cape Floral Kingdom plant, Protea repens, is dispersed by mites phoretic on beetles that pollinate these flowers. Although the vectors of K. proteae have been identified, little is known regarding its patterns of distribution. Seed bearing infructescences of P. repens were sampled from current and previous flowering seasons, from which K. proteae individuals were isolated and cultured. The genotypes of K. proteae isolates were determined using 12 microsatellite markers specific to this species. Genetic diversity indices showed a high level of similarity between K. proteae isolates from the two different infructescence age classes. The heterozygosity of the population was high (0.74 ± 0.04), and exceptional genotypic diversity was encountered (Ĝ = 97.87%). Population differentiation was negligible, owing to the numerous migrants between the infructescence age classes (N m = 47.83) and between P. repens trees (N m = 2.96). Parsimony analysis revealed interconnected genotypes, indicative of recombination and homoplasies, and the index of linkage disequilibrium confirmed that outcrossing is prevalent in K. proteae ([Formula: see text] = 0.0067; P = 0.132). The high diversity and panmixia in this population is likely a result of regular gene flow and an outcrossing reproductive strategy. The lack of genetic cohesion between individuals from a single P. repens tree suggests that K. proteae dispersal does not primarily occur over short distances via mites as hypothesized, but rather that long-distance dispersal by beetles plays an important part in the biology of these intriguing fungi.
Collapse
Affiliation(s)
- Janneke Aylward
- Department of Botany and Zoology, Stellenbosch University Private Bag X1, Matieland, 7602, South Africa ; Department of Science and Technology (DST)/National Research Foundation (NRF) Centre of Excellence in Tree Health Biotechnology (CTHB), University of Pretoria Pretoria, 0002, South Africa
| | - Léanne L Dreyer
- Department of Botany and Zoology, Stellenbosch University Private Bag X1, Matieland, 7602, South Africa ; Department of Science and Technology (DST)/National Research Foundation (NRF) Centre of Excellence in Tree Health Biotechnology (CTHB), University of Pretoria Pretoria, 0002, South Africa
| | - Emma T Steenkamp
- Department of Science and Technology (DST)/National Research Foundation (NRF) Centre of Excellence in Tree Health Biotechnology (CTHB), University of Pretoria Pretoria, 0002, South Africa ; Department of Microbiology and Plant Pathology, University of Pretoria Pretoria, 0002, South Africa
| | - Michael J Wingfield
- Department of Science and Technology (DST)/National Research Foundation (NRF) Centre of Excellence in Tree Health Biotechnology (CTHB), University of Pretoria Pretoria, 0002, South Africa ; Department of Microbiology and Plant Pathology, University of Pretoria Pretoria, 0002, South Africa
| | - Francois Roets
- Department of Science and Technology (DST)/National Research Foundation (NRF) Centre of Excellence in Tree Health Biotechnology (CTHB), University of Pretoria Pretoria, 0002, South Africa ; Department of Conservation Ecology and Entomology, Stellenbosch University Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
31
|
Osarenkhoe OO, John OA, Theophilus DA. Ethnomycological Conspectus of West African Mushrooms: An Awareness Document. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/aim.2014.41008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Oh E, Gryzenhout M, Wingfield BD, Wingfield MJ, Burgess TI. Surveys of soil and water reveal a goldmine of Phytophthora diversity in South African natural ecosystems. IMA Fungus 2013; 4:123-31. [PMID: 23898418 PMCID: PMC3719200 DOI: 10.5598/imafungus.2013.04.01.12] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/30/2013] [Indexed: 11/25/2022] Open
Abstract
Phytophthora species are well-known as destructive plant pathogens, especially in natural ecosystems. It is ironic, therefore, how little is known regarding the Phytophthora diversity in South African natural woody ecosystems. In this study, Phytophthora species were isolated using standard baiting techniques from 182 soil and water samples and these were identified based on ITS and coxI sequence data. The 171 resulting Phytophthora isolates resided in 14 taxa including six known species (P. multivora, P. capensis, P. cryptogea, P. frigida, P. cinnamomi, P. cinnamomi var. parvispora), the known but as yet unnamed Phytophthora sp. PgChlamydo, P. sp. emzansi, and P. sp. Kununurra and five novel taxa referred to as P. sp. stellaris, P. sp. Umtamvuna P. sp. canthium, P. sp. xWS, P. sp. xHennops. Four of the new taxa were found exclusively in water and two of these are hybrids. The most commonly isolated species from soil was P. multivora, a species recently described from Western Australia. Phytophthora frigida was isolated for the first time from stream water. With the exception of P. cinnamomi, very little is known regarding the biology, epidemiology or origin of Phytophthora in South Africa.
Collapse
Affiliation(s)
- Eunsung Oh
- Department of Genetics and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
- Current address: E-Planet Co. Ltd. 345-9 Gasandong Gumcheongu, 153-802, Seoul, Republic of Korea
| | - Marieka Gryzenhout
- Department of Plant Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Brenda D. Wingfield
- Department of Genetics and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Michael J. Wingfield
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Treena I. Burgess
- Department of Genetics and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
- Center for Phytophthora Science and Management, Murdoch University, Perth, Australia, 6150
| |
Collapse
|
33
|
Diversimorbus metrosiderotis gen. et sp. nov. and three new species of Holocryphia (Cryphonectriaceae) associated with cankers on native Metrosideros angustifolia trees in South Africa. Fungal Biol 2013; 117:289-310. [PMID: 23719217 DOI: 10.1016/j.funbio.2013.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 11/20/2022]
Abstract
The Cryphonectriaceae includes important tree pathogens, especially on the Myrtales. During a routine disease survey in the Western Cape Province of South Africa, a fungus resembling the Eucalyptus pathogen Holocryphia eucalypti was observed on native Metrosideros angustifolia (Myrtales). The aims of this study were to identify the fungus and to expand surveys for fungi in the Cryphonectriaceae on M. angustifolia. Fungi were identified based on DNA sequence comparisons and morphological features, and their pathogenicity was tested on M. angustifolia under field conditions. Based on morphology and multigene phylogenetic analyses of DNA sequence data from six gene regions, we describe a new genus including a single species and three new species of Holocryphia (Cryphonectriaceae) from M. angustifolia. These fungi are provided with the names Diversimorbus metrosiderotis gen. et sp. nov., Holocryphia capensis sp. nov., Holocryphia gleniana sp. nov., and Holocryphia mzansi sp. nov. We also revise H. eucalypti, the type of the genus, to include only isolates from Eucalyptus in South Africa. Research results indicated that H. mzansi may undergo host shifts between different tree genera in the Myrtaceae. Inoculation tests showed that isolates of all the newly described species can cause lesions on the branches of M. angustifolia, indicating that they are all pathogens of this tree.
Collapse
|
34
|
Gryzenhout M, Jefwa JM, Yorou NS. The status of mycology in Africa: A document to promote awareness. IMA Fungus 2012; 3:99-102. [PMID: 23155505 PMCID: PMC3399108 DOI: 10.5598/imafungus.2012.03.01.11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Accepted: 06/12/2012] [Indexed: 12/03/2022] Open
Abstract
The African Mycological Association (AMA) promotes mycology amongst members in Africa and globally. The AMA has about 200 members, mostly from African states but also with strong representation from Europe and USA, amongst others. Recent efforts by members of the AMA focused on reviving and developing mycological research and networking in Africa. A great deal must, however, still be done to promote the AMA under African mycologists, and those elsewhere with interests in Africa. African mycologists also experience challenges typical of the developing world and a great deal of fungi still needs to be discovered. This can also be seen as representing great opportunities for research and collaboration. Several issues pertinent to mycology in Africa were discussed during Special Interest Group sessions of the 9th International Mycological Congress in 2010, and through several opinion pieces contributed by AMA members in the AMA newsletter, MycoAfrica. This contribution serves as a document to summarise these in a form that can be presented to fellow mycologists, biologists and other scientists, relevant government departments, funding bodies and Non-Governmental Organizations and that pins down the importance of mycology, the status thereof in Africa and the need to promote it more.
Collapse
Affiliation(s)
- Marieka Gryzenhout
- Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa, 9301
| | | | | |
Collapse
|
35
|
Visagie C, Jacobs K. Three new additions to the genus Talaromyces isolated from Atlantis sandveld fynbos soils. PERSOONIA 2012; 28:14-24. [PMID: 23105150 PMCID: PMC3409411 DOI: 10.3767/003158512x632455] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Accepted: 01/31/2012] [Indexed: 11/25/2022]
Abstract
During a survey of Penicillium spp. in soils from the diverse fynbos region in the Western Cape, South Africa, a number of previously undescribed species were isolated. Three of these belong to subg. Biverticillium sensu Pitt, recently incorporated into its previously associated teleomorph genus, Talaromyces s.str. These species displayed symmetrical biverticillate penicilli, acerose phialides and poor growth at reduced water activity, typical of this group. Morphological characters of the new species were compared to known Talaromyces species. The ITS and β-tubulin gene regions were used for phylogenetic comparisons, which confirmed the distinct nature of the three fynbos soil species described here as Talaromyces chloroloma sp. nov., T. ptychoconidium sp. nov. and T. solicola sp. nov., respectively. Talaromyces chloroloma is typically recognised by its strongly funiculose colony texture and after prolonged incubation, synnemata can be observed on CYA. Talaromyces ptychoconidium is characterised by closely appressed conidiophores that produce spirally rough-walled conidia, while T. solicola typically struggle to grow on CYA and is distinguished from similar species by its prominently rough-walled, spheroid conidia.
Collapse
Affiliation(s)
- C.M. Visagie
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland,P602, South Africa
| | - K. Jacobs
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland,P602, South Africa
| |
Collapse
|
36
|
Fungal pathogens of Proteaceae. Persoonia - Molecular Phylogeny and Evolution of Fungi 2011; 27:20-45. [PMID: 22403475 PMCID: PMC3251321 DOI: 10.3767/003158511x606239] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 09/25/2011] [Indexed: 11/29/2022]
Abstract
Species of Leucadendron, Leucospermum and Protea (Proteaceae) are in high demand for the international floriculture market due to their brightly coloured and textured flowers or bracts. Fungal pathogens, however, create a serious problem in cultivating flawless blooms. The aim of the present study was to characterise several of these pathogens using morphology, culture characteristics, and DNA sequence data of the rRNA-ITS and LSU genes. In some cases additional genes such as TEF 1-α and CHS were also sequenced. Based on the results of this study, several novel species and genera are described. Brunneosphaerella leaf blight is shown to be caused by three species, namely B. jonkershoekensis on Protea repens, B. nitidae sp. nov. on Protea nitida and B. protearum on a wide host range of Protea spp. (South Africa). Coniothyrium-like species associated with Coniothyrium leaf spot are allocated to other genera, namely Curreya grandicipis on Protea grandiceps, and Microsphaeropsis proteae on P. nitida (South Africa). Diaporthe leucospermi is described on Leucospermum sp. (Australia), and Diplodina microsperma newly reported on Protea sp. (New Zealand). Pyrenophora blight is caused by a novel species, Pyrenophora leucospermi, and not Drechslera biseptata or D. dematoidea as previously reported. Fusicladium proteae is described on Protea sp. (South Africa), Pestalotiopsis protearum on Leucospermum cuneiforme (Zimbabwe), Ramularia vizellae and R. stellenboschensis on Protea spp. (South Africa), and Teratosphaeria capensis on Protea spp. (Portugal, South Africa). Aureobasidium leaf spot is shown to be caused by two species, namely A. proteae comb. nov. on Protea spp. (South Africa), and A. leucospermi sp. nov. on Leucospermum spp. (Indonesia, Portugal, South Africa). Novel genera and species elucidated in this study include Gordonomyces mucovaginatus and Pseudopassalora gouriqua (hyphomycetes), and Xenoconiothyrium catenata (coelomycete), all on Protea spp. (South Africa).
Collapse
|
37
|
|
38
|
Crous PW, Groenewald JZ. Why everlastings don't last. PERSOONIA 2011; 26:70-84. [PMID: 22025805 PMCID: PMC3160795 DOI: 10.3767/003158511x574532] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 03/04/2011] [Indexed: 11/25/2022]
Abstract
The Cape Floral Region represents one of the world's biodiversity hot spots, with a high level of plant, animal and insect endemism. The fungi occurring in this region, however, remain poorly studied. It is widely postulated that each plant species should harbour at least five to six unique fungal species, a number that we regard to be a huge underestimate. To test this hypothesis, we decided to study a single senescent flower of Phaenocoma prolifera ('everlasting'; Asteraceae) collected in South Africa, and posed the question as to how many different species of fungi could be isolated and cultivated from 10 leaf bracts. Using a damp chamber technique, numerous microfungi could be induced to sporulate, enabling most of them to be successfully isolated on artificial agar media. Isolates were subsequently subjected to DNA sequencing of the ITS and LSU nrDNA regions. During the course of this study 17 species could be cultivated and identified, of which 11 appeared to be new to science. These include Catenulostroma hermanusense, Cladosporium phaenocomae, Devriesia tardicrescens, Exophiala capensis, Penidiella aggregata, P. ellipsoidea, Teratosphaeria karinae, Toxicocladosporium pseudoveloxum spp. nov., and Xenophacidiella pseudocatenata gen. & sp. nov. Further studies are now required to determine if these fungi also occur as endophytes in healthy flowers. If this trend holds true for other plant hosts from southern Africa, it would suggest that there are many more fungi present in the Cape Floral Region than estimated in previous studies.
Collapse
Affiliation(s)
- P W Crous
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | |
Collapse
|
39
|
|
40
|
Abstract
PREMISE OF THE STUDY Fungi are major decomposers in certain ecosystems and essential associates of many organisms. They provide enzymes and drugs and serve as experimental organisms. In 1991, a landmark paper estimated that there are 1.5 million fungi on the Earth. Because only 70000 fungi had been described at that time, the estimate has been the impetus to search for previously unknown fungi. Fungal habitats include soil, water, and organisms that may harbor large numbers of understudied fungi, estimated to outnumber plants by at least 6 to 1. More recent estimates based on high-throughput sequencing methods suggest that as many as 5.1 million fungal species exist. METHODS Technological advances make it possible to apply molecular methods to develop a stable classification and to discover and identify fungal taxa. KEY RESULTS Molecular methods have dramatically increased our knowledge of Fungi in less than 20 years, revealing a monophyletic kingdom and increased diversity among early-diverging lineages. Mycologists are making significant advances in species discovery, but many fungi remain to be discovered. CONCLUSIONS Fungi are essential to the survival of many groups of organisms with which they form associations. They also attract attention as predators of invertebrate animals, pathogens of potatoes and rice and humans and bats, killers of frogs and crayfish, producers of secondary metabolites to lower cholesterol, and subjects of prize-winning research. Molecular tools in use and under development can be used to discover the world's unknown fungi in less than 1000 years predicted at current new species acquisition rates.
Collapse
Affiliation(s)
- Meredith Blackwell
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| |
Collapse
|
41
|
Three new Graphium species from baobab trees in South Africa and Madagascar. Persoonia - Molecular Phylogeny and Evolution of Fungi 2010; 25:61-71. [PMID: 21339967 PMCID: PMC3028506 DOI: 10.3767/003158510x550368] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 11/04/2010] [Indexed: 11/25/2022]
Abstract
Baobabs (Adansonia spp.) are iconic trees, known for their immense size, strange forms, sources of food and as the subjects of myths and mysteries. It is thus surprising that little is known regarding the fungi that infect these trees. During a survey to determine which wound infecting fungi occur on baobabs, synnematous structures were observed and Graphium-like isolates were obtained. Culture characteristics and micro-morphology, together with DNA sequence comparisons for the SSU rRNA, rRNA-ITS and TEF-1α gene regions were used to characterise these fungi. These data revealed three novel Graphium spp. and these are described as G. adansoniae, G. madagascariense and G. fabiforme.
Collapse
|
42
|
Abdel-Azeem AM. The history, fungal biodiversity, conservation, and future perspectives for mycology in Egypt. IMA Fungus 2010; 1:123-42. [PMID: 22679571 PMCID: PMC3348774 DOI: 10.5598/imafungus.2010.01.02.04] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 10/30/2010] [Indexed: 11/27/2022] Open
Abstract
Records of Egyptian fungi, including lichenized fungi, are scattered through a wide array of journals, books, and dissertations, but preliminary annotated checklists and compilations are not all readily available. This review documents the known available sources and compiles data for more than 197 years of Egyptian mycology. Species richness is analysed numerically with respect to the systematic position and ecology. Values of relative species richness of different systematic and ecological groups in Egypt compared to values of the same groups worldwide, show that our knowledge of Egyptian fungi is fragmentary, especially for certain systematic and ecological groups such as Agaricales, Glomeromycota, and lichenized, nematode-trapping, entomopathogenic, marine, aquatic and coprophilous fungi, and also yeasts. Certain groups have never been studied in Egypt, such as Trichomycetes and black yeasts. By screening available sources of information, it was possible to delineate 2281 taxa belonging to 755 genera of fungi, including 57 myxomycete species as known from Egypt. Only 105 taxa new to science have been described from Egypt, one belonging to Chytridiomycota, 47 to Ascomycota, 55 to anamorphic fungi and one to Basidiomycota.
Collapse
Affiliation(s)
- Ahmed M. Abdel-Azeem
- Botany Department, Faculty of Science, University of Suez Canal, Ismailia 41522, Egypt
| |
Collapse
|
43
|
Visagie CM, Roets F, Jacobs K. A new species of Penicillium, P. ramulosum sp. nov., from the natural environment. Mycologia 2009; 101:888-95. [PMID: 19927755 DOI: 10.3852/08-149] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
During a recent survey of Penicillium spp. from fynbos soils in the Western Cape Province of South Africa, several undescribed species were isolated. Similar isolates of one of these species also were collected in the Western Cape from Protea infructescences. These strains were compared morphologically to known species of Penicillium but could not be identified with previously published keys. Morphologically these strains belong to subgenus Biverticillium. They are distinguished by strongly funiculose colonies covered by glutinous exudates and conidiophores with thin acerose phialides (8.5-10[-12] x 2.0-2.5 microm) that give rise to chains of subspheroidal to ellipsoidal conidia (2.5-3.0 x 1.5-2.5 microm). Characteristically short (100-150[-250] microm) determinate synnemata are produced in culture after prolonged incubation with much longer synnemata produced in nature. Based on differences in morphology and molecular characters, the strains are described here as Penicillium ramulosum sp. nov.
Collapse
Affiliation(s)
- Cobus M Visagie
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa.
| | | | | |
Collapse
|
44
|
Cheewangkoon R, Groenewald J, Summerell B, Hyde K, To-anun C, Crous P. Myrtaceae, a cache of fungal biodiversity. PERSOONIA 2009; 23:55-85. [PMID: 20198162 PMCID: PMC2802731 DOI: 10.3767/003158509x474752] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Accepted: 07/01/2009] [Indexed: 11/25/2022]
Abstract
Twenty-six species of microfungi are treated, the majority of which are associated with leaf spots of Corymbia, Eucalyptus and Syzygium spp. (Myrtaceae). The treated species include three new genera, Bagadiella, Foliocryphia and Pseudoramichloridium, 20 new species and one new combination. Novelties on Eucalyptus include: Antennariella placitae, Bagadiellalunata, Cladoriella rubrigena, C. paleospora, Cyphellophora eucalypti, Elsinoë eucalypticola, Foliocryphia eucalypti, Leptoxyphium madagascariense, Neofabraea eucalypti, Polyscytalum algarvense, Quambalaria simpsonii, Selenophoma australiensis, Sphaceloma tectificae, Strelitziana australiensis and Zeloasperisporium eucalyptorum.Stylaspergillus synanamorphs are reported for two species of Parasympodiella, P. eucalypti sp. nov. and P. elongata, while Blastacervulus eucalypti, Minimedusa obcoronata and Sydowia eucalypti are described from culture. Furthermore, Penidiella corymbia and Pseudoramichloridium henryi are newly described on Corymbia, Pseudocercospora palleobrunnea on Syzygium and Rachicladosporium americanum on leaf litter. To facilitate species identification, as well as determine phylogenetic relationships, DNA sequence data were generated from the internal transcribed spacers (ITS1, 5.8S nrDNA, ITS2) and the 28S nrDNA (LSU) regions of all taxa studied.
Collapse
Affiliation(s)
- R. Cheewangkoon
- Department of Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - J.Z. Groenewald
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - B.A. Summerell
- Royal Botanic Gardens and Domain Trust, Mrs. Macquaries Road, Sydney, NSW 2000, Australia
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - C. To-anun
- Department of Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - P.W. Crous
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
45
|
Crous P, Summerell B, Carnegie A, Wingfield M, Groenewald J. Novel species of Mycosphaerellaceae and Teratosphaeriaceae. PERSOONIA 2009; 23:119-46. [PMID: 20198165 PMCID: PMC2802729 DOI: 10.3767/003158509x479531] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 07/26/2009] [Indexed: 11/25/2022]
Abstract
Recent phylogenetic studies based on multi-gene data have provided compelling evidence that the Mycosphaerellaceae and Teratosphaeriaceae represent numerous genera, many of which can be distinguished based on their anamorph morphology. The present study represents the second contribution in a series describing several novel species in different capnodealean genera defined in a previous study. Novelties on Eucalyptus from Australia include: Penidiella pseudotasmaniensis, P. tenuiramis, Phaeothecoidea intermedia, P. minutispora, Pseudocercospora tereticornis, Readeriella angustia, R. eucalyptigena, R. menaiensis, R. pseudocallista, R. tasmanica, Teratosphaeria alboconidia, T. complicata, T. majorizuluensis, T. miniata, T. profusa, Zasmidium aerohyalinosporum and Z. nabiacense, while Teratosphaeria xenocryptica is described on Eucalyptus from Chile. Novelties on other hosts include Phaeophleospora eugeniicola on Eugenia from Brazil, and Zasmidium nocoxi on twig litter from the USA.
Collapse
Affiliation(s)
- P.W. Crous
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - B.A. Summerell
- Royal Botanic Gardens and Domain Trust, Mrs. Macquaries Road, Sydney, NSW 2000, Australia
| | - A.J. Carnegie
- Forest Resources Research, NSW Department of Primary Industries, P.O. Box 100, Beecroft, New South Wales 2119, Australia
| | - M.J. Wingfield
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - J.Z. Groenewald
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
46
|
Niche sharing reflects a poorly understood biodiversity phenomenon. Persoonia - Molecular Phylogeny and Evolution of Fungi 2009; 22:83-94. [PMID: 20198141 PMCID: PMC2789535 DOI: 10.3767/003158509x439364] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Accepted: 03/23/2009] [Indexed: 11/25/2022]
Abstract
Eucalyptus spp. are susceptible to a large number of foliar pathogens, some of which can cause serious defoliation and die-back. In this study, a single leaf spot on a Eucalyptus leaf collected in Madagascar revealed an unusual association of microfungi with disease symptoms. Initial observations indicated that the leaf spot was associated with Mycosphaerella marksii, a common pathogen of eucalypts. However, more intensive scrutiny showed the presence of several other microfungi co-occurring in this, and other leaf spots on the leaf. A total of 41 single conidial propagules were subsequently obtained from a single lesion for morphological study and DNA sequence comparisons. Based on these data, 11 members of the Capnodiales, including one species of Pestalotiopsis (Xylariales), were observed. Of the capnodialean taxa, nine could be cultivated, which revealed one known species, M. marksii, two taxa in the Cladosporium cladosporioides species complex that were not treated here, and six new species, including Passalora intermedia, Pseudocercospora madagascariensis, Teratosphaeria hortaea, Toxicocladosporium chlamydosporum, T. rubrigenum and T. veloxum. Results of this study highlight a remarkable fungal biodiversity that can occur within a very specific niche. Furthermore, the results emphasise the importance of verifying the identity of fungal isolates in culture, as many taxa, especially those of the Capnodiales, frequently co-occur in the same niche, lesion or leaf spot.
Collapse
|
47
|
Roets F, Wingfield M, Crous P, Dreyer L. Fungal radiation in the Cape Floristic Region: An analysis based on Gondwanamyces and Ophiostoma. Mol Phylogenet Evol 2009; 51:111-9. [DOI: 10.1016/j.ympev.2008.05.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 05/21/2008] [Accepted: 05/30/2008] [Indexed: 10/22/2022]
|
48
|
Understanding the origins and evolution of the world’s biodiversity hotspots: The biota of the African ‘Cape Floristic Region’ as a case study. Mol Phylogenet Evol 2009; 51:1-4. [DOI: 10.1016/j.ympev.2009.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Roane TM, Reynolds KA, Maier RM, Pepper IL. Microorganisms. Environ Microbiol 2009. [DOI: 10.1016/b978-0-12-370519-8.00002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
50
|
|